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Abstract

An interaction model between the fluid and solid
media is generally required in turbine
configurations but remains a difficult issue. A
coupling procedure between a Navier-Stokes code
and a conduction solver is therefore the only way
to achieve heat transfer prediction in all flow
situation. The objective of this work is to present
such a procedure , which has been developed by
Snecma and based on a Finite Volume Navier-
Stokes code and a commercial Finite Element
solver. To demonstrate the quality of the
procedure, a conjugate heat transfer computation
in a turbine blade internal cavity is described in
detail.

Nomenclature

sC solid calorific capacity
pC fluid specific heat

L geometric reference scale
wq wall heat flux

T wall temperature

λ
µ pC

=Pr Prandtl number

µ
ρ LU

=Re Reynolds number

ρ density
λ conductivity

µ viscosity
Superscripts s and f refer to solid and fluid
quantities respectively.
Subscript w refers to wall quantities.

1. Introduction 

On dealing with heat transfer in aircraft engines,
all thermal interaction effects between the solid
and fluid media should be written in terms of
temperature and heat transfer continuity at the
fluid-solid interface. Boundary conditions to be
applied to the fluid and solid domains are
summarized in Figure 1.

Figure 1 – Conjugate heat transfer problem
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In the case of turbine blade, heat transfer between
solid and fluid media is usually predicted by the
following procedure:
1. perform an uncoupled Navier-Stokes (NS)

calculation with fixed thermal boundary
conditions,

2. derive a convective heat transfer coefficient
α from the previous NS results, as follows :
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where T* is a reference temperature field such
that wall heat flux 0=f

wq  if *TT f
w = ,

3. perform a conduction calculation using the
(α,T*) wall field as a convective heat transfer
boundary condition :
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f
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This procedure can be iterated until convergence
is obtained :
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In most cases, the convective heat transfer
coefficient is weakly dependent on wall
temperature. Convective heat transfer coefficient 
and reference temperature T* can be estimated
with correlation based on Re and Pr numbers. The
key issue is finding a systematic way of
computing, at each iteration, a reference
temperature field T* which ensures positive α
values and satisfies 0)( * =−TT f

wα  when the wall
heat flux wq  effectively narrows to zero and
changes sign.
To circumvent this problem, Montenay [1]
suggested to perform simultaneously both solid
conduction and Navier-Stokes calculations and
force wall temperature and (α,T*) exchanges
regularly during their iterative processes. This
coupled calculation is driven by (α,T*), which are
trimmed to ensure stability and high convergence
rate while satisfying Equation (1). Provided that
the iterative procedure converges, the physical

meaning of  couple (α,T*) is of no importance
since equalities (2) and (3) are satisfied by both
fluid and solid temperature fields at the coupled
interface.
We will first describe both fluid and conduction
solvers involved in the coupling procedure based
on Montenay’s work and used at Snecma
Moteurs. Then we will present an example of
conjugate heat transfer analysis in a 3D turbine
blade cavity.

2. Coupled solvers

Navier-Stokes  solver

The Navier-Stokes code, MSD, has been
developed by ONERA. Snecma uses this fluid
solver for the prediction of compressible turbulent
flows and heat transfer phenomena in engine
cavities or blade internal cooling systems.
The standard turbulence model of the code is a
two equations Boussinesq Viscosity Model.
The global system treated by the solver is of the
usual form :
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where u is the flow variables vector, which
includes two entries for both kinetic turbulent
energy and turbulent characteristic length. )(uFe

r

is the Eulerian flux tensor, )(uFe

r
 the viscous flux

tensor, which includes turbulent viscosity effects,
and )(uS  the source terms vector.
This system is discretized with a structured cell-
centered finite volume technique. The spatial
discretization uses second order MUSCL
extrapolations on the variables u with TVD Flux
Difference Splitting for the Eulerian fluxes. The
viscous fluxes are computed at the center of each
control volume. Those fluxes are then interpolated
at cell interfaces. The time integration scheme is a
backward  implicit Euler scheme.  Details can be
found in [2].



Conduction solver

The conduction solver used at Snecma is the
commercial finite element code ABAQUS. For
our 3D configurations, we use hexahedral finite
elements. ABAQUS can solve steady and
transient problems via a backward Euler implicit
scheme. The numerical algorithm is a Newton
method for non-linear problems, which converges
in one iteration when the response of the
discretized system is linear. Details can be found
in [3].

3. Coupling algorithm

Conforming to the fluid solver numerical scheme,
transient coupled heat transfer computation seems
a possible direction to solve the coupled heat
transfer problem. However it can be shown that
the convection time scale tfv and the conduction
time scale tfc of the Navier-Stokes solver satisfy :
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where Ll 2
1
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−

= is the fluid conduction length
scale. tfv is the same order of magnitude as tfc.
Besides, the conduction time scale of the Navier-
Stokes solver and the conduction time scale of the
solid solver satisfy the following equation :
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Typical values for the properties of steel
( 20≈sλ W.m-1.K-1 , 500≈sC  J.kg-1.K-1 and

10000≈sρ kg.m-3) and air  ( 03.0≈fsλ W.m-1.K-1 ,

1000≈pC  J.kg-1.K-1 and 1≈sρ kg.m-3) lead to :
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The characteristic time scale of the Navier-Stokes
solver is much smaller than the time scale of the
conduction solver. Each temperature variation
requires an important effort from the fluid solver,
which would drive the time decomposition to

small steps. As a consequence, transient explicit
fluid/solid coupling, which performs a FEM
calculation at each time step, would be
prohibitively CPU time-consuming.
Montenay developed a loosely coupled procedure
that allows the fluid solver to perform a fixed
number of iterations Nf between two exchanges,
while the solid conduction solver only computes
one steady state step.
Montenay also showed that transmitting heat flux
from the fluid to the solid domain leads to
unstable models.
A stable alternative consists in imposing, at
coupling step n, ( ,T*n) at the solid wall, while

prescribing 1−
=

ns
w

nf
w TT  at the fluid interface,

where 1−ns
wT  is the wall temperature computed by

the conduction solver during step n-1.
To circumvent the difficulty of defining an
ambient temperature field, an a priori heat transfer
coefficient  is used to compute the reference
temperature T*n at step n, as shown below :
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where 1−nf
wq is the heat flux computed by the fluid

solver at step n-1, and 21 −− =
ns

w
fn

w TT  the wall
temperature previously imposed to the fluid, at the
beginning of coupling step n-1.
The actual value chosen for  and T*  has no
influence on the solution obtained once the
procedure has converged. Moreover this method
can be viewed as a relaxation approach :
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The second term of the right side of the above
equation prevents the solid temperature ns

wT ,  from
deviating too much from the temperature 1, −nf

wT
prescribed at the fluid interface.
The numerical heat transfer coefficient  is kept
constant during the successive coupling steps and
along the whole fluid-solid interface. On the solid
side, a steady-state conductivity calculation is
performed at each coupling step n, using the



couple ( ,T*n). Experience shows that greater
values for  lead to more stable calculations but
also to slower convergence rates for the coupled
problems.  results from a compromise between
stability and convergence rate.
The heat transfer coefficient  is the first
parameter required to drive the coupled problem
to convergence. The calculation is also dependent
on the number of fluid solver iterations Nf. It has
been found that it is not necessary to lead the NS
finite volume calculation to convergence, at each
coupling step. However, to get convergence of the
coupled problem in reasonable time, Nf has to be
high enough to allow information to spread out in
the fluid during each coupling step.
Montenay’s coupling procedure is sketched in
Figure 2. From each exchange, the FEM solver
receives ( ,T*n) and performs a steady state
calculation in one Newton iteration.  Meanwhile,
the fluid solver performs Nf iterations with the
prescribed wall temperature condition sf

w wTT = .

4. Example : a tri-dimensional turbine blade cavity

To demonstrate the potential of the coupling
procedure described above, a coupled

computation was performed on an internal turbine
blade cavity at full power conditions.

Two meshes were created to solve this coupled
problem. An unstructured first order finite element
mesh represented the solid domain. The fluid
mesh is split into 4 sub-domains for parallel
computing. The two media are coupled in the
trailing edge cavity of the turbine blade. Both
solid and fluid domains are presented in Figure 3
and Figure 4 respectively.

Figure 3 – Solid domain : unstructured finite
element mesh.

Figure 4 – Fluid domain : 4-sub-domain
structured mesh

Constant ( ,T*) boundary conditions were
imposed on all the uncoupled surfaces of the solid
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Figure 2 – Montenay’s coupling procedure



domain. These conditions were chosen to be close
to full power conditions.
The following constants parameters were given to
the fluid solver :
• Rotating speed,
• Inlet and outlet prescribed pressure,
• Turbulence rate and turbulence characteristic

length scale.
A total of 5 instances dispatched over 5 processors
were created to solve the coupled problems, using
the parallel computing capabilities of the fluid
solver MSD together with the coupling library
MpCCI, version 1.3. The entire calculation was
run on 5 five SGI/Irix 6.5 processors.
The coupled calculations required the fluid fields
to be initialized. 4000 initial iterations were
performed by the fluid solver with a uniform
prescribed temperature condition at the coupled
interface.
All along the coupled computation, the heat
transfer coefficient  was kept high and the
number of fluid iterations between two exchanges
was equal to 100.
We followed the convergence history by plotting
the average solid temperature increment on the
coupled surface, as a function of the number of
exchanges.
The temperature increment decreases below the
acceptable level of 0.1 K in about 40 coupling
steps, namely 4000 fluid iterations. A coupled
fluid-solid temperature field is therefore obtained

in twice the time of a non-coupled fluid
calculation. Experience shows that 8 to 9
iterations would be necessary to reach the same
result with a classical iterative procedure, which
would require full convergence by the fluid solver
to allow fluid/solid exchanges.
Figure 5 – Average solid temperature increment,

as a function of the coupling step number.
Logarithmic scale.

From Figure 5 we can also observe that
temperature convergence conforms to the
following logarithmic law :

( ) naT )9.0(max =∆  (10)
where n is the coupling step number.

Heat flux convergence at the coupled interface is
presented in Figure 6. Violent oscillations can be
observed shortly after initialization, as both fluid
and solid temperature fields are far from their
converged values. These oscillations decrease as
the calculation gets closer to convergence. These
phenomena justify the high value prescribed for
the heat transfer coefficient. As shown by
Montenay, temperature oscillations need to be
constrained at the beginning of the coupled
calculation to allow convergence. However, as the
coupled problem converges, the temperature gap
between the solid and the fluid wall temperature
can be less constrained.



Figure 6 – Fluid heat flux convergence at coupled
interface.

Figure 7 illustrates the continuity of the
temperature field at the coupled interface, when
convergence is reached. Both solid and fluid
temperature fields have been interpolated at the
same vein height, from the solid and fluid meshes
respectively. Both temperature distribution
obtained are plotted in curvilinear coordinates,
from suction to pressure side. Only slight
discrepancies are observed, at geometric accidents
such as sharp angles. They are mainly due to the
fact that the fluid and solid meshes are not
coincident. Good agreement of both curves is
achieved. This demonstrates the ability of
Montenay’s method to lead both fluid and solid
solver to wall temperature  convergence.
Results obtained were compared to experimental
data. Very good agreement was obtained. This
coupled  approach offers new perspectives for
heat transfer analysis on turbine components.

∆Tmax

Coupling step number



Figure 7 – Temperature continuity at convergence,
at the coupled interface.

Conclusion

An iterative steady state method for conjugate
heat transfer analysis has been developed at
Snecma Moteurs. Its ability to handle general flow
situation has been demonstrated through a coupled
calculation in a 3D turbine blade cavity.
Convergence has been obtained in twice the time
required by an uncoupled Navier-Stokes
calculation, which makes the method quite cheap
in terms of CPU time.
Future efforts will be dedicated to the study of the
numerical heat transfer coefficient and the number
of fluid solver iterations, in order to increase
convergence speed while preserving stability.
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