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Abstract  

A new method based on the multidimen-
sional photogrammetry was developed for low 
cost investigation of the uncontrolled flights 
with use of free flying models. The method was 
tested in measurement of the poststall motion of 
small aircraft. The measurements of flight char-
acteristics representing in time series can be 
approximated with Markov process for descrip-
tion of flight characteristics and flight situa-
tions.  

The lecture deals with investigation on 
possible approximation of real stochastic flying 
processes by Markov process. In this paper the 
optimisation of the state space discretisation, 
complexity of the approximation processes, de-
terministicity of the measured processes and 
uncertainties in approximating models are ana-
lysed. 

1. Introduction 
The department of Aircraft and Ships at the 

Budapest University of technology and Eco-
nomics has an interesting research called Un-
conventional Flight Analysis [1, 2]. One of the 
main topic of this research is investigation of 
aircraft motion at very high angles of attack, 
like poststall motion of fighters [3] or motion of 
large passenger aircraft after loosing the con-
ventional control. Such motion of aircraft is 
very nonlinear and stochastic. A new method 
based on the multidimensional photogrammetry 
was developed for low cost investigation of 
such flights with use of free flying models [4, 
5]. Principally all the critical flights can be 
measured by using this methods and photo-
grammetry can be applied as visual monitoring 

system for surveillance of air traffic in airport 
regions.  

The newly developed method was tested in 
measurement of the postal motion of small air-
craft [5]. The measurements of flight character-
istics representing the time series can be ap-
proximated by Markov process for general de-
scription of flight characteristics and flight 
situations [5].  

The lecture deals with investigation on 
possible approximation of real stochastic flying 
processes by Markov process. In this approxi-
mation the real flight is a stochastic process of 
continuous time and state space and the Markov 
chain is a process of continuous time and dis-
crete state space.  

Principally there is a lack of knowledge 
about the motion of aircraft at very high angles 
of attack. We have no accurate aerodynamic 
models, enough information about the appearing 
the stochastic disturbances and effects. So, there 
are four problems [5] associated with approxi-
mation at least:  

• determination of the optimal state space 
discretisation – for better, finally for es-
timating the best approximation model, 

• study of Markov process complexity – 
for finding the simplified approximation 
model, 

• investigation on deterministicity – for 
definition of deterministic part of ap-
proximation process and losses of de-
terministic effects, 

• investigation on uncertainties – for cal-
culation the changes in uncertainties of 
approximation model, generated by sto-
chastic disturbances. 
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This paper describes the solving of given 
problems and application of Markov model into 
stochastic, or better to say statistical flight dy-
namics. 

So, the goal of this paper is the demonstra-
tion of possible use of newly developed meth-
ods to investigation of the aircraft stochastic 
motions and analysis of the possible approxima-
tion of the measured data by Markov processes.  

The real data guided from flight measure-
ments. The poststall motions of aircraft were re-
corded by two cameras. The images were used 
for determining the flight characteristics with 
application the photogrammetry. The flight data 
were applied in Markov model formations.   

2. Measurement 
The real motion of aircraft and free flying 

models can be investigated by using the meth-
ods of photogrammetry [4, 5]. In this case, the 
measurement is based on the movement grid of 
the multi dimensional photogrammetry. It 
means that, the 3D photogrammetric grid is de-
fined to each measured time (Fig. 1.). The mo-
tion of aircraft is recorded by – at least – two 
cameras (or one stereo camera).  

 

The time series of pares of images are re-
corded. With use of the recorded images the po-
sitions, ( ) ( )ijkijk tt ξη ,  of preliminary identi-
fied control points can be defined. (Here the po-
sitions of the k-th identified control point meas-
ured by j-th camera at i-th time are defined). 
With using the methods of photogrammetry 
(Fig. 2.), special vectors describing the 3D posi-
tion parallax of the each k-th identified points 
for series of it  time [5]:  

( ) ( ) ( ) ( )

.,,2,1,,2,1
,,,

mink
pzyx titiktiktik

LL ==
ξ .        (1) 

 
Finally, from the measurement the state 

vector defining the position of aircraft centre of 
gravity in 3D space and instantaneous turning 
position from initial one as angles between the 
initial and real positions of axis of applied refer-
ence system (as rotation around the centre of 
gravity) can be determined: 
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The developed method was tested in meas-
urement (Fig. 3.) of poststall motion of small 
aircraft, Socata Tampico [5]. The recorded im-
ages are shown in Figure 4. The calculated 

 
Fig. 1. Principle of measurement 
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Fig. 2. An x-z projection of the meas-
urement and calculation of the posi-
tions of identified points  
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changes in one of the coordinates (Fig. 5.), as an 
example shows real stochasticity of the meas-
ured motion of aircraft. 

 

 

 

3. Statistical flight dynamics 
When examining the motion or technical 

condition of aircraft, it seems to be describable 
easily for an engineer [6] if the variation of its 
state vector x chosen appropriately is expressed 
as follows 

( )t,,uxFx =
•

                                                     (3)     

In fact, the variation of state vector x is in-
fluenced by the variation in the instantaneous 
values of a number of factors (service condi-
tions, methods of maintenance and repair ap-
plied, the realized management, the characteris-
tics of the flight, the atmospheric conditions, 
etc.). These influences can be given in terms of 
stochastic processes, random variables or ran-
dom space (turbulence of atmosphere). More-
over, state vector x can not generally be meas-
ured directly. Instead, some output signal vector 
y can be measured. Consequently, the controlled 
motion of the aircraft or their technical condi-
tions, their dynamics can be described only by a 
much more complicated model than in (1), 
namely by the following general set of stochas-
tic differential equations [6]: 
 dx = ƒx [x(t),x(t-τx),p(x,z,ω,µ,t),z(µ,t),u(t),ω,µ,t]dt + 
         + σx(x,p,z,ω,µ,t) dW , 
   y =  ƒy [x(t),x(t-τy),p(x,z,ω,µ,t),z(µ,t),u(t),ω,µ,t] +  
         + σy(x,p,z,ω,µ,t) ξ ,                                              (4) 
   u(t) = ƒu [x(t),x(t-τu),p(x,y,ω,µ,t),z(µ,t),u(t),ω,µ,t] , 
   x(t=to) = xo(t=to,ωo,µo) , 
   y(t=to) = yo(t=to,ωo,µo) ; 

where x ∈ Rn is the state vector, p ∈ Rk is the 
parameter vector characterizing the state of the 
aircraft, z ∈ Rl is the vector of environmental 
characteristics (vector of service conditions), u 
∈ Rm is the input (control) vector, y ∈ Rr is the 
output (measurable) signal vector W ∈ Rs and ξ 
∈ Rq are the noise vector (in simplified case the 
Wiener and Gaussian noise vectors respec-
tively), σx, σy are the noise transfer matrices, ω 
and µ are the random variables assigning the 
position of vectors p and z within admissible 
space Ωp Ωz described by density functions ƒp(•

), ƒz(•), t is the time, and τx, τy, τu, are the time-
delay vectors.  

The first equation from set (29) can be 
given in shorter form [7, 8]: 

( ) ( ) ( ) ( )ttt ηxσbxFx ,t, ++=
•

   (5) 

Fig. 3. Practical measurement 

Fig. 4. Images recorded during investi-
gation of the aircraft poststall motion 

Fig. 5. Demonstration of real stochastic-
ity of the measured data 
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here b(t) is the control vector and η is a noise-
vector. This equation can be linearised statisti-
cally with change the state vector as sum of its 
mean values and deviations, xxx ∆+= : 

( ) ( ) ( ) ( ) ( )ttt ηxσbxxSxFxx ,t,t, ++∆+=∆+& , (6) 

where ( )t,xS  -  is the sensitivity matrix. This is a 
basis of the statistical dynamics [7, 8]. 

From another hand the set of equations (5) 
is a general form of the following simplified 
system of equations: 

NLLCLAx ++=&     (7) 

where LA represents a linear aerodynamic, LC 
is a linear control, and NL describes the nonlin-
ear dynamics. 

4. Markov model 
The general model (4) can be assumed [2, 

7, 8] in the form of a set of the following sto-
chastic (random) differential equation  

( ) ( ) ( )& , ,x f x t x t t= + σ η  ,                         (8) 

called as diffusion process. Of course this equa-
tion as the set of equations can be rewritten in 
the vector form. The first part at right hand of 
equation describes the direction of the changes 
of the stochastic process passing through the 

( )x t X=  at the moment t, while the second part 
shows the scattering the random process. In case 
of uncontrolled aircraft motion the disturbances 
are mostly generated by air turbulence. 

The equation (8) is called as Markov proc-
ess [9], because its realization in future depends, 
only, on the present realizations and does not 
depend on the past. Such type of process can be 
fully described by giving its transition probabil-
ity density function  

( ) ( )p x t X t t t2 2 1 1 2 1, ,   ,      f ,                           (9) 

which characterises the distribution probability 
of the continuous random process, x(t), at the 
moment t2, if it is passing through the  ( )x t X=  
at the time, t1. 

The transition probability density function 
can be described by application of the Fokker - 
Planck - Kolmogorov equations like: 

( ) ( ) ( )[ ]∂

∂
∂

∂

p x t X t
t x

f x t p x t X t
2 2 1 1

2 2
2 2 2 2 1 1

, ,
, , ,
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           ( ) ( )[ ]112222
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x
σ

∂
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or 
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,
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    = − +

1
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2
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2 . (11) 

The statistic flight mechanics [8] has 
worked out already several methods for applica-
tion of this type of models. For example the sta-
tistical linearization defined by (6) through the 
proof of the sensitivity function matrix to the 
flight mechanic models and generating out the 
set of equation for the moments of the investi-
gated stochastic process can used for study the 
scattering of the process depending on the 
changes in the initial condition. However the 
flight after loosing the control has a mach more 
complicated picture depending on the unknown 
aerodynamics characteristics not studied yet in 
this high angle of regions and disturbance gen-
erated by air turbulence.  

According to the equations (10), (11) 
defining the Markov process the following 
definition [9] can be made: 

( ) ( ) ( )
( )

p X t X t p X t x t p x t X t
X t

2 2 1 1 2 2 1 1, , , , , ,      = ∑ , 

 ( )t t t2 1≥ ≥  ,                        (12) 
which equation is called as Chapman - Kolmo-
gorov - Smoluchovski. 

This equation gives possibility for ap-
proximation of the investigated non-linear sto-
chastic process of continuous time and state 
space with the Markov chain of continuous time 
and discrete state space. In this case, the discre-
tisation means that [5], the possible space of air-
craft motion is divided into subspaces 

{ } i
i

i
ti

j
ti

i
titi tRAAAA ∀==∩= ∑

Λ∈

6     and   0~      (13) 

and the diffusion process of stochastic motion of 
aircraft is defined by transition matrix, A[k] as it 
shown in Figure 6.  Here, in Figure 6, of course, 
the 3D space representation is demonstrated, 
only. In investigation the vector (2) was used as 
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state vector x. The elements of matrix A depend 
on the dynamics of real motion of aircraft, e.g. 
aerodynamics, control and environmental char-
acteristics (like temperature, pressure, air turbu-
lence, wind, etc.) 

 
Principally, the discretisation has to be 

connected with the measurement, i.e. sampling 
of measurement. Optimization of the discretisa-
tion means that the way of definition of the 
quantization levels, has to minimize the errors 
in approximation. In this case, the expected val-
ues and the variances for each elements of the 
state vector (2) can be calculated as:  

( ) ( ) *
i

i
i xPx tt ∑= ,           (14) 

( ) ( ) ( )[ ]22* ttt xxPσ i
i

i == ∑  ,          (15) 

where P matrix defines the probabilities of 
“staying” the aircraft in the given subspace of 
discretised state space, *x  is vector contains the 
quantization levels of the initial elements of 
state vector and i means ( )mlkjiT ,,,,=i and the 
elements of this vector are changing as 0, 1, 2, 
… n. So, the optimal quantization can be found 
with minimization of the variance (15). 

The statistical characterization of the 
measured changes in aircraft position (motion of 
centre of gravity) is demonstrated by Figure 7.  

The discretisation was optimized. The 
quantization levels were defined as the middle 
values of the discrete subspaces that were calcu-
lated as prisms. Figure 8. demonstrates the op-
timised quantization determined for measured 
coordinates X. 

 
 

 

5. Markov model features 
Some features of the Markov models were 

studied with goal of analyzing the models ap-
plied for describing the aircraft poststall motion. 

5.1. Complexity 
 
Nowadays, the different types of Markov 

models (simple, semi-, maximum entropy, hid-

Quantization levels for measured 
coordinates, X

-250
-200
-150
-100
-50
0
50

1 2 3 4 5 6 7 8

time (sec)

Fig. 8.: Result of the quantization 
optimization 

Fig. 7.: Statistical 
characterization of 
the measurement 
(motion of aircraft 
centre of gravity) 
(Most interesting result 
is variance of 
coordinate Z, which is 
not changing between 
4 and 5 seconds) 
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den, hierarchical, embedded, 2nd and more or-
der, etc.) are applied. Principally, the different 
models try to take into account some specific 
features of the real stochastic processes, like 
unobservable states, superstates, or dependence 
on the previous states, etc. These models are 
developed for investigation of nonlinear dy-
namic systems, speech enhancement, face rec-
ognition, etc.  

In our investigation the motion of aircraft 
was measured by using the video cameras. 
Speed of recording was high comparing to air-
craft motion dynamics. So, all the possible 
states were observed. However the delay in 
changing in aerodynamics can generate some 
problems. In general case, the changes in the 
state vector elements can be defined as  

)...|()|()()( 21312121 tttttttntt XXXPXXPXPXXXXP == L

     )|( 11 −tnttn XXXP LL .           (16) 

In simple case, with use of Markov as-
sumptions, the measured stochastic processes of 
changing in state vector can be approximated by 
discrete stochastic process that is characterized 
by  

{ } { }1121 ,,, −− ∈=∈ tntntntntttntn XAXPXXXAXP L      (17) 

or  

{ }11 −− == tntntntn aXaXP  .              (18) 

This is a first order Markov chain. In more 
general case, instead of (17) the following mod-
els should apply: 

{ } LL ,3,2,,11 ≥=== −−−− SaXaXaXP StnStntntntntn
     (19) 

It means that, the embedded Markov models can 
be constructed with use of the model family: 

{ }StnStntntntntntntn
S

tn
S
tn aXaXaXaXPM −−−−−− ====↔ ,, 2211 L , 

1,3,2for                      −− ≤≥ nSn ttS L .           (20) 

In this way, the model series, 
S
tntntn MMM ,,, 21 L , is built up, in which the  

SiPi
tn ,,2,1 L=  represents the transition probabil-

ity function of the i times completed processes. 
For example, in case of 1=iM i

tn , the associated 

transition probability function, mniPi
tn ,,2,1,1 L==  

results the mathematical model mntn ,,2,11 L=P  in 
form of series of the stochastic matrices: 

njipmn tnijtn ,,0,,2,1 1
,

1 ∀≥= LP

   ∑
=

∀=
n

j
tnij ipand

1

1
, 1           (21) 

The complexity of the applied embedded 
Markov models was studied [5, 10] by using the 
method of statistical hypothesis investigation. 
We found that [5], the poststall motion of air-
craft can not be approximated by steady Markov 
process, the non-steady models are the one 
times embedded (2nd order) models, the result-
ing models can be simplified with approxima-
tion of state vector elements separately.   

5.2. Deterministicity 
 
The poststall motion of aircraft or motion 

of aircraft after loosing its conventional control 
is a stochastic process. The state vector repre-
senting the dynamics of the motion has a deter-
ministic part described by system of equations 
of motion developed by flight mechanics and a 
stochastic part appearing as deviations in char-
acteristics.  

There is an interesting and important ques-
tion how far the deterministic part defines the 
real stochastic motion of aircraft, or measured 
processes of changing in state vector describing 
the investigated motion. This is the determinis-
ticity (or the opposite phenomena, stochasticity) 
of the measured processes. We have introduced 
a merit of deterministicity [5] and we have used 
it for investigation of the aircraft poststall mo-
tion. 

Let suppose that the results of measure-
ment (2) result the set of variates  

( ) miRxxxr j
ti

j
ti

j
titi ,,2,1,,, 66,2,1, LL =∈=   

   kj ,,2,1 L=            (22) 

measured with use of principle independent 
methods of measurements kj ,,2,1 L= . 

Let the covariance matrix of the n dimen-
sional variate vector 
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( ) 66×∈ AtiD ,                          (23)  

( ) ( ) ( ){ }b
ti

b
ti

a
ti

a
tiiab mxmxEtd −−=    where , 

{ }a
ti

a
ti xEm =  and  . 

The equation describes the concentration ellip-
soid is 

2
1 1

+=
∆

∆∑ ∑
= =

nyyn

a

n

b

baab ,            (24) 

where ab∆  is the subdeterminant of matrix D as-
sociated with elements of abd  and abD=∆ .  

For this case, the concentration of the vari-
ate tir  is 

( )
( ) ∆+







 +Γ

=
222

1
2

nnti

n

n

rk
π

,            (25) 

( )Ddet  here =∆ . 
 

The ( )tirk  defines the random deviation in 
the measured characteristics and it can be called 
as a merit of deterministicity, or in form of  

( ) ( )ti
tiStoc rk

rK 1=              (26) 

as merit of stochasticity [5].  
The ( )tirk  can be estimated by its statistical 

characteristics calculated for each it  (Fig. 9.) 
and the stochasticity or deterministicity can be 
defined by operators 

( )→=== 6,,1,,1,,1,
det LLL zkjmixT zj

ti  

( ) ( ) ( ) Stoc
tmtt

K
rkrkrk

=







→ 1,1,1

21

L  ,      (27) 

and 

( ) →=== 6,,1,,1,,1,
det LLL zkjmixT zj

ti  

( ) ( ) ( )( ) det21 , Krkrkrk tmtt =→ L  .     (28) 

The stochasticity in measured characteris-
tics is shown in Figure 10. [5]. 

 
 

 
 

5.3. Uncertainty 
The uncertainties in measured stochastic 

processes as important information about the 
features of the investigation can be evaluated by 
determining the entropy that is defined in 
Mathematics [11] for X random variable with 
P(x) probability that X is in the state x, as: 

( ) ( ) ( )[ ]∑−=
x

xPxPXH 2log .           (29) 

In our investigation [5, 10], the measured 
vector filed (2) as it given by d into disjunct 
subspaces tiA defined by (13). The series of dis-
tributions  

( ){ } milAPAP ltilti L,2,1~ =∆∈∀→=     (30) 

was estimated from measurement for each it . Fi-
nally a special operator,  

-2000

0

2000

4000

6000

8000

1 2 3 4 5 6 7

time (sec)

co
va

ri
an

ce

XX
XY
XZ
YY
YZ
ZZ
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measured changes in coordinates 
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centre of gravity  
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( )( ) ( )( ) ( )( ){ }→∆∈∆∈∆∈ lAPlAPlAPT ltmltltunc
~,,~,~

21 L  

 ( ) m
unctmtt RKHHH ∈=→ ,,, 21 L ,            (31) 

was determined for evaluating the uncertainties 
in measured processes. 

One of the interesting results of investiga-
tion [5] is shown in Figure 11. On another hand, 
we have could not find any trend in changes of 
uncertainties.  

 

6. Conclusions 
A new method of measuring the aircraft 

stochastic motion, like its poststall motion was 
described. This method is based on the photo-
grammetry. The results of measurement were 
analysed. The measurement shows that, the fly-
ing characteristics, or elements of state vector 
describing the aircraft poststall motion are 
changing in form of non-steady stochastic proc-
esses, which can be described by Gaussian 
processes. The method of approximation of 
measured characteristics with discrete Markov 
processes was applied to description of the air-
craft postal motion. The features of Markov ap-
proximation like optimization of the discretisa-
tion, stochasticity, deterministicity, uncertainty 
were analysed, too.  
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