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Abstract

The Lighthill (1952) acoustic analogy describing
the generation of sound by turbulence and inho-
mogeneities in an unbounded medium at rest is
extended to a plane unidirectional shear mean
flow. Unlike previous attempts at this result
(Lilley 1974), there are no ambiguous terms: (i)
the linear, non-dissipative terms form the acous-
tic wave equation in a plane unidirectional shear
flow (Haurwitz 1932, Campos & Serrão 1998),
with the acoustic pressure as variable; (ii) all
the remaining terms are non-linear or dissipa-
tive, and specify the sources of sound in a shear
flow, generalizing the original Lighthill tensor.
The sources of sound consist of three terms,
modelling turbulence, inhomogeneities and dis-
sipative effects, broadly similar to the original
Lighthill tensor, with additional three terms pro-
portional to the vorticity of the mean flow. The
Green’s function for the acoustic wave equation
in a plane unidirectional shear flow is obtained
exactly for all frequencies. The result applies to
any shear velocity profile and is illustrated for
the hyperbolic tangent shear layer. The acoustic
pressure due to a point monopole source is plot-
ted as a function of the coordinate transverse to
the shear layer, for several source positions in the
shear flow, and several values of the shear layer
thickness, free stream Mach number and angle of
incidence.

1 Introduction

The original acoustic analogy (Proudman 1952,
Lighthill 1952) concerned the generation of
sound by turbulence (Lighthill 1954, 1961) in
a region of an unbounded medium otherwise at
rest. It was soon extended to include the effect of
solid boundaries at rest (Curle 1955) or in motion
(Ffowcs-Williams & Hawkings 1968). Other ex-
tensions include the generation of sound by two-
phase flow (Crighton & Ffowcs-Williams 1969)
and by fluid inhomogeneities (Howe 1975). The
latter uses the stagnation enthalpy as wave vari-
able (Campos 1978) and involves the high-speed
wave equation, valid for sound in a steady po-
tential mean flow of arbitrary Mach number
(Campos 1986). Another extension concerns
sound generation in a shear flow (Lilley 1974,
Mani 1976); the latter has a formal inconsistency,
in that a linear term involving the shear mean
flow appears among the non-linear source terms.
A complete separation of linear, propagation
terms from non-linear, source terms is required
for the acoustic analogy to hold (Doak 1998).
In the present paper the acoustic analogy is ex-
tended to a two-dimensional unidirectional shear
mean flow, enforcing a strict separation between
linear, propagation terms and non-linear, source
terms, so that no ambiguities arise.

The approach to ensure this result is
fairly simple: the wave equation in a shear
flow (Haurwitz 1932, Pridmore-Brown 1958,
Möhring, Müller & Obermeier 1983, Campos &
Serrão 1998, Campos & Kobayashi 2000) is red-
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erived (§2), eliminating among the linear, non-
dissipative terms exactly in the same way (§2.1),
but retaining the non-linear and dissipative terms,
to identify the sound sources (§2.2), in an in-
homogeneous shear flow (§2.3). This method
provides, in a single approach; (i) the wave op-
erator describing linear, non-dissipative sound
waves; (ii) the non-linear terms modelling the
sources which generate sound; (iii) the dissipa-
tive terms specifying the mechanisms responsible
the decay of acoustic energy. Whereas the Lil-
ley equation has been solved for high-frequency
sound (Goldstein 1976), the present acoustic
wave equation with source in a shear flow can be
solved exactly all frequencies; the sound fields
are illustrated by the Green’s function for the hy-
perbolic tangent (Campos & Kobayashi 2000).
The modulus and phase of the acoustic pres-
sure are plotted versus distance across the shear
layer for several monopole source position (Fig-
ure 1), shear layer thickness (Figure 2), free
stream Mach numbers (Figure 3) and angles of
incidence (Figure 4).

2 Acoustic wave equation in a shear flow

In order to obtain the complete acoustic wave
equation elimination is performed among the
linear, non-dissipative terms (§2.1), leading to
the wave operator (§2.2) describing propagation,
while retaining all other terms (§2.3); the non-
linear terms model the sources responsible for
wave generation, and the dissipative terms spec-
ify the decay mechanisms.

2.1 Separation of linear, non-dissipative and
other terms

The starting point to study the generation of
sound in a shear flow are the general equations
of fluid mechanics, namely the equation of conti-
nuity:

Dρ
dt

+ρ∇.V = 0, (1)

where
D
dt
≡ ∂

∂t
+V.∇, (2)

is the material derivative,ρ is the mass density
andV the velocity; the equation of momentum:

∂Vi

∂t
+Vj

∂Vi

∂x j
+

1
ρ

∂P

∂xi
=

1
ρ

∂σi j

∂x j
, (3)

where P is the pressure field andσ the vis-
cous stress tensor; and the equation of stateP =
P(ρ,s), expressing pressure as a function of den-
sity and entropy.

DP

dt
= c2Dρ

dt
+β

Ds
dt

, (4)

wherec is the adiabatic speed of sound

c2 ≡ ∂P

∂ρ

∣∣∣∣
s
, (5)

andβ a thermodynamic parameter

β ≡ ∂P

∂s

∣∣∣∣
ρ

(6)

The total state is assumed to consist of a mean
steady unidirectional shear flow in two dimen-
sions:

V = U(y)ex +u(x,y, t)ex +v(x,y, t)ey, (7)

plus unsteady and non-uniform perturbations:

ρ = ρ0(y)+ρ′(x,y, t), (8)

P = p0 + p(x,y, t); (9)

note that the continuity equation for the mean
state allows the mean densityρ0 to depend on the
transverse coordinate:

∇. [ρ0(y)U(y)ex] = 0, (10)

and the momentum equation for the non-
dissipative mean state implies a constant mean
pressurep0:

∇p0 = ρ0(y)U(y)
∂U(y)

∂x
= 0. (11)

When substituting (7–9) in (1,3,4) the linear
terms, involving the linearized material derivative

d
dt
≡ ∂

∂t
+U(y)

∂
∂x

, (12)
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and sound speed for the mean flow:

c2
0 ≡

∂p
∂ρ

∣∣∣∣
s0

(13)

are collected on the left hand side (lhs) and the
other non-linear and dissipative terms, are col-
lected on the right hand side (rhs). The preceding
procedure leads to:

du
dt

+vU′+
1
ρ0

∂p
∂x

=−u
∂u
∂x
−v

∂u
∂y

+(
1
ρ0
− 1

ρ

)
∂p
∂x

+
1
ρ

∂σx j

∂x j
≡ X,

(14)

for thex-component of the momentum equation,
where prime denotes derivative with regard toy,
e.g.U ′ ≡ dU/dy=−Ω0 specifies the mean flow
vorticity. The y-component of the momentum
equation:

dv
dt

+
1
ρ0

∂p
∂y

=−u
∂v
∂x
−v

∂v
∂y

+(
1
ρ0
− 1

ρ

)
∂p
∂y

+
1
ρ

∂σy j

∂x j
≡Y,

(15)

completes the system of equations, together with
the equation of continuity (1) and state (4) com-
bined:

1
c2

Dp
dt

− β
c2

Ds
dt

+ρ∇.V = 0, (16)

in the form separating linear, non-dissipative
terms on therhs:

1

c2
0

dp
dt

+ρ0

(
∂u
∂x

+
∂v
∂y

)
=

(
1

c2
0

dp
dt
− 1

c2

Dp
dt

)
+

(ρ0−ρ)
(

∂u
∂x

+
∂v
∂y

)
+

β
c2

Ds
dt

≡ Z,

(17)

from other terms on therhs.

2.2 Acoustic wave equation with source
terms

In order to obtain the acoustic wave operator in
a shear flow, the elimination is performed only
among the linear, non-dissipative terms on the

lhs of (14,15,17), although all other terms on the
rhs are retained, to allow identification of sound
sources and dissipation mechanisms. From (12)
follow the commutation relations:

∂
∂x

d
dt

=
d
dt

∂
∂x

, (18)

∂
∂y

d
dt

=
d
dt

∂
∂y

+U ′ ∂
∂x

, (19)

which are used when applying the material
derivative to (17), viz.:

d
dt

(
1

c2
0

dp
dt

)
+ρ0

(
∂
∂x

du
dt

+
∂
∂y

dv
dt
−U ′∂v

∂x

)
=

dZ
dt

,

(20)
where can be substituted (14,15):

1

c2
0

d2p
dt2

+ρ0
∂
∂x

(
− 1

ρ0

∂p
∂x
−vU′+X

)
+

ρ0
∂
∂y

(
− 1

ρ0

∂p
∂y

+Y

)
−ρ0U

′∂v
∂x

=
dZ
dt

,

(21)

leading to:

1

c2
0

d2p
dt2

−
(

∂2p
∂x2 +

∂2p
∂y2

)
+

ρ′0
ρ0

∂p
∂y
−

2ρ0U
′∂v
∂x

=
dZ
dt

−ρ0

(
∂X
∂x

+
∂Y
∂y

)
,

(22)

Note that, in the absence of mean shear flow
U ′ = 0, thelhs of (22) is the high-speed wave op-
erator (Howe 1975, Campos 1978, 1986) applied
to the acoustic pressure, and thus therhs repre-
sents the sources of sound for a uniform mean
flow. In the presence of mean shear flow, the
acoustic velocity perturbation is eliminated from
the last term on thelhs of (22), by applying the
linearized material derivative (12) once more:

d
dt

[
1

c2
0

d2p
dt2

−∇2p+∇(logρ0).∇p

]
−

2ρ0U
′ ∂
∂x

dv
dt

=
d2Z
dt2

−ρ0
d
dt

(
∂X
∂x

+
∂Y
∂y

)
,

(23)
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and substituting (15):

d
dt

[
1

c2
0

d2p
dt2

−∇2p+∇(logρ0).∇p

]
+

2U ′ ∂2p
∂x∂y

= q,

(24)

where

q≡ d2Z
dt2

−ρ0
d
dt

(
∂X
∂x

+
∂Y
∂y

)
+2ρ0U

′∂Y
∂x

. (25)

The lhs of (24) is the acoustic wave operator
for sound in a unidirectional shear flow (Campos
& Serrão 1998, Campos & Kobayashi 2004),
which, in the case of uniform mass density, sim-
plifies to:

ρ′0 = 0 :
d
dt

[
1

c2
0

d2p
dt2

−∇2p

]
+2U ′ ∂2p

∂x∂y
= q,

(26)
which is well-known for a long time (Haurwitz
1932, Pridmore-Brown 1958, Möhring et al.
1983)). Unlike with the Lilley equation (Lilley
1974, Mani 1980, Goldstein 1976) all terms on
the rhs of (24) are non-linear or dissipative,
and thus there is no ambiguity with propagation
terms.

The source termq in (24) involves therhs X
of (14), andY of (15) and Z of (17), which must
be substituted to allow the identification of sound
sources and dissipation mechanisms. The term:

∂X
∂x

+
∂Y
∂y

=−∇.[(v.∇)v]+

∂
∂xi

(
1
ρ

∂σi j

∂x j

)
+∇.

[(
1
ρ0
− 1

ρ

)
∇p

]
,

(27)

involves the velocity perturbationsv≡ uex+vey:

∇.[(v.∇)v] =
∂

∂xi

(
w j

∂wi

∂x j

)
=

∂2

∂xi∂x j
(wiw j)−

∂
∂xi

(
wi

∂w j

∂x j

)
,

(28)

where the first term on therhs of (28) is the dou-
ble divergence of the Reynolds stresses per unit

mass, and the second term involves the dilata-
tion: ∇.v = ∂wi

∂xi
; the double divergence of the

Reynolds stresses appears in the original acous-
tic analogy (Lighthill 1952, 1961, 1978) as the
turbulent source of sound. An alternative way to
write the first term on therhs of (27):

∇.[(v.∇)v] = ∇.[v× (∇×v)]+
1
2

∇2v2, (29)

involves Lamb’s vector:

L = v× (∇×v), (30)

which models the generation of sound by vortic-
ity (Powell 1968, Howe 1975, Campos 1977).

2.3 Sound generation in inhomogeneous
shear flows

The source term (25) involves, besides (27) also
(17), where the mean flow vorticity does not in-
tervene:

q1 ≡
d
dt

[
ρ0

∂2

∂xi∂x j
(wiw j)

]
− d

dt

[
ρ0

∂
∂xi

(
wi

∂w j

∂x j

)]
−ρ0

d
dt

[
∂

∂xi

(
1
ρ

∂σi j

∂x j

)]
−ρ0

d
dt

{
∇.

[(
1
ρ
− 1

ρ0

)
∇p

]}
+

d2

dt2

(
1

c2
0

dp
dt
− 1

c2

Dp
dt

)
+

d2

dt2

[
(ρ0−ρ)

∂wi

∂xi

]
+

d2

dt2

(
β
c2

Ds
dt

)
,

(31)

plus a term proportional to the vorticity of the
mean flow:

Ω0 ≡−U ′ : q(x, t)≡ q1(x, t)+2U ′q2(x, t)
(32)

given by (15):

q2(x, t) = ρ0
∂Y
∂x

=−ρ0
∂
∂x

(
u

∂v
∂x

+v
∂v
∂y

)
+

∂
∂x

[(
1− ρ0

ρ

)
∂p
∂y

]
+

ρ0

ρ
∂σy j

∂x j
,

(33)
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which contrasts with (31) because: (i) in (31)
the spatial coordinatesxi ≡ (x,y) and velocity
componentsv = (u,v) appear symmetrically; (ii)
in (33) there is a lack of symmetry between the
mean flowx and mean sheary directions.

Turning to the non-shear sound sources (31),
they consist of three sets of terms. The first:

q11≡
d
dt

[
ρ0

∂2

∂xi∂x j
(wiw j)

]
− d

dt

[
ρ0

∂
∂xi

(
wi

∂w j

∂x j

)]
,

(34)

represents the generation of sound by turbu-
lence; in the case of an homogeneous mean flow
ρ0 = const:

q11 =
d
dt

[
∂2

∂xi∂x j
(ρ0wiw j)−ρ0

∂
∂xi

(
wi

∂w j

∂x j

)]
,

(35)
the first term is minus the linearized material
derivative (12) of the double divergence of the
Reynolds stressesρ0wiw j calculated for the ve-
locity perturbationwi and mean flow mass den-
sity ρ0; it corresponds to the first term in the
Lighthill tensor:

Ti j = ρwiw j +(p′−c2
0ρ′)δi j +σi j . (36)

However, even in an homogeneous shear flow, the
sound generation by turbulence involves an addi-
tional term, the second on therhs of (26), which
relates to the dilatation. The second term in the
Lighthill tensor (36), represents sound generation
by fluid inhomogeneities, and is here replaced by:

q12≡−ρ0
d
dt

{
∇.

[(
1
ρ
− 1

ρ0

)
∇p

]}
− d2

dt2
[ρ′(∇.v)]+

d2

dt2

(
1

c2
0

dp
dt
− 1

c2

Dp
dt

)
,

(37)

where: (i) the first term involves the total mass
densityρ and mean flow densityρ0 and the pres-
sure gradient due to waves (there is no pres-
sure gradient in the mean flow); (ii) the second
term involves the density perturbationρ′ = ρ−ρ0

and the acoustic dilatation, (iii) the third term

involves the exact, non-linear sound speed (5)
and the linearized sound speed for the mean flow
(13), and the exact, non-linear material derivative
(2) and the linearized material derivative (12).
The third set of terms unrelated to mean flow vor-
ticity represents dissipation:

q13 =−ρ0
d
dt

∂
∂xi

(
1
ρ

∂σi j

∂x j

)
+

d2

dt2

(
β
c2

Ds
dt

)
,

(38)
whereq1 ≡ q11+ q12+ q13; the first term inq13

corresponds to the viscous stresses in the third
term of the Lighthill tensor (36), except for den-
sity effects. If the mean flow is homogeneous
ρ0 = const:

q13−
d2

dt2

(
β
c2

Ds
dt

)
=− d

dt
∂

∂xi

(
ρ0

ρ
∂σi j

∂x j

)
(39)

these density effects disappearρ0/ρ∼1−ρ′/ρ in
the linear approximation to the dissipative terms.
The second dissipative term involves the exact
material derivative of the entropy and thermody-
namic coefficient (6), and models the effect of
heat release and mean flow entropy gradients.

Turning to the terms (33) proportional to the
mean flow vorticityΩ0 ≡U ′—see (32), the dis-
sipative component:

q23≡−
∂σy j

∂x j
=−

(
∂σyx

∂x
+

∂σyy

∂y

)
, (40)

involves only the viscous stresses in the shear di-
rection, in contrast with the presence of all vis-
cous stresses in the non-shear term (38). The
shear term (33) also involves a term correspond-
ing to sound generation by inhomogeneities:

q22 =
∂
∂x

[(
1− ρ0

ρ

)
∂p
∂y

]
=

∂
∂x

(
ρ′

ρ
∂p
∂y

)
, (41)

again displaying an asymmetry relative to the
corresponding term (37). The interaction of tur-
bulence with mean flow shear is represented by
the first term on therhs of (33):

−q21

ρ0
=

∂
∂x

(
u

∂v
∂x

+v
∂v
∂y

)
=

∂2

∂x2(uv)+
∂2

∂x∂y
(v2)− ∂

∂x

[
v

(
∂u
∂x

+
∂v
∂y

)]
,

(42)
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which consists of: (i) some of the terms of the
double divergence of the Reynolds stresses per
unit mass: (ii) thex-term of the gradient ofv
times the acoustic dilatation. The source terms
may be grouped:

q =
(
q11+2U ′q21

)
+

(
q12+2U ′q22

)
+

(
q13+2U ′q23

) (43)

where: (i) the first set corresponds to sound gen-
eration by turbulence (34,42); (ii) the second
set corresponds to sound generation by inhomo-
geneities (37,41); (iii) the third set corresponds
to dissipation mechanisms (38,40), viz. viscous
stresses and heating processes. Each of the three
terms has a contribution independent of mean
flow shear (34,37,38) which acts as a modified
Lighthill tensor, and a contribution (42,41,40)
proportional to mean flow vorticity, which forms
a shear tensor.

3 Sound generation by a source in a shear
flow

The preceding theory is illustrated by deter-
mining the exact Green’s function for arbitrary
frequency and wavenumber; it corresponds the
sound field due to a point source in a shear flow,
and is illustrated in the case of a hyperbolic tan-
gent shear layer.

In (Campos & Kobayashi 2000) the authors
determined the solution of the pressure sound
spectrum for a flow without source terms. When
the sound source is present, the Green’s func-
tion G(y;ξ) can be determined by a procedure
explained in (Ince 1956). The Green’s function
is next plotted as a function ofy/L, for selected
values of the parameters

M ≡ U∞
c0

(44)

κ ≡ kL≡ (ωL/c0)cosθ (45)

δ ≡ λ/L ≡ 2πc0

ωL
(46)

namely the Mach number of the free stream (44),
the angle of the direction of propagation with the
mean flow (45) and the ratio (46) of the length-
scale of the shear flowL to the wavelength of

sound in the free streamλ ≡ τc0 with τ ≡ 2π/ω;
andξ/L, the position of the source.

The baseline corresponds to: (i) a wavelength
equal to the thickness of the boundary layer, since
the present theory is unrestricted on frequency,
and this is a case of strong interaction between
the sound field and the boundary layer; (ii) tran-
sonic free stream Mach number; (iii) oblique an-
gle of incidence of 60o; (iv) sound source at the
distance of one shear layer thickness:

{λ,M,θ,ξ}= {L,0.8,π/3,L}. (47)

The modulus|P| and phase arg(P) of the
Green’s function are plotted respectively at the
top and bottom of Figures 1 to 4, as a function of
distancey from the centreline of the hyperbolic
tangent shear flow over a range of plus or minus
five thicknesses:

P(Y;λ/L,M,θ,ξ/L)≡G(y;ξ), −5≤Y≡ y/L≤5.
(48)

Figure 1 shows the effect of changing source
position in the shear layer:

ξ/L = 1/2,1,2, (49)

below or above one shear layer thicknessL. The
farther the source moves up the shear layer the
smaller the modulus (top) of the acoustic pres-
sure; the dip in the acoustic pressure indicates
sound absorption by the shear flow. The lower
acoustic pressure below the shear layer compared
to above is due to sound reflection by the shear
layer (there can be no sound absorption because
the energy flux is conserved in they-direction).
It is seen from Figure 1 (bottom) that the phase
of the acoustic pressure increases away from the
shear layer, i.e. sound waves propagate upward
above the shear layer and downward below; this
is required by the radiation condition at±∞, and
implies that the shear layer reflects waves. Figure
2 shows the effect of wavelength smaller or larger
than the shear layer thickness:

2,1,1/2 = δ = λ/L = 2πc0/ωL = 2π/Ω, (50)

which can be related to a dimensionless fre-
quency. The modulus of the acoustic pressure
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Fig. 1 Modulus (top) and phase (bottom) of the
Green’s function, for the acoustic pressure (48)
due to an unit point source at positiony = ξ,
in an hyperbolic tangent shear flow, versus dis-
tancey from the centreline, made dimensionless
by dividing (48) by the shear layer thickness.
The baseline case (47) concerns incidence angle
θ = π/3 in a transonic flowM = 0.8, and wave-
lengthλ equal to the shear layer thicknessL, and
equal to distanceξ of sound source from centre-
line ξ/L = 1, which is halvedξ/L = 1/2 and dou-
bledξ/L = 2 for comparisons (49).

(Figure 2, top) is larger for longer wavelength,
showing that shorter waves are more strongly af-
fected by the shear flow; the phase variation (Fig-
ure 2, bottom) are smaller over the same distance
for longer wavelengths. The phase is nearly a lin-
ear function of distance, both in Figures 1 and 2
(bottom), indicating a constant phase speed, ex-
cept in the core part of the shear flow, where the
curvature indicates varying phase speed. This oc-
curs near to the ‘kink’ in the phase curve, indicat-
ing the change from downward to upward prop-
agation; this ‘point of reflection’ is not affected
by the wavelength (Figure 2, bottom) and moves
down (Figure 1, bottom) as the source also moves
down closer to the shear layer centreline. Figure
3 illustrates the effect of free stream Mach num-
bers:

M = U∞/c0 = 0.3,0.8,1.2, (51)

by considering low and high subsonic and super-
sonic shear flows. The modulus of the acoustic
pressure (Figure 3, top) varies little except in the
case of supersonic shear flow, when there is a
large variation across the shear flow, consisting
of: (i) a moderate decay below the centreline; (ii)
a small but sharp peak near the centreline; (iii) a
fast decay above the centreline. The phase of the
acoustic pressure (Figure 3, bottom) varies more
rapidly for larger Mach number below the shear
layer, and then increases more slowly above; in
the case of the supersonic shear layer, the phase
decreases rapidly below the ‘kink’, indicating up-
ward propagation, and becomes constant above,
confirming the wave absorption (seen in Figure
3, top). The condition of non-existence of a criti-
cal layerω−kU > is satisfied

kU(y)/ω < kU∞/ω =(U∞/c0)cosθ = Mcosθ < 1,
(52)

in all cases of subsonic flowM < 1 and also in
the supersonic flowM = 1.2 in (51) becauseθ =
π/3 in (47). Figure 4 shows the effect of angle of
incidenceθ

θ = π/4,π/3,2π/3,3π/4, (53)

which appears in (45) the acoustic compactness,
or horizontal wavenumberk made dimensionless

7
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Fig. 2 As Figure 1, with baseline wavelengthλ
equal to shear layer thicknessL, halved or dou-
bled (50).

Fig. 3 As Figure 1, with in addition to baseline
transonic shear flowM = 0.8, also subsonicM =
0.3 and supersonicM = 1.2 cases (51).
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multiplying by the shear layer thicknessL, viz.:

κ≡ kL≡ (ωL/c0)cosθ = Ωcosθ = (2π/δ)cosθ,
(54)

which is smaller than the dimensionless fre-
quency in (50). The modulus of the acoustic pres-
sure (Figure 4, top): (i) for incidence in the for-
ward arc not far from the verticalθ = π/3, the
acoustic pressure decreases from below to above
the shear layer, with a dip in the shear layer; (ii)
for incidence in forward arc far from the verti-
calθ = π/4, the acoustic pressure is smaller than
before (i) below the the shear layer, has a sharp
peak in the shear layer, and then decays to zero
above, indicating total reflection; (iii) for inci-
dence in the rear arc not far from the vertical
θ = 2π/3, the acoustic pressure is small below
the shear layer and increases by a small amount
above the shear layer with an almost impercep-
tible dip in the shear layer; (iv) for incidence in
the rear arc far from the verticalθ = 3π/4, the
acoustic pressure is negligible below the shear
layer, and larger than case (iii) above the shear
layer, with amplitude oscillations in the shear
layer. The phase of the acoustic pressure (Figure
4, bottom) increases away from the shear layer as
before, but displays two new features: (i) when
the phase ceases to be a linear function of dis-
tance, in the shear layer, the curvature is oppo-
site for propagation in the rear arc (negative for
θ < π/2), indicating a decrease in phase speed
in the former case, and an increase in the lat-
ter case; (ii) the nodes of the acoustic pressure
in the amplitude plot (Figure 4, top) in the case
of incidence in the rear arc far from the vertical
θ = 3π/4, correspond to phase jumps in Figure 4,
bottom.
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