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Abstract

The paper presents a derivation for the
analysis  of monoclinic beams of non-
homogeneous cross-section that undergo axially
distributed surface loads and body forces. The
derivation has been proved to be exact by
symbolic computational tools, and includes
illustrative numerical examples.

1 Introduction

This paper deals with anisotropic beams of
non-homogeneous cross-section, namely, that
consist of various Z-monoclinic materials,
where the (x-y) planes of the cross-sections
coincide with the planes of elastic symmetry.

The origin of the method developed seems to
be [1], where the problem solution for
homogeneous isotropic beam under surface
loads that do not vary along the generators is
expressed by three harmonic and one
biharmonic functions. In an independent way,
[2], presented an analytical (level based)
solution for the same problem when the surface
loads are polynomials of the beam axis variable.
Hence, many of the related works are generally
referred to as 'Michell-Almansi (recursive)
method'. An analogous methodology, founded
on prescribed stress (and not deformation)
distributions, has been presented much later by
[3]. Similar problems were also discussed by
[4]-[6] and others. The above solutions were
further evolved by [7] for homogeneous
isotropic beams undergoing both surface and
body loads. The formulation was first valid for

loads that may be longitudinally expressed by
third order polynomials only. Later on, [8], [9]
extended the method for the case of Z-
monoclinic beams and generic polynomial
loading.

This paper presents an improved derivation of
the above approach. We use notations from [10]
for non-homogeneous domain, interlaminar and
boundary conditions, generic Neumann-type
problems and the auxiliary problems of plane
deformation. To prove the symbolic exactness
of the expressions, the entire methodology is
documented and verified symbolically by the
Maple programs. The illustrative examples are
also produced by the Maple programs.

2 The solution hypothesis and procedure

The constitutive relations for Z-monoclinic
material are given by the linear Hook's low
[8x78y95z=7/yz77xz=7xy] =a [O_x7Gy90z77yz=7xz57xy]
with a positive definite matrix a (with 13
independent coefficients)

Sym. as; 0

Such typical materials may be obtained by
rotating orthotropic material about the beam (z)
axis. The reduced elastic constants are defined
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a..d, .
as b =a ——>1. We assume the most general
ij if

s
surface loading form (per unit area), F={X,, Y,
Zs}, and distributed body forces (per unit
volume), Fy={X,;, Y», Z»}, see Figure 1, which
are expressed as vector polynomials of degree
K>0,

K
F, = Zk:O {Xs(k),y;(k)’zik)}(x,y)zk,

FZ:E:Q

X0, 2 ()2

a) General View  b) A Cross-Section

Fig. 1. Beam.

Hence, the case of K=0 stands for uniform
distributed loads in the z-direction, k=1 stands
for linear distribution, etc. In general, we let

each of the two stress components 7,.,7,, to

be polynomials of degree K+1 in z, while

c,,0,,7, and O are polynomials of degree
K+2 in z as
K+2
oW, ) Gy ok
{Gx’o- xy’a} Z AC ’ ‘cy O z }Z 4
K+1 (3)

(k) (k)
vz’Tvz} Z{Tvz > yz

(k) (k)

whereo;”’,7;/'are  functions of x, y. In

homogeneous case, we let each of the three
stress components o, , 7, to be expressed as

polynomials of degree K in z. A scheme of the
level-based solution methodology is presented
in Table 1. The process is initiated for k=K and
continues for lower levels down to £=0. For
each K>k>0 level, a set of the biharmonic
and the Neumann problems in non-
homogeneous domain € should be solved.

Each solution level is driven by its level loading
and the quantities obtained in previous (higher)
levels.

Solve BVPs and determine

parameters for the K level

k=k-1

Caleulate

stress /strain / deformation

Add tip corrections

and rigid - body constants

Table 1. Solution Procedure for Axially Non-Uniform
Loading of a Z-Monoclinic Beam.

As shown by Table 2, the solution ingredients
are gradually introduced according to their level
of appearance.

Component Level
0,0, 7,7, K+2
7.0, 7.V, K+1

0,$>0,,& &, K+2
E;OEL VGOV
UV K+4
WS> W K+3

0, -0, K+3

W, <> -0, K+2

H, S <85, K+1

prq, o -1, dd K
O, 0, LM K
X,.Y.,72,X,Y,Z, U«U, | K
K

Q"> P’ 0, B, 0 <P

Table 2. Maximal Level of Appearance and Symmetry of
Various Solution Components.
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It should be noted that the solution is
'symmetric'’ under the following parameter
interchange:x <y, 12, 465, X, &V,
X, <Y, etc. One may obtain symmetric
expressions using operation 'Sym’. For example,
u<>v means u=Sym(v) and v = Sym(u). Also,
0" <> P, Q% & PY, 0’ «>-P,
D, ==Sym(D,) and 7 =-Sym(r), o, =Sym(o,).

This solution does not ensure that the three
forces and three moments at the beam tip
vanish, see stress integral

J‘j {O-z’o-zyﬂo- x’ sz’ xz’Tyzx_ szx} =
(4)
P PP, M.

y’ X9 }’

Hence, one needs to superimpose a series of
solutions for tip loads (see [10]) in order to
cancel out these resultants.

2.1 Stress components

The detailed stress expressions are

K
_ z Fp® g KL e
o,=p {0, 1 [a,,

0

d a, 3a,.+a y
k+1%°0 ( 23 44 2 _x2)+SJ(CA+1)]
4a,, ags

2
o+ z e N
k+1 k= y (k+1)(k+2)(pk X qk x )}

K
0. =Y e (DY + T M) —apy (@F) + T

k+1
+a36q),()]:y) +(py+qx)xy +——[(a3a,, +ayass

0

R
—aya,+a,)H =10 (g, +a,)xy
33
(k+1) (k+1) de —(3)
+a,;S; +a23Sy ]——k+1(1+a330'z )
2
z —(1) —()
- X—a,.0,’ )+ —a,,o ,
(k+1)(k+2)[pk( 130, ) +q,(y—a;0.7)]}
K+1 Zk . . d .
z-yz = Z_(aSSH(y) _a451{,(x ) +—— S( ))
=04 2“33

de 70

K
=3 2 [0 4+ (k+1) 2 HD

k=0 0
2
z 70 4 o 7O
— 7
ik ) Pelo T )]

o,=8m(c,), 7,.=Smr,). )

The body force potentials U* (k=0,...,K), that

appear in the above terms are

_ x K L -
Ul - _.[()dex = ZUl(k) (X,y)Zk’ Uz = Sym(Ul) (6)

k=0

The expressions for S, St (k=0,...,K+1) are

S1 = J TG+ g L —ay M)

0o (P P* +q, P — 1, P?) (7)
—d, (a4417(3) - a45‘7(3) )ldx,

SO = Sym(s™)

where Eko =1/k for k#0 and 500 =0, the
polynomials P*<, Q% P? Q7
[10]. In (5) and in all expressions below, we
replace H"*) (k < K +1) by the RHS of

are defined in

HY =™ + Eko(pk—lll g2~ Tap)  (8)

where ™) (k<K) is an additional series of

longitudinal stress functions as required by the
single-value conditions for the present problem,
see item (e) in Section 2.

Remark 1. The problem without single-valued
requirements for the biharmonic stress function
may be considered. In this case one may assume
P, =49, =7, =0 and use the harmonic stress

functions H* only, i.e., without definition (8).

2.2 Displacements

The strain components are derived from (5),
using Hook’s low, see (1). Displacements are
determined via integration of strains. The rigid
body displacements are not included in these
expressions and are introduced by the tip loads
correction, see Section 1:
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zd, 2a;x+ayy

K
_ kepth _ 2% +g®
;Z L L )
_ Z4pk
(k + 1)(k +2)(k +3)(k +4)
. z’ [p (a23y2 —al3x2 _7 )y
(k+1)(k+2) " 2a,,

2
ayy” +2a,;xy
2as,

v = Sym(u), )

=4, ( +7 )= y7, 1}

K+1
w= sz {H"®
k=0

+——[(2a,; +as)x’
33

z*d
+2(ay + a4s) Xy + 2ay +a,,)y - m
2 (DX +4,Y)
_—— + )
P l(qk P G ke 2k +3)

2.3 Biharmonic stress functions

To enable further handling of the boundary
conditions, we shall also use the following

general  identities  for C*-differentiable
functions:

d o® _ oW o7 ®) os(7

g(l),y =@ cos(n,x)— D cos(n,y),

d _ _
d—d)ff) = @'} cos(ii, x) - D) cos(7, ).
s

The  biharmonic  stress  functions O

(k=0,...,K) are governed by
v“)cb“‘)—E;") over Q, (10a)
{‘D(k) P} = (-F", K"} inoQ, (10b)
{@“ O] = =RV, EO inoq,, (100)
(L9, M =10,00 in 60,  (10d)
where F*

= P* cos(ii,x) + O cos(ii, y) and

PO =y® —(k+ I)EHWU’
)

k+1

(k) _ y(k) _(k) (k+1)
1 —Yz _Uz [ssH

0

d a, 3a,.+a
k1% 13 s 2 0 k4l
=—( xt =y +8H,

4as, Ay

1 = Sym(R), B =Sym(Q"), (11)
Fo(k) = _(bna(k) +b12l72(k)),yy
+(b16[71(k) +b26l72(k)) xy (blza(k) +b22l72(k)),xx

2q
Pi (ax —azy)+— T (azex —ayy)

33 33

b.a,, +b,a..—b,.a a
11%44 1255 16045 13 (k+1)
"r(k + 1){( - )H,yy
a Ai3
b.a,, +b,a..—b,a a
12944 22855 26445 23 (k+1)
+( - )H,xx
a As
b.a, +b,a..—b. .a a
1644 26%55 6645 36 (k+1)
_( - )H,xy
a ay;
dk+l 2 _ 11 3
+—[2a,, + (%6 +ays) (3a,, +ay,)
33 33 13

1 + +
——2(3ay; +ag)]+ 7[(b11S;k ! +b12S}(vk 1)),yy
23 0

+(01, S,V 03, S (B S T + Dy S ) T

The biharmonic operator of (10a) is defined as

4 4
Vi =b, — 0 - —2by af
Ox Ox”0y (12)
4 4 4
+(2by, +by) 0 2b 0 0

+b, —.
ot oy’ Moyt

The ellipticity of V(¥ follows from positive

definite Hook's low, (1), see [12]. The
0/ 0s—type boundary conditions (10b,c) leave
the values of the functions ®“ and the
derivatives @', ®'" undetermined by a
constant for each homogeneous domain
component. As a general rule we select a point
over each dividing curve, say, (x7,))) €00,
where we force the functions to be equal for
both neighbor domains, namely,

P, 0,00} (x/, y) = 10,0,0} .
For the sake of simplicity we also assume

® ) p® _
{@ @,"}(0,0) = {0,0,0}.



NON-HOMOGENEOUS COMPOSITE BEAMS: ANALYTIC FORMULATION AND SOLUTION

The single-valued conditions for biharmonic

function ®% on a simply connected
(homogeneous) domain are, see [11],

§ AR O Ry - FPxy = (00,05 (13)

Subsequently, the single-valued type conditions,
necessary for solution of (10) existence on a
non-homogeneous domain are

fﬁ {F"‘) ’ F“‘) ,me _ F(k)x}

14
+ 3 PGB FRy - FOx) = {0,0,0). (14)

i Q;

These equalities become clearer if (13) are
written first for each domain component()

and then summed up.

2.4 Longitudinal stress functions

The Laplace-type operator and Neumann-type
boundary operator are, see [10],

0° 0° 0*
ng)_a447—2 45%+a557, (lsa)
; 0 0
D! =(a,, 6_ a,s—)cos(7i,x)
* y (15b)

0 -
+(—ays a +as 5) cos(7, y).

The longitudinal  stress  functions o™
(k=0,...,K) are governed by the Neumann
problem

VP0® = F" over Q, (16a)
D'o" = F® on 8Q, (16b)
[i(Dl" ~FH =0 on 6Q,, (16¢)
a,
[0™®] {;']1 =F""7 on oQ, (16d)

where FX = P cos(ii, x) + 0" cos(ii,y) and

o _ 70 3) 5(3)
P? =a,Z" +d, (- 7x+a44u —a,v)
33

—(k+1)(ay L —a,s M),

0”" = Sym(P”"), (17)

o0
K = _aOZb(k) L (k+D{- a13(q)(k+” +U(k+l))

33

(k+1) 77 (k+1) (k+1)
—ay (D +U, )+a36(D T (Piy + X)Xy
(k+1) (k+1) (k+1) (k+1)
—(k+D(ay L, " +assM ;" —a Ly, —a, M)

a,,Ay, TAy0 — Ay Ay T A
+(k+2)[ 13%44 23%s5 3645 0 prk+2)
a

0

+ dk+2

a
2 (ays +aye ) xy +—2 dE! S 4 223 S(k+2)]}
a33 a, ay

+d, (a455(x3) + aSSE( ) —a457/(3) +a 0'(3))

o) i 1
FO Y =—d, {_4

as;

[(2a; + ass)x2 +2(ay +a,5)xy
+(2a,, +ay,) 2]}m.
23 T Ay)Y 15

or convenience we assume ©*(0,0)=0. The

necessary condition for boundary value problem
(16) solution existence, see [10], is

1 (k)
EP+> [[—F" 1 —F" . (18)
i dy i s':[ '[3[“0
In contrast to torsion and bending stress

functions, o

dividing contours

may be discontinuous along
Q,, see (16d).

2.5 Auxiliary functions
The functions L¥(x,y) (k=0,....K) are

LY =, @ =5 @ + [ by (@) +T) +5,7"

—(k+ 1)[(17115144 +blza55 b16a45 a13 )H(kﬂ) Jou bll S(A 1

a, a3 a,
b,
+—% ]}d + {[ ((b26a45 +by,a,,)(ay; +2a3,)
a, a3
v x* y X'y
+asshy, (2ay; —ay)) —2a,]——+a, P+ T la;,—
24 Qs 3

1
——ayshy (2a3; —ay;) + by, (a35a4, — axa,5) — by (arass
0
vt )’
—U3y5)) ) + — (Dyayy —byass +bygays) —
24" a, 6
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3

d,, . a,03a;+as) X
+(k+1) k+1 {[ 12 13 55 _a“]i
4as, 23 3
+a,3(a45 +ay) x2y+[a11(3azs +ay) —a,
a3 13
ay + Ay (s +ay) a16(3a23 +a44) y J' l(k)(y)dy,
a3 a;

XXX

19) = A{]] (b (@, + T) + 5,01 1y

—(k+ 1)[(b12a44 +byass —byeays _@)J‘Oy [_[‘(xlwl)dy
4y as;

_(bI6a44 +bysass — besls _ E)H(kﬂ)

a, Qs
+b,[20") — @) (0,0)] - b [20) — D) (0,0)+ U]

1

—by[20) — D) (0,0)+ U, T+ b [ D) —Ecbf;;?(o,on

b, v
kA D+ 2 [ (@ L2 —ay My
0
bzz Yo (k+2) (k+2)
—7010 ([, (asM ™ ~a, L) dy)dy
b, v . N
+228 [ (agg M4 —a, L)y
ay
b, v _ _ b, v, _ _
_LJ.O (gt — aysvy )dy+ﬁj.0 (assV; — aysiy )y
ay ay
by v (v, _ _
_aio'l.o (-[0 (assv, _a45uk),xdy)dy}x:03

and M = Sym(L'7), m™ = Sym(I™).

In the above, for efficient writing, we have
introduced the notation

Y —(k+Ddu®
—(k+d,v?

_ —(1) —(
=pu+qu

=) —=(2)
=pv o tqy

2.6 Loading constants

The loading constants p,,q,,7,,d, are defined
for £=0,....K by

I
p=lgr kg x

111 JJ. {X(k)
k+1

+—[a44w(k“) a0 —(k+2)(a, L (19)
2

k2 a, 3 3
_a45M " ))+dk+1( X= a44u( ) +a45"( )) 1},
33

= Sym(p,),
D, D,
T, :pkEl'i_ E+B§ (xy(k) yX(k))
+— j [t —px + iagx+a@!

a4y
Hk+2) M) —(ayx +a,y) (o' +(k+2) L5
+dk+1((a44ﬁ(3) - a45\7(3))y + (9455(3) - a55\7(3))x)]},
1 k+1
_ (k) (A) (k+1)
i = I, ig Zs + 7 .U iz as, ——lay @,
—a; (CD,(fyH) + Ul(kﬂ)) —dy ((D’(f;l) + Uz(kﬂ))

a +
Py + 4 X)Xy +(k + 2)(— Sx(k 2

a,
Ar3 @(k+2) s +ase
+—=8"" +(k+d, ,—/——
a, as;

Ay + 000 — Ay A, +a

13%%44 2355 36745 0 (k+2)
+ H™ )]}
a,

where [, are defined in [10] by
1
I; = _”Q (—+ O'S));
Ay

7o Tv=—[[ (22— 5@y
IANE JJQ<% o) {-x, 5}, (20)

{I_lljzl} = —J.J-Q(ai—ail)){—x,y},

and D,D,,D, are
1
= [[10°(p, +1)+ P?(p, -] 21)
Q aO

D, = ”‘i(ypl,- -xQ% + P(p;{i,x + lei,y)'
o %

As shown in [10], the existence conditions for
X1 X,require a selection of the coordinate

system origin so that

[J-3. =5 =100,

Q

3 Verification of solution hypothesis

Equations (5) provide an exact solution that
satisfies all requirements of the theory of
elasticity. To carry out the above task, we

6
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employ the equilibrium equations, the
compatibility equations and the outer surface
boundary conditions. The process is broken into
subsequent steps, where in general, at each one,
we use all relevant relations that were found in
previous steps.

(a) Equilibrium equations. Considering the
stress terms of (5), and using the fact that the
solutions of the auxiliary problems satisfy the
equilibrium equations, one may verify that the
equilibrium equations with X, and Y, are
satisfied identically. From the third equilibrium

equation (with Zp) the terms of FO“’(“ in (17), are

extracted as the coefficients of the 'free term'
s
zZ.

(b) Boundary conditions. From the outer
contour condition of X, ¥; one may deduce the

terms for the derivatives iq)(jf) ,iqﬂf) over the

ds ds
contour 0Q, see (11). From the third boundary
condition of Z, the additional terms for the
normal derivatives D' presented in (17) are
obtained as the coefficients of 2.

(¢) Compatibility equations. The terms of the
strain components satisfy the compatibility
equations due to the fact that the solutions of the
auxiliary problems are consistent and inherently
satisfy the compatibility equations.

(d) Displacement interface continuity.

The in-plane displacement components:
Continuity for levels £~K+2, see (9:a,b), follows
from the fact that loading constants of Section
1.6 are not domain dependent (i.e., constants
over the entire non-homogeneous domain, Q).
Displacement continuity for levels k=K+2, K+1
is achieved by the z*', z¥"' terms of (9:a,b),
which cancel out the discontinuity of u, v. For
levels k < K displacement continuity is part of
the biharmonic problem, since by explicit use of
(9:a,b), the interface conditions of (10b) may
also be written as

w® v = (0,0 on 09,

The out-of-plane displacement component:
Continuity of w may be verified by examining
(9¢). This equation shows that the coefficients
of 2!, 2% and 2 do not contribute any
discontinuity due to the fact that the loading
constants are not domain dependent. For lower
levels this continuity condition is imposed as

part (16d) of the Neumann problem for o'

(e) Singled-value conditions. The single-
valued-type conditions (14) for ®* and its first
derivatives yield the expressions (19a-c) for the
constants g, px, 7, , respectively.

(f) Existence of the longitudinal stress
function. The existence condition (18) of a
longitudinal stress function " yields the
definition (19d) of the constants d.

4 Applications

4.1 Homogeneous beam under constant
distributed body force

The loading constants of homogeneous beam
Ay ), 933 w  k+1 (k+1)

= x0Tl x® L 200 @
are I, 90" -[—[Q{ b a, L4

—a45a)fjf+” —(k+2)(a,L*? —a, M)},

g, =Sym(py),
a a k+1
d =34 7015 ([ 70 120, ok
s, in LS, J.J.Q{ " a [a:,P,
—a13(q)$v+])+[_fl(k+]))—a23(®ffx+l)+l_]2(k+1)) ( )
22

+Hk+2)( Q304 +Axdss — Asys L) HE
a,

H Py + )y + B 5ED 4 5 g2y,
2 20
We derive here the longitudinal and
biharmonic stress functions ®, @ for a
homogeneous  Z-monoclinic = beam  that
undergoes constant body loads, i.e., K=0.
Hence, we set X,=X,, Y,=Yy, Z,=Z,), where X,
Yy, Zy are constants, while no other surface or
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tip loads are applied. The loading constants
Po>490-7, and d, in (22) are

S S
po=—rapX,, qo=—FapY, 7,=0, dy=ay,Z,
I, I,
We employ (17) to find
1
B =-ayZ,, P, = 5 SalX, O = ao Zyy-

The solution @ is independent of the domain
shape

Z,
= _T(assx +2a,5xy+a,,y ) (23)

For the biharmonic stress function® (11) show
the following expansions:

X Y
Fy = 2’SQ[I_O (a3sy —a;x) + 1_0

y X

(a36x —ayy)],

=Yy - as (P +q022)]cos(n, y),

0
E, = Sym(F).
Here we used expression (8) for H”, and (6) for
U,.U,.

4.2 Homogeneous beam under linear body
force distribution

We consider here a Z-monoclinic beam of
generic cross section when the body force
distribution is given by
X" =y x, ¥V =0, Z\” = y_z, while all other
surface and tip loads wvanish. A physical
example for such a loading is the rotating beam
shown in Figure 2.

A~ vt :
X Centrifugal Force

Rotation pollix

Axis L—-’#/-) N
Q, pofdiz z

Fig. 2. Notation for Rotating Beam.

In such a case y =y.=p,/Q;, wherep, is
the specific weight (density) of the material, and

Q, is the angular velocity. We shall now

discuss the two levels of this problem solution
one by one.

Level k=1: Equations (19) show that

a H_a
p=q,=7,=0, d=2* Z[ﬁ =
SQ '[S[ }/z
For the harmonic function »'” we find
(1

@ e
F;) - aOyz’

1 1
1)3(1) = _Ea()}/zx) ;1) = _Ea()}/zy'

Analogously to the solution presented in (23),
o' is 1ndependent of the domain shape

O

o’ =- (24)

Level k=0: Equations (19) and Green Theorem
show that

a
po =X+
[y Q 0
qo = Sym(p,) =0
and that d,=0, 7, #0. Equations (17) show

that ®” = 0. At this stage one should solve the
biharmonic problem (10) for £=0.

1 1
(a44a),(x) - a45a)fy) )=

4.3 Non-homogeneous beam under constant
axial body force

Consider a non-homogeneous Z-monoclinic
beam that undergoes a constant body force in
the z-direction, namely Z,=Zj,=const., X;=Y;=0,
while no other surface or tip loads are applied.
The loading constants of (19) are po=qo=0,

d,=27,S, /]_33, and

Ty = DI ” (044” - a45\7(3))y
33
—(asp"? - a45u(3))x]

where D, I, are given by (20:a), (21:a). Since
K=0, only the stress functions ®,wand the

auxiliary functions L, M of level /=0 should be
considered, and hence, for the sake of
convenience, in what follows we shall omit the

8
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index superscript. The Neumann problem (16)
for w(x,y) should be written with

4y —(3) —(3
pP° :do(—7x+a44u —a45v( ",
33

Q” = Sym(P?),

=3 -3

Yo
F, =dy(a,z" tase) —agsy ) +a,0.")—a,Z,

Fo¥ = —d, {4_[(2a13 + ass)xz

33
+2(ay +a)xy + (2ay +ay, )] }H]] )
while for convenience we assume @(0,0)=0.
The biharmonic problem for ®(x,y) should
have the type of (10) with Fy=F,=F,=0 and
L=A+Btr,, M =Sym(L)

where B depends on ¢ and 4 is a linear
differential operator of @®. We
@@, 02, @71(0,0) = {0,0,0}.

The stresses become

assume

o, =0 —zd, o o,=S8m(c,),
3
T, = —q) —zd Tiy),
1 1 e
0. = 7(6136 a13q) a23q),xx)_(7+ . )zd,,
as; as;
1 d —3 —(3
T, = _(a55a),y —a45a),x)——°(a55v( : —61451/1( ))
a, 0
zT d,y
-— (assgo,y —a,sp0,—0%)+ 2L )
dy asz;

T.= Sym(z'yz).

Once @, w are determined, one needs
superimpose suitable St. Venant’s solutions of
[10] in order to cancel out the tip resultants
which are induced by the above stresses.

Ay
h
Q| 8.-30° |7
> X
Q| 6,300 (1
d

Fig. 3. A y-Laminated Rectangle, N=2.

Let a beam -cross-section is geometrically
symmetric about the x-axis with anti-symmetric
lamination, based on orthotropic material turned
about angles *6_, for example, a non-

homogeneous rectangle, see Figure 3. In this
case the elastic moduli are identical in two
domains QU],Q[Z] except for aje, azs, aze and ass

that are of identical magnitude but opposite
signs. The same is true for reduced elastic
constants b;. By (initially) placing the
coordinate system at the cross-section midpoint
show that the solution for the third auxiliary
problem, see [10], is zero ®® =0, and
eV =¢P=0"=0. Hence I,=S5,/ay; and
the displacements are rigid,

_ a _ a
7 = %36 ¥, 73 — _ %6
2aj, 2ay,

X.

The loading constants are po=qo=0, d, = Z,a;,

2 2
Ty = az(ayy” +asx”)=0.

0
2Day "

Since in this case the biharmonic problem (10)
is homogeneous, ® = 0. We obtain

Z Z
w=- TO (assx2 +2a,5xy + a44y2) + ?Oagy€0

where ¢ is known harmonic function with the
symmetry @(x,—y) = @(x,y), see Figure 4.

Fig. 4. The Function ¢ .

The stress solution that does not produce any
tip loads become
oc,=0,=1,=0, 0.=Z2,(z-1),
. _Z \as
= 2a
sz = Sym(r}z)

[ass@, — a9, + 28 [1] o (assx +agsp)l,
0 36
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Referring to (9) the axis extension becomes

1(0,0,z) =v(0,0,2) =0, w(0,0,2) = Z,as;z(I —z/ 2).
The shear stresses 7. and 7. for Zy=1 are

presented in Figures 5.
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Fig. 5. The Shear Stresses.

@ 7,.(x,).
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