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Abstract

Three-dimensional supersonic boundary layers
over an infinite swept wing, which is made from
the semispan model of our experimental
airplane, are subject to both streamwise and
crossflow instabilities. In order to clarify the
effects of these instabilities on the spatial
growth of first-mode waves, we perform linear
stability analysis first with the full boundary
layers over the infinite swept wing and next with
those without crossflow. It is found that the
spatial growth of first-mode waves is mainly due
to crossflow instability in the presence of
moderate crossflow yielded by favorable
pressure gradient. Although a flat pressure
distribution at the wing surface restrains
crossflow instability, streamwise instability still
destabilizes first-mode waves to some extent.
Wall cooling will be valid for suppressing
streamwise instability.

1 Introduction

Three-dimensional compressible boundary
layers over swept wings are subject to both
streamwise and crossflow instabilities, which
are attributed to boundary-layer profiles in the
streamwise and crossflow directions,
respectively (see Fig. 1). Furthermore,
streamwise instability is divided into viscous
and inflectional instabilities. Viscous instability
means that the maximum growth rate of a
disturbance increases as the Reynolds number
decreases. Meanwhile, if there is a generalized
inflection point in the streamwise boundary
layer, it can cause an inviscid disturbance to
grow. In case of swept wings, the disagreement

between the directions of the pressure gradient
and the external streamline yields crossflow in
the boundary layer. Crossflow is normal to the
external streamline and generally directed
toward the concave side of the external
streamline. Since the crossflow velocity profile
always has an inflection point, the boundary
layer undergoes inflectional instability called
crossflow instability. Crossflow instability
amplifies both stationary and traveling
disturbances, whereas streamwise instability
amplifies traveling ones only.

The stability of three-dimensional
supersonic boundary layers was investigated
with linear stability theory by Asai, Saitoh,
Seino, and Itoh [1] and Balakumar and Reed [2].
Asai et al. dealt with supersonic boundary layers
obtained as the extension of the Falkner-Skan-
Cooke profiles. Their results indicate that the
first-mode wave with the wave angle of about
75˚ is the most amplified of all the disturbances
if the maximum crossflow velocity exceeds
about 4% of the external streamwise velocity.
First-mode waves in compressible flows
correspond to Tollmien-Schlichting waves in
incompressible ones. Balakumar and Reed used
supersonic boundary layers over a rotating cone
at zero angle of attack. Their results show that
the growth rate of a first-mode wave is
increased by a factor of 2 to 4 due to crossflow
in comparison with a two-dimensional flow
with the same streamwise profile.

In this study, we examine the stability of
three-dimensional supersonic boundary layers
over a practical configuration, which is an
infinite swept wing made from the semispan
model of our experimental airplane. The
original wing was designed so as to yield little
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crossflow over the upper surface on a cruise [3].
In order to explore each of streamwise and
crossflow instabilities, we perform linear
stability analysis first with the full boundary-
layer profiles and next with the streamwise ones
only. The comparison of the results reveals the
dominant instability of the swept-wing
boundary layers. Accordingly, we find a key for
further laminar flow control.

2 Numerical Methods

2.1 Procedure

Linear stability analysis of three-dimensional
compressible boundary layers is conducted
using a prediction system of boundary-layer
transition [4]. Figure 2 shows the procedure of
the prediction system. A compressible flow past
a body is computed by the Navier-Stokes (NS)
code, and the mean boundary-layer flow is
extracted from the converged flow. An initial
disturbance in the boundary layer is searched for
by the temporal stability code and the spatial
stability code, and the spatial growth of the
disturbance is computed by the space-marching
code. Eventually, the N factor is obtained by
integrating the spatial growth rates of the
disturbance.

2.2 Navier-Stokes Code

The governing equations of the NS code are the
conservation-law form of the thin-layer NS
equations. Let ξ, η, ζ, and τ be the surface

coordinate in the normal-chord direction, the
wall-normal coordinate, the spanwise coordinate,
and time; Q̂ the vector of dependent variables;

Ê , F̂ , and Ĝ  the inviscid-flux vectors; F̂v  the
viscous-flux vector; and Re the Reynolds
number. Then, the thin-layer NS equations in
generalized curvilinear coordinates can be
written as

∂Q

∂τ
+

∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ
=

1

Re

∂Fv

∂η
, (1)

which are numerically solved with a finite-
volume method. The inviscid-flux vectors Ê , F̂ ,
and Ĝ  of third-order accuracy in space and the
viscous-flux vector F̂v  of second-order accuracy
in space are computed by the Chakravarthy-
Osher TVD scheme [5] and Gauss’s theorem,
respectively. The diagonalized ADI scheme
proposed by Pulliam and Chaussee [6] is used
for time integration. The details of the NS code
are described in [7].

2.3 Stability Analysis Codes

An instantaneous flow may be represented as
the sum of a mean flow denoted by (¯) and a
disturbance denoted by (˜)

u = u + u , v = v + v , w = w + w ,

ρ = ρ + ρ , T = T + T ,
(2)

where u, v, w are the velocity components in
Cartesian coordinates x, y, and z, respectively; ρ
the density; and T the temperature. The mean
flow is computed by the NS code. A disturbance
in a boundary layer that is nonparallel to the ξ
direction and constant in the ζ direction may be

written as

q ξ , η , ζ , τ = q ξ , η exp i α ξ
ξ0

ξ
dξ + β ζ –ω τ ,

(3)
where q̃  is the disturbance vector defined by

˜, ˜, ˜ , ˜, ˜u v T w
T

ρ( ) ; q̂  the corresponding shape

function ˆ, ˆ, ˆ, ˆ, ˆu v T w
T

ρ( ) ; and the subscript 0

denotes the onset of instability. For temporal
stability analysis, the real wavenumbers α and β
are given, and the complex frequency ω is

sought. The imaginary part of ω is the temporal

growth rate. On the other hand, for spatial
stability analysis in the ξ direction, the real

wavenumber β and the real frequency ω are

given, and the complex wavenumber α is sought.

The imaginary part of –α is the spatial growth

rate in the ξ direction. Although both α and β
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are normally complex in spatial stability
analysis, β is constant on infinite swept bodies,

and besides the imaginary part of β is regarded

as zero except around the attachment line [8].
Substituting Eqs. (2)–(3) into Eq. (1),

subtracting the mean-flow terms, and dropping
the quadratic terms of the disturbance quantities,
we obtain linear PSE

D q + A
∂q

∂ξ
+ B

∂q

∂η
= V

∂
2
q

∂η
2

, (4)

where D, A, B, and V are 5×5 coefficient

matrices. The boundary conditions for Eq. (4)
are
u = v = w = T = 0 at the wall (η = 0) , (5)

u , v , w , ρ , T → 0 in the free stream (η→∞) .

In Eq. (4), ∂ ∂ˆ /q ξ  is approximated with a first-
order backward difference, and ∂ ∂ˆ /q η  and
∂ ∂2 2ˆ /q η  are approximated with a second-order
central difference.

We use the temporal stability code to
search for a disturbance that is temporally the
most amplified at a location. Assuming that q̂  is
a function of the η coordinate only, Eq. (4)

reduces to

D q + B
dq

dη
= V

d2q

dη
2

. (6)

The complex frequency ω appears linearly in D

as
D = Dt –ω Dt

′ . (7)

Substituting Eq. (7) into Eq. (6) and multiplying
both the sides by ′−Dt

1, we obtain

Dt
′ – 1 Dt q + Dt

′ – 1 B
dq

dη
– Dt

′ – 1 V
d2q

dη
2

= ω q . (8)

Equation (8) discretized along with the
boundary conditions (5) constitutes a 5×5-block

tridiagonal system. This tridiagonal system
represents an eigenvalue problem that has ω and

q̂  as the eigenvalue and eigenfunction,
respectively. We obtain all the solutions by
applying the QR method [9] to the tridiagonal
system. This matrix method does not need any

initial guess for ω. In respect of the most

amplified disturbance, the real wavenumber β
and the real part of ω are given to the spatial

stability code.
Using the spatial stability code, we convert

temporal stability into spatial stability and
search for an initial disturbance. Because of the
thin-layer approximation, the complex
wavenumber α appears linearly in D as

D = Ds –α Ds
′ .

The same procedure as shown above yields the
eigenvalue α and eigenfunction q̂ . We continue

spatial stability analysis upstream in the ξ
direction with β and ω fixed. When the spatial

growth rate of the disturbance becomes the
closest to zero, we regard the disturbance as the
initial one for space marching.

The space-marching code is based on the
Bertolotti-Herbert method [10]. This code
makes space marching of the initial disturbance
downstream in the ξ direction with β and ω
fixed. Equation (4) with ∂ ∂ˆ /q ξ  discretized is
written as

Dj +
1

∆ξ
Aj qj + Bj

∂qj

∂η
– Vj

∂
2
qj

∂η
2

=
1

∆ξ
Aj qj – 1 ,

(9)
where ∆ξ and the subscript j are respectively the

grid spacing and index in the ξ direction. We

obtain q̂ j  by inverting the left-hand side of Eq.

(9) discretized along with the boundary
conditions (5). The shape function q̂  is
normalized to resolve the ambiguity of the
disturbance q̃  concerning the ξ coordinate. The

normalization condition based on the
disturbance energy Ed is given by

α α ρ
ξ ξ ξ

ρ

new old= − ∂
∂

+ ∂
∂

+ ∂
∂







⌠

⌡

= + +( )∫
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E

u
u

v
v

w
w

dV

E u v w dV

d V

d
V

1

10
2 2 2

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

,

ˆ ˆ ˆ , ( )

† † †

where V is the cell volume, and the superscript †
denotes complex conjugates. Equation (10) is
the Chang-Malik normalization condition [11]
modified for the finite-volume method and
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transforms the growth of the disturbance energy
in the cells aligned in the η direction into the

change in α. The wavenumber αj–1 is used as

the initial value of αj included in Dj. Equations

(9)–(10) are repeatedly solved until the change
in αj becomes less than 10–8. Upon convergence,

the same procedure is repeated at j+1.
With regard to infinite swept bodies, the N

factor is defined simply by

N = ln
A
A0

= – α
i

ξ dξ
ξ0

ξ
,

where A is the amplitude of the disturbance, and
the subscript i denotes an imaginary part.
Although the disturbance environment and the
receptivity mechanism determine the initial
amplitude A0, they are not dealt with in this
study.

3 Results

3.1 Computational Conditions

We examine the stability of three-dimensional
supersonic boundary layers over an infinite
swept wing, which is made from the semispan
model of our experimental airplane. Figure 3
schematically shows the planform of the
semispan model and the airfoil of the infinite
swept wing. The sweep angle of the infinite
swept wing is 61.2˚. The free-stream conditions
for numerical analyses are set equal to those for
the experiments in [12]. The free-stream Mach
number M∞ is 2.0. The Reynolds number

Re∞,MAC based on the free-stream velocity, the

free-stream kinematic viscosity, and the mean
aerodynamic chord (MAC) is 4 7 106. × , and the
Reynolds number Re∞,C based on the free-stream

velocity, the free-stream kinematic viscosity,
and the chord C of the infinite swept wing is
1 94 106. × . Two angles of attack α = 0˚ and 2.7˚
are taken as in the experiments.

3.2 Boundary-Layer Profiles

Figure 4 shows pressure distributions computed
at the upper surface of the infinite swept wing at
α = 0˚ and 2.7˚. X is the normal-chord distance
from the leading edge, and Cp the pressure
coefficient. The pressure distribution at α = 0˚
has favorable gradient from the leading edge to
X C/ .= 0 174, whereas that at α = 2 7. ˚ is
almost flat except for the suction peak near the
leading edge.

The wing surface is adiabatic and no-slip.
Figures 5(a)–5(b) show velocity profiles over
the upper surface at α = 0˚. Y is the wall-normal
distance from the surface; VCF the crossflow
velocity; VSW the streamwise velocity; and a∞

the speed of sound in the free stream. Although
a boundary-layer edge must be determined
before the velocity profiles are drawn, it is
defined here as the location where the spanwise
velocity becomes 99% of its free-stream value.
If the crossflow velocity is turned left from the
external-streamline direction, its sign is negative.
On the other hand, if the crossflow velocity is
turned right from the external-streamline
direction, its sign is positive. It is found that the
VCF profile changes with the pressure gradient.
The crossflow appears clearly from
X C/ .= 0 0501 to X C/ .= 0 150 because of the
favorable gradient, and it decreases from
X C/ .= 0 200 to X C/ .= 0 344 because of the
slightly adverse gradient. Again, the crossflow
increases from X C/ .= 0 395 to X C/ .= 0 493
because of the slightly favorable gradient. The
favorable pressure gradient also accelerates the
external stream through X C/ .= 0 150. The VSW

profiles hardly change downstream of
X C/ .= 0 293. Figures 6(a)–6(b) show velocity
profiles over the upper surface at α = 2 7. ˚. The
region with favorable pressure gradient as at
α = 0˚ does not exist near the leading edge,
which results in the smaller crossflow, the
constant external stream, and the thicker
boundary layer. The VCF profiles at
X C/ .= 0 0501, 0.200, 0.244, 0.395, and 0.493
become S-shape that has two inflection points
on the profile.

The crossflow Reynolds number ReCF that
indicates the intensity of crossflow instability is
defined by
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Re
V

e
CF

CF= max . ,
δ

ν
0 1

where the subscripts e and max denote a
boundary-layer edge and a maximum value,
respectively, and δ0.1 is the largest of the Y

coordinates where V VCF CF/
max

 becomes 0.1.

Figure 7 shows the ReCF curves of the boundary
layers over the upper surface at α = 0˚ and 2.7˚.
The ReCF curve at α = 0˚ is found to be similar
to the Cp curve in Fig. 4, which means that the
intensity of crossflow instability can be
controlled by the pressure distribution.
Although the crossflow Reynolds number at
α = 2 7. ˚ changes complicatedly, it remains
small. The flat pressure distribution at α = 2 7. ˚
seems successful in suppressing crossflow
instability.

3.3 Stability of the Full Boundary Layers

We investigate the stability of the full swept-
wing boundary layers to traveling disturbances.
Using the temporal stability code, we search for
the most amplified disturbance locally by
varying its wave angle ψ and wavelength λ. The

wave angle is varied every ten degrees, and the
wavelength is varied so that the ratio of the
wavelength to the local boundary-layer
thickness δ becomes integral. When the

direction of the dimensional wavenumber vector
agrees with that of the external streamline, the
wave angle is zero. The sign of the wave angle
is positive in the counterclockwise rotation and
negative in the clockwise one (see Fig. 8).

With regard to the swept-wing boundary
layer at α = 0˚, we obtain six first-mode waves
A, B, C, D, E, and F that are the most amplified
locally at X C/ .= 0 0501, 0.0781, 0.101, 0.150,
0.200, and 0.244, respectively. Table 1 shows
their wave angles, ratios of their wavelengths to
the local boundary layer thickness, and
frequencies. It is found that the first-mode
waves with ψ = −70˚  and λ δ/ = 6 are the most
amplified except at X C/ .= 0 200. It is noted
from Fig. 5(a) that the maximum absolute value
of the crossflow velocity always appears on the
side of ψ = 90˚. The spatial growth of the six

first-mode waves is computed from the onset of
instability to X C/ .= 0 493 by the space-
marching code, with their spanwise
wavenumbers and frequencies fixed. Figure 9
shows the N factors of the six first-mode waves.

The same procedure as shown above is
repeated concerning the swept-wing boundary
layer at α = 2 7. ˚. We obtain six first-mode
waves A’, B’, C’, D’, E’, and F’ that are the
most amplified locally at X C/ .= 0 0501,
0.0781, 0.101, 0.150, 0.200, and 0.244,
respectively (see Table 2). As compared with
Table 1, the wavelengths in Table 2 are long. It
is noted from Fig. 6(a) that the maximum
absolute value of the crossflow velocity appears
on the side of ψ = −90˚  at X C/ .= 0 0501 and
0.244 and on the side of ψ = 90˚ at
X C/ .= 0 101, 0.150, and 0.200. Namely, the
wavenumber vectors of the most amplified first-
mode waves are directed opposite to the
maximum crossflows at all the locations. Figure
10 shows the N factors of the six first-mode
waves. These waves are less amplified than the
six first-mode waves at α = 0˚. Although first-
mode waves in two-dimensional boundary
layers are usually more amplified for zero
pressure gradient than for favorable one [13],
the results obtained here show the opposite. The
three-dimensionality, namely crossflow, of the
swept-wing boundary layers is found to have a
great effect on the spatial growth of first-mode
waves.

3.4 Stability of the Boundary Layers without
Crossflow

In order to clarify the effect of each instability
on the spatial growth of first-mode waves, we
investigate the stability of the swept-wing
boundary layers where the crossflow velocity is
reduced to zero. This means VCF → 0  in Figs.
5–6 and besides ReCF → 0  in Fig. 7.

In respect of the swept-wing boundary
layer without crossflow at α = 0˚, we compute
the spatial growth of six first-mode waves that
have the same spanwise wavenumbers and
frequencies as the six first-mode waves of the
last section.  The first-mode waves a, b, c, d, e,



T. NOMURA

6

and f correspond to the first-mode waves A, B,
C, D, E, and F. Figure 11 shows the N factors of
the first-mode waves d–f. The first-mode waves
a–c do not grow. The spatial growth of the first-
mode waves is found to be crucially restrained
by removing the crossflow. It is noticed that the
spatial growth shown in Fig. 9 is mainly due to
crossflow instability. However, it is noted that
the ξ-direction wavenumbers of the first-mode

waves a–f differ slightly from those of their
correspondents because of no crossflow. For
example, at X C/ .= 0 0501, the real part of α of

the first-mode wave a is 1.1 times as large as
that of the first-mode wave A. Since the real and
imaginary parts of α are computed

simultaneously, it is impossible that its real part
only is given.

We repeat the same computations as shown
above concerning the swept-wing boundary
layer without crossflow at α = 2 7. ˚. The first-
mode waves a’, b’, c’, d’, e’, and f’ correspond
to the first-mode waves A’, B’, C’, D’, E’, and
F’. Figure 12 shows the N factors of the first-
mode waves a’–f’. As compared with Fig. 10,
the difference is only the slightly gentle
gradients of the N-factor curves. Accordingly, it
is found that the spatial growth shown in Fig. 10
is mainly due to streamwise instability. The ξ-

direction wavenumbers of the first-mode waves
a’–f’ are nearly equal to those of their
correspondents.

At α = 2 7. ˚, the flat pressure distribution at
the upper surface of the infinite swept wing
prevents first-mode waves from growing owing
to crossflow instability. Even without crossflow,
however, streamwise instability still destabilizes
first-mode waves to some extent. The upper
surface of the infinite swept wing with the flat
pressure distribution is considered identical with
a flat plate. Because wall cooling is valid for
suppressing streamwise instability of a flat-plate
boundary layer [8], it will also be available for
the infinite swept wing.

4 Conclusions

In order to clarify the effects of streamwise and
crossflow instabilities on the spatial growth of
first-mode waves, we have performed linear
stability analysis first with the full supersonic
boundary layers over an infinite swept wing and
next with those without crossflow. It is found
that the spatial growth of first-mode waves is
mainly due to crossflow instability at the angle
of attack of 0˚, where the favorable pressure
gradient near the leading edge yields moderate
crossflow. Although the flat pressure
distribution at the wing surface at the angle of
attack of 2.7˚ restrains crossflow instability,
streamwise instability still destabilizes first-
mode waves to some extent. Wall cooling that is
valid for suppressing streamwise instability of a
flat-plate boundary layer will also be available
for the infinite swept wing.
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Table 1. Wave Angles, Wavelengths, and Frequencies of
the Most Amplified Disturbances at α = 0˚.

Wave

A

B

C

D

E

F

X/C ψ λ/δ f * (kHz)

0.0501

0.0781

0.101

0.150

0.200

0.244

– 70˚

– 70˚

– 70˚

– 70˚

– 70˚

– 70˚

6
6

6

6

6

5

71.8

55.5

49.3

43.0

47.0

33.5

Table 2. Wave Angles, Wavelengths, and Frequencies of
the Most Amplified Disturbances at α = 2 7. ˚.

Wave

A'

B'

C'

D'

E'

F'

X/C ψ λ/δ f * (kHz)

0.0501

0.0781

0.101

0.150

0.200

0.244

60˚

60˚

– 60˚

– 70˚

– 70˚

70˚

7
8

9

7

7

7

82.4

59.5

46.0

35.0

29.5

24.6

External Streamline

Crossflow Velocity Streamwise Velocity

Fig. 1. Boundary-Layer Profiles over a Swept Wing.

Grid Generation

Metrics
Initial Flow

Navier-Stokes Code

Boundary Layer

Spatial Growth Rates

Space-Marching Code

Temporal Stability Code

Integration of the Growth Rates

Spatial Stability Code

eN Method

Linear Stability Analysis

Navier-Stokes Simulation

Initial Disturbance

Prediction of Transition Based on the N Factor

Fig. 2. Procedure for Prediction of Boundary-Layer
Transition.

Flow

M∞ = 2.0
Re∞,MAC = 4.7×106

Re∞,C = 1.94×106

α = 0˚, 2.7˚ 61.2˚

ξ

η

1139 mm

370 mm

166 mm (= C)

Fig. 3. Schematic of the Semispan Model.

0 0.2 0.4 0.6 0.8 1
X/C

– 0.4

– 0.2

0

0.2

0.4

– Cp

α = 0˚
α = 2.7˚

Fig. 4. Pressure Distributions at the Upper Surface of the
Infinite Swept Wing.
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(a) 0.0501 ≤ X/C ≤ 0.244.

X/C = .0501
X/C = .101
X/C = .150
X/C = .200
X/C = .244

.003

.006
Y/C

0 3– 3

10VCF/a∞ VSW/a∞

(b) 0.293 ≤ X/C ≤ 0.493.

X/C = .293
X/C = .344
X/C = .395
X/C = .446
X/C = .493

.003

.006
Y/C

0 3– 3

10VCF/a∞ VSW/a∞

Fig. 5. Velocity Profiles over the Infinite Swept Wing at
α = 0˚.

(a) 0.0501 ≤ X/C ≤ 0.244.

X/C = .0501
X/C = .101
X/C = .150
X/C = .200
X/C = .244

.003

.006
Y/C

0 3– 3

10VCF/a∞ VSW/a∞

(b) 0.293 ≤ X/C ≤ 0.493.

X/C = .293
X/C = .344
X/C = .395
X/C = .446
X/C = .493

.003

.006
Y/C

0 3– 3

10VCF/a∞ VSW/a∞

Fig. 6. Velocity Profiles over the Infinite Swept Wing at
α = 2 7. ˚.

0.20.1 0.4 0.50.3
X/C

0

100

200

300

400

ReCF

α = 0˚
α = 2.7˚

Fig. 7. Crossflow Reynolds Numbers of the Boundary
Layers over the Infinite Swept Wing.

ζ

ξ

ψ

Wavenumber Vector

External Streamline

Fig. 8. Wave Angle between a Wavenumber Vector and
an External Streamline.
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A
B
C
D
E
F

0 0.1 0.2 0.3 0.4 0.5
X/C

2

4

6

8

10

N

Fig. 9. N factors with Crossflow at α = 0˚.

A'
B'
C'
D'
E'
F'

0 0.1 0.2 0.3 0.4 0.5
X/C

2

4

6

N

Fig. 10. N factors with Crossflow at α = 2 7. ˚.

0.1 0.2 0.3 0.4 0.5
X/C

2

0

4

6

N
d
e
f

Fig. 11. N factors without Crossflow at α = 0˚.

0 0.1 0.2 0.3 0.4 0.5
X/C

2

4

6

N

a'
b'
c'
d'
e'
f'

Fig. 12. N factors without Crossflow at α = 2 7. ˚.


