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Abstract  

A p-version of the finite element method is 
applied to free vibration analysis of rotating 
beams in conjunction with the modelling 
dynamic method using the arc-length stretch 
deformation. In this study the flexible and the 
rigid body DOF are supposed uncoupled, the 
linear equations of motion are derived for 
flapewise and chordwise bending including the 
gyroscopic effect. The hybrid displacements are 
expressed as the combination of the in-plane 
and out-of-plane shape functions formulated in 
terms of linear and cubic polynomials functions 
used generally in FEM plus a variable number 
of trigonometric shape functions representing 
the internal DOF. for the rotating flexible 
beams.  

The convergence properties of the rotating 
beam Fourier p-element and the influence of 
angular speed, boundary conditions and 
slenderness ratio on the dynamic response are 
studied. It is shown that by this element the 
order of the resulting matrices in the FEM is 
considerably reduced leading to a significant 
decrease in computational effort. 

1  Introduction  

Vibration analysis of a rotating cantilever beam 
is an important subject of study in mechanical 
engineering. There are many examples in 
mechanics which can be modelized as rotating 
cantilever beams, such as turbine blades, turbo-
engine blades and helicopter blades. Compared 
to the beams in the stationary state, the natural 
frequencies and mode shapes vary significantly 
with the rotating speed caused by the additional 
bending stiffness of the beam. Several papers 

have been presented in the past for modeling the 
rotating flexible beams, but the first works are 
attributed to Southwell and Gough [1]. Later, a 
modest literature has accumulated based on the 
different analytical method [2-4]. This literature 
is still being added to as advances in computing 
and new methods of analysis continue to be 
developed. The effects of rotary inertia on the 
natural frequency of beams rotating about the 
transverse axis were presented by Al-Ansary 
[5], the free vibration behavior of rotating 
blades modeled as laminated composites was 
investigated by Chandiramani, et al [6]. Hu et al 
[7] used the finite element to study the coupling 
rigid and flexible body dynamics of rotating 
beams. To this end, the classical geometrically 
nonlinear structural model in conjunction with 
the Cartesian deformation was developed. 
Centrifugal and Coriolis force field effects are 
also considered in the formulations, however, 
serious computational inefficiency results from 
the non-linearity. Recently a new linear 
dynamic modeling method was introduced by 
Yoo et al [8], Chung and Yoo [9]. This method 
employs the hybrid deformation variables 
including a stretch variable and Cartesian 
variables. This method is simpler, more 
consistent, and more rigorous than the 
conventional method.   

In this study a p-version finite element 
method is applied to free vibration analysis of 
rotating beams in conjunction with the modeling 
dynamic method using the arc-length stretch 
deformation. The linear equations of motion are 
derived for flapewise and chordwise bending 
including the gyroscopic effect. The hybrid 
displacements are expressed as the combination 
of the in-plane and out-of-plane shape functions 
formulated in terms of linear and cubic 

NATURAL FREQUENCIES OF ROTATING 
CANTILEVER FLEXIBLE BEAMS BY USING THE      
p-VERSION OF THE FINITE ELEMENT METHOD 

 
Hamza cherif S. M.*, Houmat A.*  

*Department of Mechanical Engineering , University of Tlemcen, Algeria  
 

Keywords: gyroscopic effect, stretch deformation, Fourier p-element, rotating beams.



Hamza cherif S.M. and Houmat A.  

2 

L 
      x 

θ 

 X 

X  

Y 

S+x 

    
Y     

Ω  

Y  
Z, Z  

U 

polynomial functions, used generally in FEM 
plus a variable number of trigonometric shapes 
functions [10] representing the internal DOF for 
the rotating flexible beams. The natural 
frequency is investigated for the variation of the 
rotating speed, slenderness ratio and boundaries 
conditions. 

2  Governing Equations of Motion 

2.1 Systems of Co-ordinates  
In this section, equations of motion of rotating 
elastic and isotropic beam, assumed to be initially 
straight, cantilevered at the based with uniform 
cross-section A, constant length L and mass per 
unit length ρ are derived. The effects of shear 
deformations and rotary inertia can be neglected 
(thickness << length). Figure 1 shows a 
schematic of a flexible rotating beam. X,Y,Z 
denotes the inertial frame and Z , Y , X  denotes 
the moving reference frame attached to the 
beam and rotating about the Z-axis. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 1. The Elastic Beam Co-ordinates System. 

The position vector rp of a material point P 
in the Z , Y , X  co-ordinates can be written as 

321)(  w e  v e  eux  rP +++=  (1) 

where u, v and w are the components of the 
elastic deformation U in the moving reference 
frame co-ordinates. 

The inertial frame is related to the beam 
moving frame by the orthogonal rotation matrix 

[A(θ )] and the global position vector Rp is given 
by 

[ ] pp  rA  R )  (θ=  
(2) 

where θ represents the beam rigid body rotation, 
measured in the X-Y co-ordinates system. 

2.2 Kinetic and Strain Energy Expressions 
In the present study, however a non-Cartesian 
variable S denoting the arc-length stretch is used 
instead of u witches denotes the Cartesian distance 
measure of a point P in the axial direction of the 
undeformed configuration of the beam. The 
geometric relations between the arc-length stretch 
S and the Cartesian variables is given by 
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Using a binomial expansion of the 
integrand of equation (3) 
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The kinetic energy of the beam can be 
found from 
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Based on the Euler-Bernoulli assumptions, 
the strain energy can be written as 
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where the first term in eqn (9) represents the 
exact stretching energy of the beam.  

2.3 Beam Fourier p-Element Formulation 
The rotating flexible beam is descretized into one 
hierarchical finite element, a Fourier p-element is 
shown in figure2. The element’s nodal DOF at 
each node are v, w, x,x,  w ,v and the stretching 
displacement S. The local and non-dimensional 
co-ordinates are related by 

L
x ξ =            with (0 ≤  ξ   ≤ 1) (10) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The Fourier p-Element and Co-ordinates. 

The vector displacement formed by the 
hybrid variables S, v and w may be expressed as 
the combination of the in-plane and out-of plane 
hierarchical shape functions and can be written  
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and can be expressed as  
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where [ ]N  is the matrix of the shape functions, 
given by  
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MS, Nv and Nw are the number of trigonometric 
shape functions for stretching and bending 
respectively and { }q  is the vector of generalized 
co-ordinates, given by 
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The group of the shape functions used in 
this study is expressed as 
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The functions ( f1 , f2 , g1 , g2 , g3 , g4 ) are 
those of the FEM necessary to describe the 
nodal displacements of the element; whereas the 
trigonometric functions (fr+2, gr+4) contribute 
only to the internal field of displacement and do 
not affect nodal displacements. The most 
attractive particularity of the trigonometric 
functions is that they offer great numerical 
stability. The beam is modeled by only one 
element called hierarchical finite element, for 
irregular geometries more elements can be used. 

By applying the Euler-Lagrange equations, 
the linearized system equations of free vibration 
of rotating flexible beam can be obtained. The 
system is a two coupled linear differential 
equations (eqn (20)) caused by gyroscopic 
effect, define the chordwise bending vibration 
and a uncoupled differential equation (eqn(21)) 
define the flapwise bending vibration. 
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where 1-i= ,ω  is the natural frequency, 
.
Ω  

is the rotating acceleration, qw and qsv are the 
elements of the vector of generalized co-
ordinates. Mm,n , Km,n are the coefficients of the 
conventional hierarchical finite element mass 
and stiffness matrix, Gm,n  are the coefficients of 
the gyroscopic matrix and Rm,n are the elements 
of the additional stiffness matrix caused by the 
centrifuges effect, where Psv and Pw are the 

order of the element matrices. The different 
elements of the matrices are expressed by   
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The coefficients of these matrices are 
expressed in terms of integrals and are given by  
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Where the vector of generalized co-ordinates are 
given by  
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In which the indices α and β denote the order of 
the derivatives. The exact values of the above 
integrals can easily be found by using symbolic 
computation [11], which is available through a 
number of commercial package. 
The indices i, j, k, l, r and s represent the 
numbers of hierarchical functions and are 
defined as 
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the indices m1, m2, n1, n2, are expressed in terms 
of the indices i , j, k , l , r and s as 
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where the order Psv and Pw of the element 
matrices is given by 
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3  Results and Discussions 

3.1 Convergence study and comparison 
In order to see the manner of convergence, the 
beam is discretized into one element and the 
number of hierarchical terms is varied. The beam 
is considered in the stationary state ( 0=µ ) and 
slender ( 70=λ ). The frequency parameter and 
others dimensionless parameters are introduced, 

 ωρω   
    

4
*

IE
LA=       (39) 

ΩIE
LA   

    
4ρµ =  (40) 

I
AL2

=λ  (41) 

where ω* , µ and λ are respectively the 
frequency parameter, the angular speed 
parameter and the slenderness ratio.  

Results for the forth lowest bending modes 
and the two first stretching modes of C-F beam 
are shown in Table 1 along with exact solutions. 
The symbolism C-F indicates that the first node 
is clamped and the second node is free.  Table 1 
clearly shows that convergence from above to 
the exact values occurs as the number of 
trigonometric hierarchical terms is increased 
and highly accurate solutions are obtained 
despite the use of a few hierarchical terms, an 
upper-bound solution to the exact values, and 
uniform, monotonic convergence is guaranteed. 

The performance of the proposed Fourier 
p-element can be verified by comparing the 
frequency parameter with that of the modal 
analysis [8] and the finite element method [9] of 
rotating cantilever flexible beams. Table2 shows 
that for λ = 70 and various values of µ, the 
results obtained using the present formulation 
with 30 DOF, these are compared with finite 
elements formulations,  the number of elements 
used is 100 two nodes beams elements (300 
DOF), the trigonometric hierarchical finite 
element was found to yield a better accuracy 
with fewer system degrees of freedom. It is 
observed from these table that the present 
results are fairly in good agreement with those 
of the modal analysis (error < 0,02%), excepted 
for µ = 50, in the case of chordwise bending 
vibration, the results from both the HFEM and 
FEM agree to a remarkable degree; however, 
some differences are noticed between these sets 
of results and those of [8].The source of error 
that can account for this difference is the 
incomplete convergence in [8]. From the above 
convergence and comparison studies, a 24 
trigonometric shape functions has been 
employed in the subsequent analysis. 
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3.2  Results  
Individual and joint variation of the angular 
speed and the slenderness ratio is found to 
influence greatly the chordwise bending natural 
frequency with and without coupling. In the 
case of chordwise bending vibration without 
coupling, figures 2-3 shows how the frequency 
of the first five bending modes and the first 
stretching mode of the rotating beam vary with 
angular speed parameter. The dotted lines in the 
figures represent the results of ignoring the 
coupling terms. The bending curves frequency 
B1-B5 (dotted lines) increase with increasing 

angular speed parameter. The stretching curves 
frequency S1-CI (dotted lines) decrease with 
increasing angular speed parameter and become 
zero at a specified value of angular speed 
parameter.  

In the second case the coupling effect is 
considered, the bending curves frequency B2-
B5 increase with increasing angular speed 
parameter, the form of the first and second 
mode is preserved throughout the range of 
angular speed considered here, the first bending 
curves B1 decrease and the stretching curves 
frequency S1 increase with increasing angular 
speed. 

  
 

Bending modes Stretching modes 
Nv  (MS) 

1st 2nd 3rd 4th 1st 2nd 

0 (2) 3.5327 34.8068 --- --- 110.0689 333.7549 

4 (6) 3.1560 22.0366 61.7316 121.7971 109.9624 330.0538 

8 (10) 3.1560 22.0345 61.6990 120.9183 109.9573 329.9108 

12 (14) 3.1560 22.0345 61.6974 120.9041 109.9563 329.8837 

16 (18) 3.1560 22.0345 61.6972 120.9024 109.9560 329.8751 

20 (22) 3.1560 22.0345 61.6972 120.9020 109.9559 329.8717 

24 (26) 3.1560 22.0345 61.6972 120.9019 109.9558 329.8693 

Exact 3.1560 22.0345 61.6972 120.9019 109.9557 329.8672 

 
Table 1: Convergence of the lowest frequencies parameters  *ω  of cantilever beam as a function of the 

number of the trigonometric hierarchical terms for the chordwise motion when 0=µ  
and 70=λ . 

 
Flapwise Chordwise with coupling 

µ  Yoo 

[8] 

Chung 

[9] 
Present 
analysis 

Yoo 

[8] 

Chung 

[9] 
Present 
analysis 

2 4,1373 4,1373 4,1373 3,6196 3,6196 3,6195 

4 5,5850 5,5850 5,5850 ---- ---- 3.8880 

6 7,3604 7,3604 7,3603 ---- ---- 4.2393 

8 9,2569 9,2568 9,2568 ---- ---- 4.6105 

10 11,2025 11,2023 11,2023 4.9703 4.9700 4.9700 

50 ---- ---- 51.0805 7.5540 7.3337 7.3362 

 
Table 2: Comparison of the first frequency parameter ω* in flapwise and  chorwise bending vibration 

( 70=λ ).
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Another interesting phenomenon can be 
observed in figures 2-3, the first phenomenon is 
called crossing modes and the second is called 
veering modes. It is well known that frequency 
curves only cross when the associated modes of 
free vibration belong to different symmetry 
groups, and this in turn leads to are ordering of 
the modes. Such a crossing is evident in figure 2 
involving the fourth bending frequency B4 and 
the first stretching frequency S1 curves and the 
mode re-ordering that takes place at such a 
crossover.  The third bending frequency curves 
B3 and the first stretching curve S1 veer, the 
mode shapes change abruptly around the 
veering region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3:  Chordwise bending vibration variations 
for Cantilever beams with and without 
coupling    (λ =100). 

 
 
After this results, the differences between 

the two cases are summarized: (i) in the results 
obtained by ignoring the coupling effect, the 
first bending frequency increase and the 
stretching frequency decreases as the angular 
speed increases. However, this is not true when 
the coupling effect is included. (ii) the 
difference between the solid lines and dotted 
lines remains significant if µ increase. 

Figure 4 gives the trajectory of the lowest 
frequency parameter for rotating cantilevered 
beams while varying the slenderness ratio.  

When the coupling effect is included, the 
centrifugal inertia force plays the role to buckle 
the beam. 

The first bending frequency curves 
decreases and becomes zero at a specific 
angular speed called buckling speed with 
increasing angular speed parameter. Variation of 
the angular speed and the slenderness ratio 
influence greatly the first  bending natural 
frequency. The buckling speed is influenced 
directly by the slenderness ratio. The Buckling 
speed is proportional to the slenderness ratio. 

 
 
 
 
 
 
 
 
 

 

 
Fig 4 :  Chordwise frequency parameter as a 

function of slenderness ratio (λ) for 
cantilever beams. 

Conclusion 
The hierarchical finite element method is 
developed and used to find the natural 
frequency of free vibration analysis of rotating 
beams with different boundary conditions in 
conjunction with the new modeling dynamic 
method using the arc-length stretch 
deformation. The main conclusions have 
emerged from this work these are itemized 
below: (i) monotonic and uniform convergence 
is found to occur as the number of hierarchical 
modes is increased. It is shown that by this 
element the order of the resulting matrices in the 
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FEM is considerably reduced leading to a 
significant decrease in computational effect. (ii) 
the dynamic characteristics of rotating beams 
are influenced significantly by varying 
individually or jointly its angular speed and 
slenderness ratio. (iii) the difference between 
the chordwise bending vibration with coupling 
and without coupling remains significant in the 
high angular speed region. (v) the case when the 
gyroscopic effect is considered, the beam buckle 
at an angular speed called buckling speed, 
proportional to slenderness ratio. 
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