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Abstract  
The possibility of a significant increase of a payload 
mass injected into an orbit using the qualitatively 
new type of optimal atmospheric ascent trajectories 
is investigated. The Pontryagin maximum principle 
is rigorously applied to the optimization taking into 
account aerodynamic load limits and dependence of 
the vehicle structure mass on the aerodynamic load-
ing conditions. 

Several types of extremals satisfying necessary 
conditions of the maximum principle but featuring 
qualitatively different control law structures are 
demonstrated. The qualitative distinction is caused 
mainly by the effect of the aerodynamic lift even if it 
is small as compared with the weight. It is shown the 
new optimal ascent trajectories may add 15÷20% to 
the payload mass inserted into orbit. 

Nomenclature 

Symbols: 
CD aerodynamic drag coefficient 
CD0 zero-lift drag coefficient 
CL aerodynamic lift coefficient  
F0 reference cross section area 
Fw outer wing area 
h altitude 
L/D lift-to-drag ratio 
(L/D)max =  )/(max DL

α

M Mach number 
m vehicle mass 
n thrust-to-weight ratio 
q dynamic pressure 
T thrust vector 
t time 
V velocity vector 
α angle of attack 

γ path angle 
θ pitch angle 

Subscripts: 
( )f at the final point 
( )i at the initial point 
( )max maximum value 
( )min minimum value 
( )opt optimal value 

Superscripts: 
( )* at the bifurcation point 

1  Introduction  

The maximization problem of payload mass in-
jection into an orbit has a long history. It has 
well-known theoretical approximate solutions, 
which are employed in practice. Qualitatively, 
they are characterized with respect to the role of 
aerodynamic forces as follows. In the theory: 
aerodynamic forces are small and act shortly af-
ter launcher start and therefore they can be ne-
glected [1, 2]. In practice: the nominal control 
program of a launcher has to minimize aerody-
namic drag losses of the characteristic velocity 
and therefore realizes the so-called gravitational 
turn (with zero angle of attack) in dense atmos-
pheric layers; at the later stages of flight the 
control program uses the quasioptimal solution 
with the pitch angle being linear in time. We re-
fer to such solutions as “traditional” ones. 

At the same time, in view of aerodynamic 
forces the application of the rigorous optimiza-
tion on the basis of the Pontryagin maximum 
principle made it possible to reveal existence of 
two qualitatively different types of optimal solu-
tions [3]. The first type corresponds to the tradi-
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tional solutions mentioned above and provides 
the global optimum for launchers with a low 
lift-to-drag ratio. Another, the qualitatively new 
type of optimal solutions, is realized for launch-
ers with improved lifting capabilities.  

In this paper the emphasis is on the 2nd 
type of the optimal solutions, which is condi-
tionally named as “Aerodynamic”. The funda-
mental difference between new and traditional 
control laws becomes apparent in the fact that 
the functions of sensitivity of the maximum 
payload mass to the launcher parameters can 
differ in orders of value and signs. 

The non-traditional (“Aerodynamic”) opti-
mal pitch program has an explicit tendency to 
oscillations into the atmosphere. It is worth not-
ing that existence of the optimal oscillatory so-
lution for aerospace vehicles was well studied 
for the functional determined by the flight 
range. In our case, the functional is the injected 
payload mass, and the range is not included in 
any boundary condition. The new type of opti-
mal trajectories is caused by the influence of the 
aerodynamic lift even if it is small compared to 
the weight [3]. This is why these trajectories can 
be found under the rigorous optimization using 
rather complete models of the atmospheric mo-
tion only in comparison with classical consid-
eration [1, 2]. 

2  Trajectory optimization 

The launcher mass centre motion is considered 
in the coordinate system fixed to the start point: 

( )t
dt
d ,,uxfx

= , { T, µ−+++= Ω,gATVf mm } , (1) 

where x={r, V, m}T is the state vector, r is the 
radius-vector, u is the control vector, A is the 
vector of aerodynamic forces, g is the gravita-
tional acceleration vector, Ω is the acceleration 
vector due to coordinate system noninertiality, µ 
is the mass flow rate. 

The vector of aerodynamic forces can be 
written in the form [3]: 

( ( ( )( )) ) ,, vv00 eeeeA τα
α

τ
α DCDCqF LL ++−=  (2) 

where eτ is the unit vector directed along the ve-
hicle's longitudinal axis, ev is the velocity unit 

vector. The following form of aerodynamic co-
efficients is used [3]: 

αDDCα, =CC αD
α
LL cossin 0 += ,          (3) 

that is in accordance with the square aerody-
namic polar at a small angle of attack. 

The thrust is assumed to be directed along 
the launcher longitudinal axis determined by the 
unit vector eτ:  

T = Teτ , Tmin ≤ T ≤ Tmax.   (4) 
At the initial moment ti the vehicle position 

and velocity value are fixed, but the velocity di-
rection can be free: 

r(ti)=ri, v(ti)=vi, m(ti)=mi.         (5) 
The task is to find the admissible control 

u = {eτ , T}T ∈ U                 (6) 
to transfer the vehicle from the initial point to a 
specified Earth orbit with the minimum mass 
consumption that corresponds to maximization 
of the final vehicle mass:  

Uu∈
⇒≡ maxfmΦ .         (7) 

Solving problems with the Pontryagin 
maximum principle [4], the optimal control is 
found from the condition: 

{ } Hmaxarg, =τ optTe ,   (8) 

where 
fTΨ=H        (9) 

is the Hamiltonian of the system (1). The adjoint 
vector  satisfies the equation 

T.
⎟
⎠
⎞

⎜
⎝
⎛−=

x∂
∂H

Ψ       (10) 

and the transversality conditions. Thus, the ref-
erence optimization problem reduces to a multi-
point boundary-value problem (BVP) for equa-
tions (1), (10). 

The numerical solution is found using the 
ASTER package [5]. It realizes the practically 
regular procedure of the BVP solution due to 
application of the modified Newton method, pa-
rameter continuation method and local extremal 
selection [3]. 

According to the adjoint system property 
the coefficients 

p∂
∂Φ  of a sensitivity of the func-

tional Φ to variations of a vector parameter p 
can be obtained with a high accuracy simultane-
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ously with the optimal trajectory integration 
avoiding noticeable additional computations:  T

( )
dt

f

i

t

t

optopt∫ ∂
∂

=
∂
∂

p
pux

p
,,HΦ

.  (11) 

where xopt and uopt are taken at the nominal 
optimal trajectory. 

3 Extremal types 
The strategy of the optimal trajectory control is 
determined by the correlation of the thrust (T), 
aerodynamic (A) and gravitational (G) forces 
(Fig. 1). If the thrust dominates, the optimal 
control law is qualitatively in conformity with 
the traditional one [1, 2] obtained for uniform 
gravitational field under an assumption of the 
negligibility of aerodynamic forces. However, if  
|T| >> |A| и |G| >> |A|, but 

|T+G| ∼ |A|,   (12) 

the effect of aerodynamic forces can change the 
structure of the optimal control law and generate 
multiplicity of extremals. 

 The classification of possible extremals is 
given in [3]: 

B-type (“Ballistic”) extremals: 
- the optimal pitch angle programs are quasi-

linear to correspond the well-known “tradi-
tional” solutions [1, 2];   

- the aerodynamic forces influence weakly on 
the optimal control law structure; 

- the optimal start is nearly vertical; 
- the atmosphere is "perceived" only as a me-

dium with some drag; 
- typical to be used in guidance algorithms for 

current space ballistic launchers; 
- provide the global optimum at low lift-to-

drag ratios. 

A-type (“Aerodynamic”) extremals: 
- the optimal pitch angle program during the 

atmospheric flight has a pronounced oscilla-
tory nature; 

- an inclined and quasihorizontal start is opti-
mal; 

- the atmosphere is mainly perceived as a me-
dium that produces a lift; the optimal trajec-

tories pass into regions with higher dynamic 
pressures as compared with the B-type ex-
tremals; 

- provide the global optimum at high lift-to-
drag ratios. 

M-type (“interMediate”) extremals: 
− do not provide a global optimum. 

The availability of two basic types of 
global extremals can be explained by following 
physical reasons. 

To minimize aerodynamic losses of the 
characteristic velocity, it is necessary to reduce 
the angle of attack and to increase the initial 
path angle. On the contrary, to minimize gravi-
tational losses, it is necessary to use the aerody-
namic lift and to decrease the initial path angle. 
Thus, to minimize the sum of aerodynamic and 
gravitational losses, the optimal control has to 
implement a compromise between two indicated 
trends. The result depends on the correlation of 
aerodynamic lift and drag of the launcher. A 
measure of the correlation is the maximum lift-
to-drag ratio (L/D) max. Therefore (L/D) max is 
possible to be considered as the important gen-
eralized parameter determining the optimal con-
trol structure. 

The condition (12) is fulfilled, as a rule, on 
the initial flight segment. For current ballistic 
launchers with a ground start the initial trust-to-
weight ratio is moderately greater than 1. The 
initial thrust of air launch transportation systems 
can be less than weight. 

Thus, the qualitative effect of aerodynamic 
forces on the optimal control structure is ex-

A

G

T+G 

Fig. 1. The scheme of forces acting on a launcher.  
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pectable both for advanced aerospace vehicles, 
and for typical "rocket" layouts of launchers. 

Let us analyze physical reasons of mass ef-
ficiency increase of a launcher at the optimal 
use of the aerodynamic lift in details. 

Firstly, we will point out typical doubts: 

Relative characteristic velocity losses 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Total losses

Aerodynamic losses 

1. The nonzero angle of attack results in growth 
of the aerodynamic drag and, hence, aerody-
namic losses of the characteristic velocity. 

 Generalized gravitational losses 

2. The aerodynamic lift is perpendicular to the 
velocity vector and does not make the work. 
Thus, ostensibly, it does not influence an energy 
balance at the ascent. (L/D)max

Fig. 3. Redistribution of characteristic velocity losses 
due to the maximum lift-to-drag ratio variation, 
ni = 1.4. 

The paradox is settled as follows: 
1. The increase of the aerodynamic drag at a 
small angle of attack is a value of a higher order 
as compared to the lift. 
2. The lift allows to unload the weight and, 
hence, to drop gravitational losses of the charac-
teristic velocity that dominate the aerodynamic 
losses. 
3. The nonzero angles of attack at the ascent 
corresponds to the classical optimal control law 
[1, 2] where if the aerodynamic lift is ignored. 
In fact, in a general case, the optimal thrust vec-
tor in a gravitational field is not collinear with 
velocity. 

 Later these arguments back up on typical 
examples (specific data are defined in Appendix 
A).  

In Fig. 2 the optimal angle of attack pro-
gram for a launcher with zero effective lift are 
shown. The optimal program even in this 
“ideal” case is not trivial as for gravity turn.  

The necessary reserve of the characteristic 
velocity VΣ is presentable as the sum of the 
given orbital velocity Vorb, the generalized 
gravitational losses ∆Vg and losses ∆Va on the 
aerodynamic drag: 

VΣ = Vorb + ∆Vg +∆ Va , where        (13) 

.sin)cos1(
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A typical diagram of the optimal redistri-
bution of the characteristic velocity losses due 
to the maximum lift-to-drag ratio (L/D)max varia-
tion of a launcher with the initial thrust-to-
weight ratio ni = 1.4 is shown in Fig. 3. 

The conversion of the optimal pitch pro-
gram with (L/D)max growth is shown in Fig. 4. 
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No aerodynamic
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Fig. 4. Optimal time-programs of the pitch angle of the
launcher with several lift-to-drag ratios, ni = 1.4. 
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Fig. 2. The optimal time-programs of angle of attack of
the launcher with zero effective lift. 
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For comparison, the "ideal" program which 
would be optimal in the Newtonian gravitational 
field ignoring aerodynamic forces is shown here 
by a dot line.    

4 Bifurcation of extremals 
The presence of two qualitatively different 

extremal types causes also a probability of the 
fact that the change of the optimum control law 
at a variation of launcher parameter will have 
bifurcation character. At the problem parameters 
described in Appendix A, such change of opti-
mal solutions at (L/D) max variation takes place 
at a small initial thrust-to-weight ratio.  

The relations of the characteristic velocity 
losses to the maximum lift-to-drag ratio of the 
launcher and ni = 1.04 are shown in Fig. 5. 

As soon as (L/D) max increases over the bi-
furcational value the change of the optimal con-
trol structure from B-type on A-type (Fig. 6) 
happens ,that results in a discontinuous change 
of aerodynamic and gravitational losses (Fig. 5). 

Fig. 7 shows the typical dependence of the 
optimal initial path angle γi opt and relative injec-
tion mass ⎯mf = mf((L/D)max)/mf(0) on the maxi-
mum lift-to-drag ratio of the launcher.  

The Pontryagin maximum principle is 
based on necessary conditions of optimality. It 
is visible from Fig. 7, that in the neighborhood 
of the bifurcation point in accordance with clas-
sification [3] three local extremals: A , B and 

M-types (the last does not provide the global op-
timum) exist simultaneously. The transition 
from one to another extremal type at the nu-
merical solution of the problem are performed 
by the parameter continuation method [3]. 

5 Aerodynamic shape influence on the 
optimal ascent trajectory 

In the previous sections we supposed that the 
dependence CD(α) is fixed, (L/D)max is constant 
with flight regime changes, and the influence of 
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Fig. 5. Redistribution of characteristic velocity losses 

due to the maximum lift-to-drag ratio variation, 
ni = 1.04. 

Fig. 6. Optimal time-programs of the pitch angle of the 
launcher with several lift-to-drag ratios, ni = 1.04. 
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Fig. 7. Dependencies of the optimal initial path angle 
γi opt and relative injected mass⎯mf  on (L/D)max of 
the launcher in the vicinity of the bifurcation 
point. 
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(L/D)max variations on other launcher parameters 
are not taken into consideration. 
As indicated above, the (L/D)max is one of main 
parameters of the aerodynamic configuration 
that govern the structure of the optimal control 
law and trajectory, but variations of other pa-
rameters, for example, CD0, can have some ef-
fect on the functional and optimal control law 
[3]. In view of the fact that a change in the aero-
dynamic configuration leads to a variation of the 
whole set of aerodynamic characteristics, the 
analysis of the dependence of optimal solutions 
on geometric parameters of the launcher con-
figuration is of a practical interest. 

Several types of aerodynamic configura-
tions covering most-used vehicle configurations 
are considered, including the follows: 

1. A conical body with an elliptic cross sec-
tion. 

2. A cylindrical body with a delta wing. 
For all the launcher types (the aerodynamic 

data are presented in [6]), the influence of its 
geometric configuration modifications, ensuring 
enhanced lifting capabilities, on the maximum 
injected mass, the optimal control laws and 
maximum aerodynamic loads is analyzed..  

6 

In the first case the vehicle shapes are 
modified by passing from circular cross sections 

into elliptic ones with the volume of the body 
remaining the same. The ratio of the launcher 
width a to the launcher height b is hereinafter 
referred to as the "contraction parameter" a/b. 

The effect of the launcher cross section and 
the outboard wing area Fw on the injected mass 
and optimal injection trajectories is analyzed for 
the nominal conditions defined in Appendix B. 

According to [6], the variations of the cross 
section geometry and outboard wing area cause 
(L/D)max and CD0 changes of the same sign. 
Thus, a change in the injected mass with varia-
tions of the aerodynamic configuration depends 
on a compromise between two opposite trends: 
the increase in aerodynamic drag and growth of 
launcher lifting capabilities. The investigations 
show that the effect of variations of the aerody-
namic configuration is significantly different for 
optimal trajectories of A-type and B-type. 

Fig. 8 presents the relative injected mass 
⎯mf = mf(a/b)/mf(1) for different values of the 

contraction parameter of the conical vehicle and 
for two types of trajectory control programs. It 
is seen that the parametric analysis based on ap-
proximate “traditional” control laws qualita-
tively distorts the objective parameter depend-
ence of the launcher weight efficiency. 

To the left of the bifurcation point, in-
creased contraction parameter results in reduced 
injected mass. The optimal trajectories for these 
configurations correspond to traditional 
launcher injection schemes (the B-type) and al-
most do not use the lifting capabilities. There-
fore, the increase in the contraction parameter 
followed by the increased aerodynamic drag re-
sults in reduced mass mf. 

The increase of the contraction parameter 
in excess of the bifurcation value a/b ≈ 1.3 leads 
to the growth of the injected mass. As noted 
above, the qualitative change in the contraction 
parameter dependence of the maximum injected 
mass is caused by change of the optimal control 
law structure. To the right of the bifurcation 
point, the injected mass is the maximum when 
the A-type control law is used. 
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The comparison of the functional values on 
different-type trajectories shows that when op-
timal control laws are used the gain in the in-
jected mass on B-type trajectories is 1.3% as 
compared with traditional control laws. When 
the lifting capabilities are used (on the optimal 
trajectories of type A), this gain is four times 
greater already at a/b ≈ 2.5. 

From Fig. 9 follows that increase of the in-
jected mass at a/b higher than bifurcational 
value is correlated to the abrupt fall of gravita-
tional losses of the characteristic velocity. 

 Changes in the relative injected mass 
⎯mf  = mf(⎯Fw )/mf (0) with variations of the rela-
tive outboard wing area 0FFF ww =⎯ (Fig. 10) 
have the same peculiarities as with variations of 
the contraction parameter. There exists a bifur-
cation value of the parameter *

wF⎯ , which sepa-
rates the optimality regions for extremals of 
types A and B. At wF⎯  < *

wF⎯  the B-type extremals 
is globally optimal, while at wF⎯  > *

wF⎯  the A-type 
extremals are of this sort because they better use 
the lifting capabilities. It must be emphasized 
that in this case qualitative changes in the de-
pendence of the maximum injected mass on the 
outboard wing area are demonstrated already at 

very small outboard wing panels which area is 
only several percent of the mid-section area. 
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Relative characteristic velocity losses 

Note especially the fundamental difference in 
sensitivity coefficients ∂⎯mf /∂(a/b) characteriz-
ing the effect of the contraction parameter on 
the injected mass for optimal and traditional 
control laws. It is widely believed that approxi-
mate estimates of the injected mass are suffi-
cient at the initial design stages when optimal 
variations of the configuration parameters are 
often based on the analysis of only partial de-
rivatives, i.e., sensitivity coefficients. In this 
case, the hypothesis of their independence from 
the parameter to be varied is implicitly ac-
cepted. However, it is seen in Fig. 11 that the 
real dependence of sensitivity coefficients on 
the parameter, which takes account of the opti-
mal use of lifting capabilities, is not only inqua-
siconstant, as opposed to traditional control 
laws, but experiences a bifurcation change. Dur-
ing the jump, not only the derivative magnitude 

Total losses 

Aerodynamic losses 

 Generalized gravitational losses 

Bifurcation point 
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Fig. 9. Redistribution of characteristic velocity losses 
due to the contraction parameter variation of 
the conical launcher.
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changes (sometimes in orders) but also its sign 
(Fig. 11).  

It is important to stress that in this case the 
bifurcation behavior is characteristic for the in-
jected mass sensitivity coefficients not only to 
variations of the contraction parameter but also 
to almost all other configuration parameters (for 
example, the initial thrust-to-weight ratio, spe-
cific load on mid-section etc.). It follows from 
Fig. 11 that if traditional approximate control 
laws were used in determining the influence of 
the parameters on the functional, the derivative 
∂⎯mf /∂(a/b) would be essentially constant.  

Compare now the optimal contraction pa-
rameter values for optimal and traditional con-
trol laws. Fig. 8 shows that the approximate 
(traditional) approach gives the only "optimal" 
configuration solution: (a/b)opt = 1, i.e., the cir-
cle is the best cross section shape of a conical 
body of the launcher. When the strict optimiza-
tion procedure taking account of structural 
changes in optimal control laws is used, it is ob-
tained the ellipse with a great contraction pa-
rameter is sufficiently better in the functional 
than the circle. Thus, the approximate approach 
to constructing the trajectory control laws for 
such launchers can violate the optimal concept 
of the vehicle under design. Investigations of 
diverse aerodynamic configurations reveal that 
complex analysis of the influence of vehicle pa-

rameters on the vehicle effectiveness is of great 
importance in designing due regard for signifi-
cantly nonlinear dependence of optimal solu-
tions on launcher parameters.  

6 Multidisciplinary optimization of launcher 
parameters 

As it has been shown above, the rigorous ap-
proach to the trajectory optimization leads to the 
qualitatively new optimal solution. The new op-
timal trajectories demand, in general, the ac-
cording modification of launcher layout parame-
ters. Therefore the multidisciplinary optimiza-
tion (MDO), based on the rigorous technique [7] 
may recognize effective non-traditional solu-
tions.   
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Fig. 11. The sensitivity coefficient versus the con-

traction parameter of the conical launcher.

relative payload mass 

Fig.12. The winged-body aerodynamic model of a 
launcher in TsAGI’s wind tunnel. 
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Results of the MDO of the outer wing area 
and the initial mass of launchers (the aerody-
namic model of the launcher see in Fig. 12) at 
the defined engines are shown in Fig. 13. 

There is compared two MDO approaches: 
with the rigorous trajectory optimization [3, 7] 
and with the “traditional” trajectory control pro-
gram [1, 2]. The rigorous trajectory optimiza-
tion provides qualitative and quantitative new 
solution in the frame of MDO. The developed 
approach let improve the inserted payload mass 
up to 18% in comparison with the traditional 
one owing to the use of qualitatively new opti-
mal control programs and launcher load-
carrying structure adapted for the new flight re-
gimes. 

Conclusion 
The use of the rigorous method of the trajectory 
optimization based on the Pontryagin maximum 
principle makes it possible to significantly in-
crease the efficiency both current and advanced 
launchers. Appearance of qualitatively new op-
timal solutions is caused by the effect of the 
aerodynamic lift even if it is small as compared 
with the weight. 
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Appendix A 
Pararameters of optimal injection problem reviewed in 
sections 3 and 4. 
 

initial conditions vi = 180 m/s, 
hi = 12 km 

final orbit circular, horb = 275 km 
ballistic coefficient  СD0F0/mi = 6.68·10-5 m2/kg 
specific mass flow rate µ / mi = 3.0 ·10-3 с-1 

Appendix B 
Pararameters of optimal injection problem reviewed in 
section 5. 
 

initial conditions vi = 50 m/s, 
hi = 200 m 

final orbit circular, horb = 275 km 
initial specific 
mid-section load  

mi /F0 = 6⋅103 kg/m2 (for  
the cylindrical boby) 

= 1.6⋅103 kg/m2 (for 
the conical body) 

specific mass flow rate µ / mi = 3.83 ·10-3 с-1 
initial thrust-to-weight 
ratio 

ni = 1.1 
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