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Abstract  

This paper presents the application of Detection 
Indices (DI) in a miniature Health and Usage 
Monitoring System (HUMS) unit developed by 
Defence Science and Technology Organisation 
(DSTO) of Australia in co-operation with GPS 
Online Pty Ltd.  The significance of using DI is 
to process the data onboard without going so 
far as to prevent more complicated algorithms 
being used later but far enough to reduced the 
amount of data storage required. A simulation 
analysis study was carried out to understand the 
characteristics of the autocorrelation process.  
The characteristics were then further verified by 
experimental procedures.  The results indicated 
that the autocorrelation could be used to iden-
tify the occurrence of anomalies within a moni-
tored system.  This ability makes the autocorre-
lation an attractive contender for the DI algo-
rithm.   

1  Introduction  

When a Mechanical Vehicle (Air, Land or Sea) 
is in operation, the ability to track and assess its 
state of health and usage is imperative.  In many 
cases the vehicle might be engaged in a military 
or civil mission, where human lives may be in-
volved either directly or indirectly.   

The question is what needs to be tracked 
and assessed?  A typical Mechanical Vehicle 
includes rotating components as well as the 
structural frame support.  Many of the rotating 
components have lives that are limited by fa-
tigue considerations, i.e. the component must be 
replaced when a pre-defined number of hours 
has been accumulated, generally referred to as 

the Component Retirement Time (CRT), and is 
dependent on fatigue strength, loads and the us-
age spectrum of the component.  The usage 
spectrum is initially based on assumptions for 
the proportion of time a vehicle spends in vari-
ous conditions.  In practice, the actual usage of 
the vehicle may vary markedly from the as-
sumed design usage [1]. 

The helicopter community has made a 
vast leap in developing technology for in-
service tracking of component accumulated us-
age hour, usage spectrum, and critical health 
status.  This technology is commonly referred as 
HUMS.  As described in [2], HUMS has the po-
tential to provide significant improvements in 
such areas as operational improvements, fleet 
management improvements, reliability and cost 
benefit improvements.  These improvements are 
commonly described as an improvement for 
Life Cycle Costing and increase in reliability 
and maintainability. 

    For the past twenty years, HUMS 
technology has advanced very significantly, 
where the prognostic and diagnostic capability 
has been greatly improved [3].  However, one of 
the major drawbacks for HUMS today is the 
generation of vast amounts of raw data.  In most 
cases raw data can only be converted into mean-
ingful information at a ground-based station, 
and very often only a small portion of raw data 
are of any interest.  As mentioned in [4], HUMS 
data is collected with the purpose of recording 
all-important events and activities for future 
analysis.  However, review and analysis of this 
data is typically ad hoc, relatively infrequent 
and requires significant human involvement.  As 
a result, the data accumulates much faster than it 
can be processed.   
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Since large portions of the HUMS data 
are of little significance, an algorithm needs to 
be developed to isolate the vital data during the 
recording process.  This paper describes such 
algorithm as Detection Indices (DI).  The basic 
concept of DI is to monitor incoming data, and 
if an abnormal event occurs, data sampled dur-
ing this period will be stored.  In addition, DI 
may be able to indicated general information 
about the incident. 

The major difference between the pro-
posed DI algorithm and the algorithm used by 
the conventional HUMS unit is the diagnosis 
methodology.  While conventional HUMS uses 
algorithms that specifically look for individual 
faults (or faults in individual gears, bearings, 
etc.), the DI techniques described in this paper 
will look for faults in terms of changes in trans-
fer functions.  That means a conventional 
HUMS will only detect a structural crack if an 
algorithm to detect that crack is included while 
the SmartHUMS would detect the crack as long 
as it affected the transfer of any significant sig-
nal.   

Three DI algorithms will be researched:  
autocorrelation (sometimes called serial correla-
tion), cross correlation and signal averaging.  
For the purpose of this paper, only the autocor-
relation method will be discussed.     

According to [5] time series data some-
times have repetitive behaviour or has other 
properties, whereby current values have some 
relation to the earlier values.  Autocorrelation is 
a statistic that measures the degree of this af-
filiation.  The ability of autocorrelation to de-
termine changes to otherwise regular patterns 
sets an excellent backdrop for the DI applica-
tion.  If during the monitoring of a mechanical 
vehicle, a difference is detected between the be-
haviour of the current data with the previous 
period, the raw data is stored and compressed 
for further analysis.  The autocorrelation tech-
nique has two most significant parameters, 
which are the time series data length and the lag 
amount.  Essentially the lag amount is the pa-
rameter that allows the comparison of the time 
series to itself.  If the lag amount is equal to 1 
that means the time series data is being com-

pared to itself at a reduction of one data point at 
a time.  

  The other advantage of using autocor-
relation as a DI is that it has the capacity of de-
tecting periodic patterns even when the random 
data exist within the time series.   If the time 
series contains large amounts of noise, the auto-
correlation process will still be able to present 
the periodic patterns and filter out most of the 
noise. 

The HUMS unit used for this research is 
called SmartHUMS, which is a miniaturised 
HUMS co-developed by Defence Science Tech-
nology Organisation (DSTO) of Australia and 
GPS Online Pty. Ltd.    

2  Theoretical background  

The basic mathematical equation for autocorre-
lation is commonly described[6, 7] as: 
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where  T is the record length, Rx(τ) represents 
the value of the autocorrelation function at the 
time delay τ, x(t) represents the value of the sig-
nal x at time t, and finally the x(t+τ) is the value 
of the signal x at time delay t+τ.  Eq. 1 can be 
approximated by: 
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where N is the number of segments, and m is 

the delay value called lag.  Introducing
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Autocovariance is one of the two major compo-
nents in the formulation of the autocorrelation 
coefficient function for a given lag value.  Ac-
cording to [5], autocovariance literally means 
“how something varies with itself”, where a 
time series gets compared to itself and the main 
tool in the system is the lag.  It is a quick way of 
evaluating deviations between the one unaltered 
time series and one that is lagged, as shown in 
figure 1.  When generating autocovariance there 
are two rules of  
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Fig. 1 Time Series (solid), lags (dashed)[5] 

thumb [8].  The first rule is that the data set 
should contain more than 50 values.  The sec-
ond rule is that the largest lag for the autoco-
variance calculation is equal to one quarter of 
the total number of values in the data set. 
 The second ingredient for the autocorre-
lation coefficient for a given lag is called vari-
ance and it is obtained by making the autoco-
variance function non-dimensional, as shown in 
Eq. 3, so it can then be compared directly to 
other non-dimensional autocovariances [5].  The 
equation for variance is basically the sum of the 

square term (xt-
_
x ) for each observation in the 

original time series, divided by N: 
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 With the equation for both components 
known, the description for the autocorrelation 
coefficient for a given lag is basically the auto-
covariance divided by the variance as presented 
in Eq. 5: 
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Eq. 5 is one of the many forms that describe the 
autocorrelation coefficient approximation, also 
called the lag autocorrelation coefficient or the 
lag serial correlation coefficient.  The autocorre-

lation coefficient values range between +1 to –
1, with  +1 meaning the time series compared 
are exact duplicates of each other, which also 
means the lag value is equal to zero, and  –1 
meaning the time series compared are mirror 
images of each other.  Zero means the compared 
time series have no relation to each other, which 
basically means they are random. A common 
way of analysing the autocorrelation coeffi-
cients and their respective lag values is by plot-
ting the autocorrelation coefficient against the 
lags.  The plot is called correlogram and is a 
comprehensive way to indicate the relationship 
between time series data.  In the case where the 
time series have no relationship to each other, 
the correlogram will present an irregular pattern 
with amplitude close to zero, except when the 
lag is equal to zero, as shown in figure 2.  In 
contrast, when the time series have a strong re-
lationship, the correlogram will show high coef-
ficient values and a regular pattern as shown in 
figure 3. 
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Fig. 2 Uncorrelated correlogram (random time series) 
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Fig. 3 Correlated correlogram 
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 When a correlogram has been generated, 
the confidence of the result needs to be ad-
dressed.  According to [9],  for data with no 
trend and no correlated relationship, 95% of the 
coefficients theoretically fall within: 

N

2±≈  limits  confidence  95%
 

(6) 

where N is the total number of values in the 
time series data set.  It is important to note that 
there are still about 5 per cent of the coefficients 
that could exceed the confidence limits, and 
hence be uncorrelated.  When plotting the 95% 
confidence limits on a correlogram, the confi-
dence bands are two horizontal lines at constant 
value above and below zero.   

Each successive autocorrelation coeffi-
cients, Rm, can be highly interdependent, where 
an autocorrelation coefficient is large simply 
because its previous lag value of autocorrelation 
coefficient Rm-1 is large.  This interdependency 
presents a difficulty in assessing how many of 
the lag values are actually significant within the 
correlogram.  To overcome this difficulty, the 
large-lag standard error confidence bands [10] 
were used, where the confidence bands on the 
correlogram appear to be most narrow at lag 1 
and slowly widen at higher lags.  Formulation of 
the large-lag standard error described in [10] is 
as follows: 
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where M < m.  The term within the square root 
is basically the variance equation with an ad-
justment due to the summation term.  The sum-
mation term in Eq. 7 is related to the sample 
size as well as the estimated autocorrelation co-
efficients at shorter lags.  For example, with rm=3 
the summation term depends on the autocorrela-
tion coefficients at lags 1 and 2 and the summa-
tion is over lags 1 to M, with M = 2 in this case.  
Figure 4 shows an example of a correlogram 
with large-lag standard error bands. 

3  Simulation analysis 

To understand the characteristics of the autocor-
relation analysis and what kind of information 
can be extracted from it, this section presents a 

number of controlled time series data sets that 
were analysed by the autocorrelation process.     
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Fig. 4 Correlogram with large-lag confidence bands 
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Fig. 5 Table 1 in time series 
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Fig. 6 Correlogram for Table 1 

 Assume the time series source is gener-
ated by a rotating component, e.g. rotating tur-
bine blade, bearing, etc, at a constant speed, 
where a segment within the rotating component 
has a fault.  If the fault remains unchanged, the 
time series data can be represented as shown in
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Table 1 Time series data for an unchanged fault 

Time Data Time Data Time Data    Time Data Time Data 
1 1 20 1 39 1    875 1 894 1 
2 2 21 2 40 2    876 2 895 2 
3 3 22 3 41 3    877 3 896 3 
4 4 23 4 42 4    878 4 897 4 
5 5 24 5 43 5    879 5 898 5 
6 6 25 6 44 6    880 6 899 6 
7 7 26 7 45 7    881 7 900 7 
8 8 27 8 46 8    882 8   
9 9 28 9 47 9    883 9   
10 10 29 10 48 10 ………………. 884 10   
11 9 30 9 49 9    885 9   
12 8 31 8 50 8    886 8   
13 7 32 7 51 7    887 7   
14 6 33 6 52 6    888 6   
15 5 34 5 53 5    889 5   
16 4 35 4 54 4    890 4   
17 3 36 3 55 3    891 3   
18 2 37 2 56 2    892 2   
19 1 38 1 57 1    893 1   

Table 1.  The data in Table 1 shows a sequence 
of numbers, increasing to a maximum value of 
10 and then gradually reducing to 1.  The as-
sumption is that when the number reaches 10, a 
fault occurs.  Figure 5 is the plot of Table 1 in 
the time domain and figure 6 is the correlogram 
plot of Table 1.  When plotted in time domain, 
it is very difficult to determine whether the 
time series data are random or correlated, but 
when plotted as a correlogram, it is much easier 
to determine. 
 In figure 6 the lag value associated with 
the first four peaks and troughs is shown.  
Where the lag value of 19, 38, 57 and 76 corre-
sponds to a minimum data value of 1 in table 1.  
Lag values of 10, 29, 40 and 67 correspond to 
the maximum data value of 10 (assumed fault 
data).  In this particular case the troughs of the 
correlogram represent the fault of the rotating 
component.  The lag period between each fault 
is 19, and in this example each lag value corre-
sponds to 1 second.  The period for each fault 
to occur is 19 seconds.  If the starting position 
of the rotating component is known, the fault 
location can be immediately identified. 
 There are two types of fault, Non-
critical and critical.  Non-critical faults can be 
faults that do not cause immediate failure to the 
system.  Critical faults are faults that will lead 
to immediate catastrophic failure, such as se-
vere wear of the bearing balls or rapid crack 

growth on the inner or outer race of the bear-
ing.    

 The controlled time series example in 
Table 1 is shown to be a non-progression fault 
(non-critical fault).  The next controlled exam-
ple will simulate the progression of a fault for a 
rotating system.  The amplitude of faults in ta-
ble 1 is assumed to be 10, but for this example 
the fault is assumed to increase in sequence 
with an increment of plus 0.2 (i.e. 10, 10.2, 
10.4, 10.6 etc).   

The resulting plot of the progressing 
faults is shown in figure 7 in the time domain, 
and figure 8 as a correlogram.  When compar-
ing figure 7 with figure 5, figure 7 shows a lin-
ear increase of peak values with a steady in-
crement of 0.2.  By overlapping figure 6 and 
figure 8 into figure 9, the trough’s amplitude of 
the progressing fault (red line) is less than that 
of the non-progression fault (blue line), but the 
peak amplitude remains the same.  Obviously 
for this example, the troughs represent the 
simulated faults, as expected, because the only 
change made in this case is the increment of 
fault values and the only differences between 
figure 6 and figure 8 are the amplitudes of 
throughs.  The conclusion can be drawn that as 
faults are changing in size, the corresponding 
peak or trough amplitudes of the correlogram 
will vary. 
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Fig. 7 Fault progression time domain 
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Fig. 8 Correlogram for fault progression 
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Fig. 9 Overlapping of figure 6 & 8 

 So far, both examples are simulated un-
der the assumption of constant rotational speed.  
The following examples will demonstrate the 
effect of different rotational speeds and com-
pare them to the original speed as shown in the 
first two examples. 
 In example 1 and example 2, the simu-
lated time series is in sequence number 1 to 10 
and then from 10 back to 1.  For the first exam-
ple the value 10 is assumed to be the fault and 
it remains constant. However, in example 2, the 
variation is the sequential increment of 0.2 for 

all the fault values.  Now in the third example 
an increase in rotational speed is assumed, 
where the time series data is assumed to be in 
sequence of 1 to 9 and 9 to 1.  For this exam-
ple, value 9 is the assumed fault.  The plot of 
the third example is shown in figure 10, where 
the red dashed line is the current example rep-
resentation and the solid line is the original 
time series data. 
 The fourth example involves a slower 
rotational speed for the rotating component.  In 
this case, the sequence number is increased to a 
value of 11, such as 1 to 11 and then 11 to 1.  
The number 11 is the assumed fault value in 
this time series set.  The correlogram of exam-
ple 4 is plotted in figure 10 as a green dashed 
line.  By observing figure 10 and comparing the 
correlograms a conclusion can be drawn, which 
if the phase of each plot from different time 
periods are not in phase, then the rotating sys-
tem behaviour has also changed.  So far, the 
simulation analysis has covered the changes in 
amplitude and changes in constant rotational 
speed.  In the next example changes in speed 
are simulated, but this time in a constant accel-
erated progression.  In this fifth example, the 
time series data set will have different assumed 
fault values.  The data sequence is 1 to 10, 10 
to 1, 1 to 11, 11 to 1, 1 to 12, 12 to 1, 1 to 13, 
13 to 1 and so on, such that the faults are now 
10, 11, 12, 13 etc.  The total number of data is 
the same as in Table 1, 900 data points. 

Figure 11 shows the correlogram of ex-
ample 5, where the pink line represents the 
constant accelerated progression time series 
and the blue line is the original rotational speed 
correlogram.  The pink line shows a rapid re-
duction in amplitude and large shift of phases 
to the right when compared to blue line.  As 
shown in example 4, rotational speed reduction 
will cause phase shift to the right, therefore ex-
ample 5 is actually simulating constant decel-
eration. 

  Fault values in example 5 are different 
in each sequence and do not occur at the same 
interval due to the deceleration. The amplitude 
difference in figure 11 can only signify that 
there is variation of fault values in the system
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Fig. 10 Correlogram plots for different rotational speed
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Fig. 11 Constant accelerated progression 

and that they are appearing at different periodic 
intervals when compared to the original rota-
tional speed plot. 

4  Experimental analysis 

The experimental set-up for the examination of 
autocorrelation as a DI algorithm consists of a 
prototype SmartHUMS unit and an electric mo-
tor driven test rig.  The SmartHUMS unit has 
two internal sensors, which are a triaxial accel-
erometer and a microphone to measure the vi-
bration and sound generated by the test rig.  
The test rig itself consists of an electric motor, 
a driving shaft supported by three bearings, and 

one end of the shaft is connected to a gearbox.  
Attached to the shaft are two circular discs, 
where screw fasteners can be screwed in to cre-
ate unbalance in the system.  The set-up of the 
test rig is shown in figure 12.  Note that the 
autocorrelation DI algorithm has not yet been 
implemented into the SmartHUMS unit, there-
fore the unit is purely acting as a sensor at mo-
ment. 
 During the experimental process the 
electric motor runs at 770 RPM (12.8 Hz) for 
each test. There were five tests conducted, 
starting from no fastener on the circular disc, 
up to all 4 fasteners used.  Each fastener weighs 
2.7g.  Each test lasted 30 seconds and after the 
raw data is obtained, it is then analysed by the 
autocorrelation process with lag amount of 1.  
Figure 13 shows the correlograms for sound 
and XYZ vibration data of all the tests.  By 
examining figure 13, the periodic characteristic 
of the data can be easily observed, which also 
indicated that the raw data gathered is not ran-
dom. 
 Figure 13 also shows a change in ampli-
tude and phase shift.  The trend of the phase 
shift is to the right as the weight on the disc is 
increased.  As expected when the weight on the 
disc is increased, the unbalance in the system 
also increases. This then has a carry on effect 
on the rotational speed of the drive shaft.  
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Fig. 12 Experiment set-up 
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Autocorrelation Y - Amplitude
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Fig. 13 Comparison of the experimental tests with lag value equal to 1

5  Discussion 

From the simulation analysis, three major char-
acteristics have being established.  When com-
paring the correlograms of different periods 
from the same system, where amplitude and/or 

phase change is detected, the system experi-
ences a change in behaviour. The simulated 
analyses illustrate that the autocorrelation 
method is a potential candidate for the Detec-
tion Indices (DI) algorithm generation. 
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Fig. 14 XYZ-axis vibration correlogram plots for fastener weight equal to 2.7g

To further attest autocorrelation as a po-
tential DI, an experimental set-up was used to 
demonstrate the capability of the autocorrela-
tion.  Compared to the simulated analysis, the 
experimental results indicated the existence of 
multiple periodicities with a greater amount of 
noise.  As described in the experimental analy-
sis, the drive shaft is supported by number of 
bearings and connected to a gearbox, and also 
that the entire arrangement is mounted on a 
beam structure as shown in figure 12.  Because 
of this experimental design set-up, it is prone to 
create multiple sound and vibration sources.  
The large number of periodicities and noise 
seen in the correlogram plots demonstrated this 
point, but also demonstrated the ability of the 
autocorrelation process to identify these sound 
and vibration sources.  Refer to figure 13 for 
the correlogram plots. 

Figure 13 shows a fairly constant shift 
of phases as the weight on the disc is increased, 
but when referring to figure 14 where the vibra-
tion correlogram plots are for the weight on the 
disc equal to 2.7g, a section of irregular pattern 
can be seen from the Y and Z axis plot.  It was 
found that the inner race of each of the bearings 
that were attached to the driving shaft were not 
rigidly fixed, which produced slippages during 
the experimental process.  It is strongly specu-
lated that the slippages resulted in a disruption 
of the vibration transfer from the shaft to the 
bearings and subsequently into the whole sys-
tem.  As a result, figure 14 shows that for a lag 
amount around 400, there is an irregular section 
in both of the Y and Z vibration correlograms.  

Again this demonstrated the ability of the auto-
correlation process to identify anomalies when 
they occur.  The X-axis vibration correlogram 
shows very few irregular patterns, because 
when the electric motor is rotating most of the 
forces and displacements are occurring in the 
transverse and vertical directions.  There are 
very few axial direction movements, which is 
evident from the low amplitude values of the 
autocorrelation coefficient for the X-axis corre-
logram plot in figure 14.    

6  Conclusions 

An examination of the autocorrelation process 
as a potential DI algorithm has been studied.  
Simulation and experimental analysis has 
proven that the autocorrelation method has the 
ability to identify changes in a monitored me-
chanical system by comparing the correlogram 
at different time periods.  Three basic charac-
teristics have been observed, which are change 
in amplitude, phase shift or rapid phase shift 
with rapid reduction in successive waveform.  
If any of these characteristics occurred that 
means the system has a fault.  

The simulation has also demonstrated 
that the autocorrelation method is capable of 
representing a fault as troughs in the correlo-
gram for the simulated time series data set.  
Furthermore, the experimental section shows 
that the irregular pattern of the correlogram has 
lead to the speculation of slippage between the 
bearings and the drive shaft of the experiment 
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set-up.  Although more investigation is needed, 
the autocorrelation method has demonstrated 
the potential of identify occurring faults and 
possibly the location of those faults within the 
monitored system. 
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