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Abstract  

Lower-Upper Symmetric Gauss Seidel (LU-
SGS) implicit method has been implemented 
within the framework of gridfree Least Squares 
Kinetic Upwind Method (LSKUM). The LU-SGS 
method is modified to preserve the generality of 
the gridfree method for non-symmetric 
connectivity and yet retain matrix-free feature 
of the LU-SGS method. Moreover, in the present 
work kinetic boundary conditions are also 
implemented in the implicit framework. Implicit 
scheme for gridfree method is proved to be 
stable for all time steps and a speed-up 5 to 6 is 
obtained without any additional memory 
requirement. These aspects are demonstrated 
through specific examples. 

1  Introduction 

The Least Squares Kinetic Upwind Method 
(LSKUM) [1] is a gridfree method that requires 
only a cloud of points distributed in the 
computational domain and a set of neighbours 
around each point (connectivity). Therefore, this 
method makes solutions possible to 
geometrically complex configurations.  The 
LSKUM is based on the Kinetic Flux Vector 
Splitting (KFVS) scheme [2], which exploits the 
connection between the Boltzmann equation of 
kinetic theory of gases, and the governing 
equations of fluid dynamics by using moment 
method strategy. Euler equations are obtained 
by taking ψ-moments of the Boltzmann 
equation with Maxwellian velocity distribution 
function. The upwinding is done at the 
molecular level and then taking ψ-moments lead 
to the KFVS scheme. In the LSKUM, the spatial 

derivatives of the Boltzmann equation are 
discretized using weighted least squares 
method. The upwinding is done by choosing 
appropriate stencils from the connectivity based 
on sign of the molecular velocity. Finally, 
taking ψ-moments lead to LSKUM. Higher 
order accuracy in space is achieved using the 
defect correction technique [3]. The q-LSKUM 
[4] is an improvement over LSKUM in the 
sense that the entropy variables, also called q-
variables, are used in the defect correction step 
of LSKUM for obtaining second order accurate 
in space including boundary points. Both 
LSKUM and q-LSKUM have been applied to a 
number of 2-D and 3-D problems [5,6] and 
found to yield highly accurate results.  

The solution to large-scale problems with 
explicit method requires large number of 
iterations. Convergence acceleration methods 
can be used to reduce the computation time. 
Among various convergence acceleration 
techniques, LU-SGS factorized implicit method 
is popular because it is a matrix-free method. 
The LU-SGS method proposed by Jameson and 
Yoon [7] on structured grid has been 
successfully generalized and extended to 
unstructured meshes to solve the Euler and 
Navier-Stokes equations by Sharov and 
Nakahashi [8]. The attractive feature of this 
approximate factorization method is that the 
evaluation and storage of the Jacobian matrix is 
eliminated by approximating the split flux 
Jacobians in the implicit operator. This 
approximation provides stability for all time 
steps and facilitates faster convergence. The 
resulting LU-SGS method has comparable CPU 
time per time step that of explicit method. LU-
SGS method has been successfully implemented 
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and a speed-up 6 is obtained using KFVS based 
finite volume Euler and N.S. solvers [9, 10]. 

The above approximation of split-flux 
Jacobians does not fetch similar advantages for 
LSKUM, since it uses split stencils of arbitrary 
size for the spatial derivatives. Therefore, in the 
present work, a different approximation is used 
to retain all the advantages of original LU-SGS 
and yet retain the generality of the LSKUM.  

This paper addresses the modification of 
LU-SGS method applied to LSKUM and its 
implementation in LSKUM based solvers. 
Numerical experiments are carried out to prove 
the efficacy of the extended LU-SGS method. 

2  Implicit q-LSKUM 

Consider 1-D unsteady compressible Euler 
equations 
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where U is vector of conserved variables and G 
is the inviscid flux vector. The flux G(Un+1) is 
linearized in time and can be written in terms of 
flux Jacobian A and the difference between  
conserved variables at time levels n and n+1, 
δUn+1=Un+1-Un, as  
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and substituting in Eq. (1), we get 
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Consider the residue, R(Un), the spatial 

derivatives  in the RHS of Eq. (2). The above 
residue can be written in KFVS split-flux [2] 
form as 
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The residual vector R(Un) is discretized 
using q-LSKUM [3]. Consider a point Po and its 
connectivity C(Po). The connectivity is split 
into two sub stencils )( oPC + and )( oPC − (Fig.1), 
such that  
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Fig. 1 Sub-stencil for point Po 
 
The split fluxes derivatives in Eq. (3) are 

evaluated using least squares method with 
above split-stencil such that upwind property is 
satisfied [1]. Then the residue vector at Po can 
be written in discretized form as 
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where ∆(.)i  =   (.)i  -  (.)o. In order to obtain a 
steady-state solution, the spatially discretized 
Euler equations must be integrated in time. Eq. 
(2) can be written in discretized form using 
Euler implicit time-integration and least squares 
method for spatial derivatives at Po as 
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where δt is the time increment. The LHS terms 
are grouped based on node number, i.e., 
corresponding to node Po whose index o and its 
neighbor Pi, such that index i < o and i > o, 
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The above system of equations can be written in 
the matrix form in terms of strict lower L, upper 
U and diagonal D block matrices 
 

(L + D + U ) δUn  = - R(Un)                      
 

and the system of equations can be solved using 
LU-SGS in two steps as 
 
Forward sweep: 
 

δU*   =  D–1( - R(Un)  –  L δU*)       
 

Backward sweep: 
 

δUn   =  δU* - D–1( –  U  δU*) 
 

The solution involves split flux Jacobian 
evaluation and inversion which is 
computationally expensive. Consider the 
diagonal term  
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In FVM and FDM methods, the split-flux 
Jacobians are approximated with 
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where ρ(A) is the spectral radius of flux 
Jacobian A and the approximation  makes 
diagonal block matrix as a scalar matrix. In 

LSKUM, with the above approximation, the 
diagonal term becomes  
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The above diagonal block matrix becomes 
scalar diagonal matrix only if the second term in 
RHS vanishes. This is possible only for the 
symmetric point distributions and cannot be 
ensured for an arbitrary point distribution. 
Therefore, in the present work the split-flux 
Jacobian is approximated as 
 
 
and the diagonal block matrix becomes a scalar 
diagonal matrix  as 
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which can be inverted easily. The product of 
split-flux Jacobians with increment in conserved 
variables appearing in Eq. (7) are approximated 
as increment in split-fluxes as 
 
 
 
Then, the two-step sweep procedure  can be 
written as 

Forward sweep: 
 

 
Backward sweep: 
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It can be observed that in the above two-step 
procedure, the split-flux Jacobian evaluation, 
storage and inversions are completely 
eliminated. Also, the present approach is 
applicable to non-symmetric point distribution. 

3 Stability Analysis 
The spectral radii approximation to split-flux 
Jacobian makes each term in Eq. (15) 
individually positive. Presence of time-step term 
ensures the system of equations is always 
diagonally dominant. Therefore, the solution to 
the system is unconditionally stable and allows 
a larger time-step. In the present work, the 
spectral radii is chosen as 
 
 
 

Ghosh[1] has made a detailed stability 
analysis for the explicit method and derived the 
time step requirement as 

 
 
 
 

where ∆si is the distance between points Po and 
its neighbour Pi, R is the gas constant, T is the 
absolute temperature and u is the fluid velocity. 

4 Code Development  

The above procedure has been implemented in 
2-D q-LSKUM based Euler and Navier-Stokes 
codes and 3-D q-LSKUM based Euler code. In 
the implicit method, first explicit method is used 
to obtain the residue and then two-sweep 
procedure is adopted to update the state 
variables. Kinetic Characteristic Boundary 
Condition (KCBC) and Kinetic Outer Boundary 
Conditions KOBC)[11] are implemented to 
satisfy the slip wall boundary and farfield 
boundary conditions respectively. The code has 
been validated for various inviscid test cases to 
verify the modified implicit scheme. In the 
present work, local time stepping is used for 
time marching. CFL number is chosen smaller 

than 1.0 for the explicit method. In the current 
implicit calculation, a large time step is chosen 
and the CFL number for the implicit scheme is 
as high as 10,000. 

4 Results and Discussions  

4.1 Flow past 2-D bump 

 

Fig.2 Point distribution for bump problem 

The subsonic flow past 2-D bump problem has 
been studied with two sets of cloud of points 
with 2275 points and 8901 points (Fig. 2). Both 
explicit and implicit methods are used to obtain 
the solution with CFL numbers 0.5 and 10,000 
respectively. The convergence histories are 
shown in Fig. 3. Implicit method converges 
rapidly even for the finer cloud of points when 
compared with explicit method. The pressure 
contours obtained using both explicit and 
implicit methods are presented in Fig. 4. It can 
be observed that the steady-state solution does 
not depend on the time-step chosen. Also 
contours are smooth and symmetric about 
vertical line passing through mid-chord. 
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         Fig.3 Residue history for flow past bump 
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  Fig.4 Pressure contours for flow past bump 

 

4.2 Subsonic viscous flow past    NACA0012 
airfoil   

 

        
 
 

Fig. 5 Point distribution for viscous flow 
past NACA0012 airfoil 

 
 
The 2-D q-LSKUM based Navier-Stokes 

code has been applied to solve laminar flow past 
NACA 0012 airfoil. A simple cloud with 257 x 
97 points including 165 points on the airfoil is 
used (Fig. 5). The freestream flow conditions 
are M∞ = 0.5, α = 3o and Re = 5000.  
Comparison of residue for both implicit and 
explicit methods is presented in Fig. 6. A speed-
up  5 is achieved using LU-SGS method.  Mach 
contours are shown in Fig. 7 which clearly 
shows the separation on the upper surface of 
airfoil. The flow separates at 55% of the chord. 
The length of flow separation region is slightly 
under predicted. 
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Fig. 6 Residue history for viscous flow past 
NACA0012 airfoil 
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Fig. 7 Mach contours for viscous flow past 
NACA0012 airfoil 

 

4.3 Supersonic flow past hemisphere 

 

 
Fig. 8 Point distribution for flow past 

hemisphere 
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Next a supersonic flow past hemisphere is 
considered. The freestream Mach number is 2.0. 
The point distribution in the meridian plane is 
shown in Fig. 8 and there are 9261 points in the 
domain. The residue plot for both explicit and 
implicit methods is shown in Fig. 9. The residue 
plot shows a speed-up 6 is obtained with the 
extended LU-SGS method. Even in supersonic 
flow on relatively coarse grid, very good speed-
up is obtained using implicit method without 
any extra storage. The pressure contours are 
plotted in Fig. 10. The detached shock is 
captured very well and contours are smooth. 
Stagnation-to-freestream pressure ratio of 5.86 
is obtained as compared to theoretical value 
5.64. 
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Fig. 9 Residue history for flow past hemisphere 

 

 
Fig. 10 Pressure contours for flow past 

hemisphere 

4.4 Supersonic Flow Past Scout Vehicle 

 
Fig. 11 Point distribution for flow past 

Scout vehicle 
 

The 3-D q-LSKUM based Euler solver has been 
applied to solve the flow past a three-stage 
Scout vehicle for which experimental results are 
available [12]. The points in the computational 
domain are obtained using an elliptic grid 
generator. The point distribution in the meridian 
plane is shown in Fig. 11. The computed wall 
pressure distribution for M∞ = 4.86 and α= 8o is 
compared with the experimental results [12] and 
is presented in Fig. 12.  Good agreement is 
apparent. Comparison of residue history for the 
explicit and implicit schemes is given in Fig. 13, 
which indicates the faster convergence 
capability of LU-SGS method. Pressure 
contours near nose are shown in Fig. 14. 
Detached shock and followed by expansions are 
captured. 
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Fig. 12 Cp distribution for flow past Scout 

vehicle 
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Fig. 13 Residue history for flow past Scout 
vehicle 
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Fig. 14 Pressure contours near nose region of 
Scout vehicle 

 

5. Conclusions 
LU-SGS implicit method has been extended to 
LSKUM-based gridfree solvers. A different 
approximation is used for the split-flux Jacobian 
to retain all the advantages of original LU-SGS 
method like matrix-free, no-Jacobian 
evaluation, unconditionally stable with 
comparable CPU time per iteration of explicit 
method.  In addition, the present method is 
applicable to gridfree methods employing 
arbitrary point distribution. Two and three-
dimensional numerical simulations with explicit 

and implicit methods have been performed.  The 
numerical simulations show a speed-up of 5 to 6 
with implicit method over the explicit method.  
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