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Abstract. In the CFD field, chimera method is a
meshing technique that enables to deal with com-
plex geometries using overset structured grids. In
the context of parallel scalar computers, its effi-
ciency can be risen by balancing the overset grid
blocks over the machine processors. In this pa-
per, the chimera method has been parallelized in
Onera’s elsA software leading to efficient com-
putations of steady and unsteady (with moving
bodies) applications. Particular focus is put on
helicopter applications.

Introduction. The numerical simulation of
flows around complex bodies, and in particular
those related to helicopters, requires a computing
power and a memory size increasingly larger.
For this reason, the use of parallel machines
becomes more and more attended, even impos-
sible to circumvent. A parallel implementation,
by a better exploitation of the machines, makes
possible the study of more complex geometries
and the mesh resolution can be improved.

In addition, the chimera method, frequently
used for the numerical simulation of flows, in
particular for applications to the helicopters,
allows the calculation of multiblock meshes
composed of overset structured grids. Thus,
from the reduction in the constraints on the grid
blocks, the generation of the mesh is simplified
and, in the case of moving bodies, the mesh does
not have to be regenerated at each time step.

This paper presents recent progress concern-
ing the implementation of the chimera method

in Onera’s CFD grid structured software, called
elsA, previously presented in [1]. This method
has been parallelized for both steady and un-
steady applications and applied to rotorcraft sim-
ulations. In the first subsection, the flow equa-
tions and the numerical scheme are recalled.
Then, the chimera method is briefly described for
a better understanding of the parallel algorithm,
topic of the following paragraph. Finally, appli-
cation to an isolated rotor in hover is presented,
followed by applications to rotor in forward flight
and rotor-fuselage interaction.

Equations and Numerical scheme. In this pa-
per, the 3D compressible Euler equations are
solved by using a finite-volume discretization
scheme on each structured grids. For rotors, the
Euler equations are written in a blade attached ro-
tating reference frame. In this frame, the system
of equations is formulated in terms of absolute
velocities, which is a necessary condition for an
accurate treatment of the numerical fluxes and of
the farfield boundary conditions.

A Jameson like centred scheme of second or-
der accuracy with artificial viscosity (Jameson et
al., 1981) is used for discretizing the equations.
They are advanced in time using a four-stage
Runge-Kutta explicit scheme. A simplified
implicit stage (Lerat et al., 1982) increases the
stability domain.

Chimera method. The chimera method [7] en-
ables to solve the Euler or Navier-Stokes equa-
tions on a set of overset grids.
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It relies on two kind of transters between
overset grids : at the overlapping boundaries
of grids and in the vicinity of blanked regions.
Blanked regions are points of a grid that lie phys-
ically in a body, meshed by another overlapping
grid. Those transfers are realized by interpolation
of conservative variables. Since Jameson numer-
ical scheme is used in elsA, classically, two lay-
ers of interpolated cells are built around blanked
points or overlap boundaries to enable the numer-
ical scheme to be applied without any modifica-
tion on discretized points. Nevertheless, in order
to diminish the constraints on the size of overlap,
one layer of interpolated cells [4] can be used in
elsA. The numerical scheme is then modified on
neighbouring cells.

Here, the parallelization of chimera concerns
one and two layers of interpolated cells.

Parallel algorithm. When parallelizing the
chimera method, one crucial point is minimizing
the interpolation transfers between the grids.

Let F,,; the value of the flow field to be de-
terminated for an interpolated point. Fj,; is ob-
tained by linear combination of field values taken
on edges of the interpolation cell (coetficients x;
are interpolation coefficients) :

Fiu = x1F1 + 002 +x3F3 + x4 Fy
+x5F5 + xFg + x7F7 + xgF3. (D)

So, interpolating a field in three dimensions

implies its knowledge at the eight edges of the
interpolation cell. If the two blocks concerned
by a transfer (the interpolated block, Bp, and the
interpolation block, By ) are not managed by the
same processor, this procedure imposes many ex-
changes. In order to minimize the number of
communications, the storage of the interpolation
coetficients is carried out by the interpolation
block that contains the interpolation cell (see Fig.
1, 2).
Moreover, always to obtain optimal communica-
tions, the data are separated into two kinds : local
data (the two blocks concerned by interpolation
are on the same processor), and global data (on
two ditferent processors).

Thanks to bufferization, all data are sent to all
interpolation or interpolated blocks at one go.
The send and the receive are carried out by a
key which allows to identify block sending and
receiving. On the other hand, as data are of-
ten stored in array or lists, the key allows to the
receive block to manage array data meant for
it. Moreover, the management of communication
graphs prevents deadlocks.

Only load balance by distribution (that is
without splitting the blocks) is performed and
only the number of points is taken as a criterion
to find the best configuration. This will be im-
proved in the future, following the work of [§].
Communications between processors are per-
formed with MPI subroutine calls [5].

Implicit interpolations. Sometimes when
the overlap between grids is too short, a valid
interpolation cell can not be found. When
the interpolation cell is itself interpolated for
instance, a special treatment is required. This
treatment is called implicit interpolations [3].
For example, if edges 1 and 3 are also to be
interpolated, equation (1) becomes :

Fipt — x1F1 — x3F3 = xoF> + x4F4 + x5F5
+x6Fs +x7F7 +x3F3.  (2)

Points where solution is unknown are grouped to-
gether in the left side. Applying this principle to
all implicit points leads to solve a linear system :

AX =B

The matrix A is composed of interpolation coeffi-
cients, the vector X represents the unknown inter-
polated field values on implicit points and B, field
values obtained from numerical scheme. Coeffi-
cients of this sparse matrix are stored by row [6].
In parallel, new methods are implemented to take
into account :

- the transter of some data, like indexes of global
interpolated cells or number of implicit points
(to place matrix coefficients), which are on other
Processors;

- the creation of group containing only processors
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which treat implicit points.

The implicit interpolation treatment is carried out
in two stages : matrix construction and matrix
system resolution. In the first stage, each proces-
sor stores one part of the matrix. Matrix part that
concerns local interpolation blocks and global in-
terpolation blocks are stored separately.

In the second stage, since the matrix is
not symmetrical but the diagonal beeing strictly
dominant, the system resolution is carried out by
the BiCGStab method. For this method, two op-
erations require communications : scalar prod-
uct and matrix-vector product. For the first op-
eration, each processor computes one part of
the scalar product and then a collective opera-
tion combines values from all processes and dis-
tributes the result back to all processes. Concern-
ing the matrix-vector product, a collective opera-
tion gathers data from all tasks and delivers it to
all.

Steady applications. Through all the paper, flow
simulations are achieved solving the Euler equa-
tions. Numerical computations have been con-
ducted on a SGI Origin 2000 and on a DEC
HPC320.

In this paper, the speed-up is defined by :

Min(Ty, Ts)

MaX(Tn)nzl,N (3)

Speedup =
with T, sequential cpu time
T1, cpu time for parallel computation on
one processor
N, processor number
T,,, cpu time for parallel computation on
the processor n.

The case of the the 7A fourbladed helicopter
rotor in hovering flight (M; = 0.662, 6, = 7.5°)
is first considered. The chimera grid system is
made of a mesh around each blade and a back-
ground cartesian grid, locally refined in the re-
gion of the blades, and, for a better load balance,
split into four blocks. Mesh of blades consists in
140 x 24 x 17 points and mesh of cartesian grids
is made of 31 x 31 x 60 points (Fig.3). Two com-
putations are carried out for this configuration,
one with one layer of explicit interpolated points

and the other with two layers of explicit and im-
plicit interpolated points [3].

The relative Mach number is shown in Fig.
5 and in Fig. 7, and is equivalent for the two
cases. Results obtained by parallel and sequential
algorithms are strictly identical as demonstrated
in 4 and in 8. Furthermore, Fig. 7 shows a little
difference between one layer and implicit case,
probably due to the fact that implicit case exhibits
extrapolated points (see table 3).

Speed-up plots are presented in Fig. 6 and
Fig. 9 for different numerical experiments. For
a best understanding, a table shows the reparti-
tion of number of computed points by processor
(table 1 and the number of explicitly, implicitly
interpolated and extrapolated points (table 2 and
3). It can be concluded that even if the number of
computed points is well distributed other the pro-
cessors, the speed-up remains not optimal. The
chimera transters must be taken into account in
the load-balance.

Unsteady applications. The case of an isolated
rotor in forward flight is then considered.

Blades are animated with an harmonic move-
ment of pitch, flap and lead-lag. The tip Mach
number is set to M; = 0.646 and the forward
speed corresponds to an advance ratio of u=0.4.

The mesh topology is the same as for the
hover case. The computation is carried out on a
DEC computer. A result concerning the relative
Mach number is given in Fig. 10 after one rev-
olution. The method capability to predict some
of the main characteristics of the rotor flowfield
is clearly demonstrated. Especially the transonic
pocket on the advancing blade side and the re-
verse circle on the retreating blade are two typical
features of helicopter rotor flowfield.

As for the rotor in hover case, results obtained
by parallel and sequential algorithms are strictely
identical.

In this case, the interpolated blocks and in-
terpolation blocks are more often on different
processors than for the hover case resulting in a
lower speed-up (see Fig. 11).

The case of the rotor-fuselage interaction has
been also computed using the parallel algorithm.
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The configuration is shown on Fig. 12. The rotor
is the 7A model rotor and the fuselage is the sim-
plified Helishape “Dauphin” of Eurocopter. The
length of the blade is 14c¢ and the distance be-
tween the rotor rotation center and the top of the
fuselage is 0.66 ¢ (with ¢, blade profile chord).

The mesh is made of a curvilinear block
around each blade, on intermediary cartesian grid
split in four grids, and 14 blocks for the fuselage
for a total of 1361904 points. No special care
was brought to those grids. The mesh is shown
on Fig. 13.

The rotor movement is the same as for the
isolated rotor in forward flight test case.

Five processors on Compacq enables to carry
out one revolution in 43 hours. Relative Mach
number contours are given in Fig. 14. The result
is overall as expected.

In the elsA software, processors are attributed at
blocks. Whereas, here, repartition of the number
of points by block is completely unequal. So, the
load balance is very poor, which explains bad re-
sults for the speed-up (see Fig. 15). For more
precisions, we present a table (4) with the num-
ber of points by processor.

At last, pressure coefficients on the blade surface
for different sections and azimuthal angles \ are
shown on Fig. 16-19. Results about isolated rotor
and interaction rotor-fuselage are compared with
experimental results provided by Onera S1 wind
tunnel at the Modane center [2]. The difference
between the two simulations shows that the fuse-
lage’s influence on pressure coefficient is clearly
demonstrated, overall at y = 180 and v = 360°,
where blades are parallel to the fuselage. As ex-
pected, the fuselage influence decreases from the
innermost to the outermost spanwise blade sec-
tions. As a general rule, the three curves are
nearly joined, nevertheless, where differences are
noteworthy, experimental results are more close
by rotor-fuselage results.

Conclusion. The chimera method in elsA soft-
ware has been parallelized. The results concern-
ing steady applications are rather good. Never-
theless, results concerning unsteady applications
demonstrate that load balance based on the vol-

ume of data exchange is required.
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Fig. 3 Mesh for isolated rotor in hover
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Fig. 4 Residual for isolated rotor in
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Fig. 5 Relative Mach number for iso-
lated rotor in hover
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Fig. 7 Relative Mach number for iso-
lated rotor in hover, implicit interpola-
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Fig. 16 Pressure coefficients around blade
sections, ¥ = 90°
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