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Abstract  

In order to make better agreement with 

transonic wind tunnel experimental data, which 

was obtained in the Japan Aerospace 

Exploration Agency (JAXA) in 1990’s, we 

proposed new mathematical model to improve 

the previous model. The bifurcation diagram 

was analyzed by a continuation method. The 

continuation method can continuously follow 

the solutions of dynamical system, such as a 

limit cycle oscillation (LCO), as one or more 

parameters in the systems are changed. So the 

continuation method enables to analyze the 

bifurcation diagram efficiently even through an 

unstable limit cycle (stability boundary) and can 

obtain a saddle-node point. We first analyzed 

the bending dominant (first) mode model and 

the torsion dominant (second) mode model 

separately, then combined the two models into 

one model. The final adjustment of the free 

parameters was performed to get the improved 

model. The model has a fourth order 

nonlinearity in the velocity of the first mode and 

the deflection of the second mode. 

1  Introduction 

Flutter is self-excited oscillation, which occurs 

due to interaction among aerodynamic force, 

elastic force and inertial forces of structures. In 

the transonic region, the flutter dynamic 

pressure falls rapidly; a phenomenon called 

transonic dip. Transonic flutter around a 

transonic dip often behaves like a limit cycle 

oscillation (LCO). The feature of transonic 

flutter differs from typical flutter in that it 

repeats fixed amplitude and fixed period 

oscillation. It can be attributed to a separation of 

the airflow associated with shock waves 

propagating along the surface of the wing [1-3]. 

Matsushita proposed the nonlinear 

mathematical model [4], in which oscillating 

modes originally incorporated into a nonlinear 

mathematical model are the first and second 

modes. The model corresponds with wind 

tunnel test results qualitatively. In the following 

Chapter 2 of this paper, I describe a wing model 

and the results of transonic wind tunnel tests. In 

Chapter 3, I describe the previous nonlinear 

mathematical model and in Chapter 4, a newly 

improved mathematical model will be analyzed. 

In Chapter 5, I describe the trial extension to 

four-mode model. Throughout the present paper, 

I analyze the bifurcation characteristics of the 

mathematical model using a continuation 

method. 

2  Wing Model and Results of Transonic 

Wind Tunnel Tests 

Figure 1 is a wing model used in transonic wind 

tunnel tests in JAXA. This wing model is a 

scale-down model of a civil aircraft’s wing 

which has a high aspect ratio. The wing model 

has a wing span of 1043 mm, a wing code of 

369 mm at a wing root, 101 mm at a wing tip 

and a sweepback angle of 16.9 deg. In this wing 

model, a leading edge control surface was used 

in order to apply oscillatory disturbance to this 

wing model. The wing response is measured by 

the accelerometer. A typical result of the 

transonic wind tunnel tests is shown in Fig. 2. 
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Fig. 1 High aspect ratio wing model. 

 

 

Fig. 2 Saddle-node bifurcation phenomenon 

due to quasi-static decrease of a wind tunnel 

dynamic pressure. 

 

In this figure from the top chart to the bottom, 

an output of accelerometer, a deflection of a 

leading edge and a dynamic pressure in 

transonic wind tunnel are shown, respectively. 

As you can see at the top chart, LCO suddenly 

stops when the dynamic pressure goes down at a 

certain level. Collecting all the experimental 

data obtained in transonic wind tunnel tests, we 

can get an experimental bifurcation diagram as 

shown in Fig. 3. In Fig. 3, a vertical axis shows 

LCO amplitude and a horizontal axis shows 

dynamic pressure. A point of ● and * denotes 

LCO’s amplitude and stability boundary, 

respectively. 

 
Fig. 3 Bifurcation diagram of experimented data. 

3 Previous Nonlinear Mathematical Model 

for Two Modes 

For completeness of the discussion, let’s review 

the previous math model. The linear finite state 

equation for two modes flutter can be expressed 

as the following equation [4],  
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where (t)q  is a vector of generalized coordinates 

for two modes, z  is an augmented variable 

expressing aerodynamic delay, 
cBM, , and 

K are the mass, the structural damping, and the 

stiffness matrices, respectively. 
0210 B,A,A,A  and 

ΛΛΛΛ are coefficient matrixes of a finite state 

aerodynamic model. The nonlinear 

mathematical model can then be constructed by 

introducing the nonlinear terms in the damping 

terms as,  

( )x∆AAx NL+=&     (3) 

where nonlinear coefficients 
NL∆A  has the 

following components. 
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At the aerodynamic force damping term, 

NL

1

0 ∆A)A(M
−− , diagonal element has the fourth 

order nonlinear term such as,  
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where 
aa11
 and 

aa22
are the aerodynamic part of 

the coefficients for the bending dominant (first) 

mode and the torsion dominant (second) mode, 

respectively. Parameters 
iβ  and 

iγ  are free 

parameters, which are to be determined to fit the 

transonic wind tunnel test data. Fig. 4 shows the 

bifurcation diagram of LCO for this model. 

Discrepancy still exists in the stability boundary 

as shown in Fig. 4. Bifurcation analysis was 

done by using a continuation method. 

 
Fig. 4 Bifurcation diagram of analysis of the 

previous two-mode model. 

 

In Fig. 4, test data are also plotted with mark ● 

and ×. Solid line and dotted line are results of 

analysis for the previous mathematical model. 

4 Improvement of the Previous Two-Mode 

Model 

In order to improve the nonlinear mathematical 

model, we analyze the first mode and the second 

mode separately. In the fourth order nonlinear 

coefficient of 
aa11
, the generalized coordinate 

1q is replaced with
1q& (the velocity 

1q ), i.e., 
4

1

2

1 qq γβ + , was replaced with 4

11

2

11 qq && γβ + . 

Then the first mode model has the nonlinear 

term as 
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and the corresponding bifurcation diagram takes 

the form as shown at the center of Fig. 5 where 

the parameters 
11 , γβ  are set at the initial 

values. Fig. 5 shows over all how the 

bifurcation diagram is changing as 
1β  and 

1γ change. 

1.01 −=β    2.01 −=β     4.01 −=β  

1.01 =γ           

2.01 =γ           

4.01 =γ           

Fig. 5 Result of analysis of continuation method. 
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If 
1β  is made small LCO amplitude becomes 

large, and saddle-node is extended to a lower 

speed domain, while if 
1γ  is made small, there is 

the same tendency. It turns out that what is 

necessary is to make 
1γ  small for increasing 

LCO amplitude, and just to increase 
1β  a little, 

in order to keep a saddle-node with test data. 

However, when 
1β  and 

1γ  are changed at the 

same rate, there is a domain where it becomes 

impossible to analyze continuously by the 

continuation method. In order to make it in 

agreement with the test data, 
1γ  should be made 

small and 
1β  should also made small bit by bit. 

The final result in which the free parameters 
1β  

and 
1γ  were chosen, so that the first mode model 

comes closer to the test, is shown in Fig. 6. 

 

 
Fig. 6 Bifurcation diagram of analysis of the first 

mode. 

 

It cannot be said that Fig. 6 is fully improved 

because one of a purpose of reducing a 

disagreement over stability boundary is not 

realized. So we have to introduce nonlinear term 

in the second mode. Regarding the second mode 

as a torsion dominant mode, I retain 
2q  

nonlinearity. The second mode model therefore 

has the following nonlinear term, 
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where corresponding bifurcation diagram takes 

the form as shown in Fig. 7. 

 
Fig. 7 Bifurcation diagram of analysis of the 

second mode. 

 

The analysis method of Fig. 7 is the same as that 

of Fig. 6. This model improves stability 

boundary region, but it does not improve the 

amplitude of LCO. Therefore, we introduced the 

term, 4

11

2

11 qq && γβ + , in the first mode of the 

previous model and the term, 4

22

2

22 qq γβ + , in 

the second mode. Combining the first and second 

mode model, we get the new mathematical 

model with the following nonlinear term. 
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Totally optimizing the four parameters 
1β , 

1γ , 

2β , 
2γ , I finally obtain the math model which 

has the bifurcation diagram shown in Fig. 8. 

 

 
Fig. 8 Bifurcation diagram of analysis of the 

coupled mode. 

 

Figure 8 is the result of the analytical bifurcation 

diagram made fit everywhere to the experiment 
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result, where the analytical diagram fit with the 

test data. I was able to improve the previous 

model particularly in the stability boundary 

region. The stability boundary previously shown 

in Fig. 4 comes closer to the experimental 

stability boundary as shown in Fig. 8. Though 

Fig. 8 still has a small discrepancy between the 

mathematical model and the test data, this 

discrepancy can be reasonably explained as 

follows. Disturbance in the wind tunnel flow or 

flow separation at the wing surface could reduce 

the stability region and could result in the 

discrepancy. 

5 Trial Extension to Four-Mode Model 

In Chapter 4, I analyzed the model only in 

consideration of simple first mode of bending 

and torsion. However, since higher order mode 

model is desirable in the accuracy of the model 

characteristics. So I analyze four-mode model as 

Chapter 4. As an extension of eq. (1) for two-

mode model, the equation of four-mode model 

can be expressed by twelfth order model as 

shown below. 
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In this chapter, I use twelfth order nonlinear 

equation shown below. 

( )x∆AAx NL+=&     (11) 
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First of all, in order to analyze as Chapter 4, the 

nonlinear term is added to the first mode. The 

form of added nonlinear term is shown in eq. 

(13), and the result analyzed using this nonlinear 

term is shown in Fig. 9. 
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Fig. 9 Bifurcation diagram of analysis of the first 

mode. 

 

If Fig. 9 is compared with Fig. 6, it turns out that 

Fig. 9 is a little closer to an experiment data. 

 Secondary, I added the nonlinear term to 

the second mode. The form of added nonlinear 

term is shown below. 
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It is very hard, however, to obtain the optimal 

model that fit the experimental data. I only have 

obtained a bifurcation diagram shown of the left 

hand side in Fig. 10. 

 

 
Fig. 10 Bifurcation diagram of analysis of the 

second mode. 
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Starting from the upper right corner, the 

continuation method can trace the bifurcation 

diagram rounding down at the saddle node, but 

on the way to the flutter point, it suddenly breaks 

down. I only could draw full bifurcation diagram 

as shown at the right hand side in Fig. 10, but 

bifurcation diagram differs from experiment data 

very much. I need to investigate why such an 

analysis result comes out.  

6 Conclusions 

The purpose of the present research is to reduce 

the discrepancy that exists in the previous model 

in the stability boundary region of bifurcation 

diagram between the mathematical model and 

the wind tunnel test data. I first work on a two-

mode model. Suggested by Matsushita, I 

introduced the term 4

11

2

11 qq && γβ +  in the first 

mode and the term 4

22

2

22 qq γβ +  in the second 

mode. I analyzed bifurcation characteristics of 

the new model by continuation method. The 

bifurcation characteristics of the model were able 

to improve greatly in the stability boundary 

region. 

Intending to extend the two-mode model 

into four-mode model, I introduced the term 
4

11

2

11 qq && γβ +  in the first mode and the term 
4

22

2

22 qq γβ +  in the second mode in the same 

way as the two-mode model. However, although 

I have obtained good results for the first mode, I 

have not yet obtained for the second mode. 

Therefore, investigation is still under way. 

 The parameters 
iβ ’s and 

iγ ’s have been 

determined by the mathematical consideration, 

however, as suggested by Ref. [5], their physical 

meanings should be explored in future. 
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