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Abstract  

Birds and insects fly generating thrust by 
flapping their wings. By emulating this behavior, 
studies to develop small flying machines are in 
progress. These machines are called Micro Air 
Vehicles (MAVs) and are expected to carry 
various sensors such as visual, acoustic, 
chemical and/or biological ones. 

 In this study, two methods are used for the 
analysis of the flapping wing. First, the vortex 
ring method is used for the 3-D flapping 
movement in an inviscid flow. Second, 
incompressible Navier-Stokes equations and 
overlapped grids are used for the 2-D heaving 
movement in a viscous flow. 

1  Introduction 
Studies of MAVs have become a global issue. 
Most of the studies are concerned with insect- 
type MAVs rather than bird-type MAVs. 
Birds are larger than insects, and it is 
therefore difficult to replicate the wings of 
birds for research purposes. The bird-type 
MAVs, however, have potential advantages 
such as the ability to fly longer and are less 
affected by weather conditions [1].  

In this study, the level flight of birds is 
analyzed numerically. First, a simple 
numerical model of a flapping bird is 
constructed and analyzed by the vortex ring 
method [2]. Second, the heaving movement of 
a two-dimensional flat plate is analyzed by the 
incompressible Navier-Stokes equations with 
the overlapped grid systems. 
 

2  3-D Inviscid Flow 

2.1 Model of Wing 
A lark is selected as a model because of its 
size and behavior. The weight of the lark W is 
0.30N, the span length b is 0.32m, and the 
wing area S is 0.016m2. The root chord length 
croot is assumed to be 0.064m, and thus the 
model of the wing is formed (Fig. 1). The 
wing is separated into three parts, that is, the 
fuselage, the arm and the wrist. 

2.2 Model of Flapping 
The level flight of a bird consists of the 
flapping movement and the lead-lag 
movement. 
The flapping movement is regarded as an 
oscillation of the dihedral angle of the arm 
and the wrist. The oscillation of the arm is 

 

Fig. 1.  Lark Wing Model (right half) 
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γ1 (deg) = 25cos(2kt)+20 (1) 

and the wrist is 

γ2 (deg) = 35cos(2kt-0.87)-10 (2) 

where k (= πfcroot/U, f: frequency, U: flight 
speed) is the reduced frequency. 

The lead-lag movement is regarded as an 
oscillation of the distance between the y-axis 
and the tip of the leading edge, that is 

l = 0.3croot[cos(2kt+0.26)+1.0] (3) 

The frequency of the flapping is calculated 
from 

f (Hz) = 2.69m-0.429 (4) 

where m is the mass of the bird (= W/g). So 
the frequency of the lark f is 12.0Hz from Eq. 
(4). 
The flight speed U can be calculated from 

mg = 0.3ρU2S (5) 

in Ref. [3]. From Eq. (5), the flight speed of 
the lark U is 7.1m/s when density ρ is 1.225 
kg/m3 and g is 9.81m/s2, and k becomes 0.34. 

2.3 Drag 
From the metabolic power, the energy for 
flight can be approximated by the method in 
Ref. [4]. The drag is estimated by dividing the 
flight speed into the energy for flight. The 
drag curve against U is shown in Fig. 2. At U 
= 7.1m/s, the drag is 0.049N and the drag 
coefficient becomes 0.10. The lift coefficient 
at an angle of attack α = 6deg. is 0.6 from Eq. 
(5), and these values become the reference. 

2.4 Computational Results 
The model wing is divided into 12 panels 
chordwise and 30 panels spanwise, 
respectively. Each period of the flapping is 
divided into 40 intervals and the program runs 
for 80 steps i.e, two flaps. The aerodynamic 
forces are shown--lift in Fig. 3, induced drag 
in Fig. 4, thrust in Fig. 5, total drag (thrust 
subtracted from induced drag) in Fig. 6. The 

wing and the wake at the 80th step are shown 
at α = 6deg. in Fig. 7. 

 

Fig. 2.  Drag Curve 

 

Fig. 3.  Lift Coefficient 
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The lift coefficient CL is in proportion to 
the angle of attack, and the lift slope CLα is 
4.12/rad. The lift slope of the same but 
stationary wing is 4.42/rad by the vortex ring 
method (Fig. 8). These two values are found 
to be very close. When α is 6deg., the lift 

coefficient is 0.530 and it is about the same 
value as that of the reference (0.6). But this 
calculation does not include the fuselage and 
tail, and it might realize the reference value 
when the whole body is included. 
 

 
  

 
 
 

 

Fig. 4.  Induced Drag Coefficient 

 

Fig. 5.  Thrust Coefficient 

 

Fig. 6.  Total Drag 

 

Fig. 7.  Wing and Wake (right half) 

When an Angle of Attack is 6deg. 
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The induced drag coefficient CDi is in 
proportion to the square of α, that is, of the lift 
coefficient. This character is the same as a 
fixed wing. CDi = 0.012 for the same fixed 
wing (Fig. 9), while CDi = 0.060 for the 
flapping one at α = 6deg. This is the effect of 
the near wake and the interaction of the wing-
bound vortices. The thrust coefficient CT is 
also in proportion to α, but the thrust increase 
rate is less than that of the induced drag. As a 
result, the total drag CD increases against α. 
The computed thrust coefficient is larger than 
the reference total drag value 0.10 (includes 
the viscous effect), so the thrust overcomes 
the estimated drag. 

In Fig. 7, the wake shed from the wrist 
forms a tube and is turned inward. And the 
wake shed from the arm also forms a tube and 
comes outside. Finally, the two tubes makes a 
larger one. This type of wake is called the 
continuous vortex gait [1]. 

3  2-D Viscous Flow 

3.1 Navier-Stokes equations 
The two-dimensional incompressible Navier-
Stokes equations consist of the continuity 
equation 

∇・u = 0 (6) 

and the momentum equation 

ut+(u-rt)・∇u = -∇p+Re-1∆u (7) 

with non-dimensional variables (p: pressure, 
Re: chord Reynolds number). In this study, the 
x-z plane is used and therefore, components of 
u are (u, w). The vector rt represents the 
velocity of the moving grid. 

3.2 Grids 
The heaving movement of a flat plate is 
expressed by using the two grid systems. One 
is the local grid (Fig. 10) which expresses the 
neighborhood of the plate and the other is the 
global grid (Fig. 11) which expresses the 
whole flow field. The flat plate has a thickness 
of 2% of the chord length, and its leading and 
trailing edges are semicircles. The chord 
length is set at 1.0. 

 

Fig. 8.  Lift Coefficient of the Same Fixed Wing 

 

Fig. 9.  Drag Coefficient of the Same Fixed Wing 
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The local grid moves up and down in the 
global grid with the oscillation 

h = h0cos(2kt) (8) 

where h0 is the amplitude, and the origin of 
the local grid is (0, h) in the global grid. The 
interaction between the two grids is solved by 
the method described in Ref. [5]. 

3.3 Numerical Results 
The computational condition is k = 0.34, h0 = 
0.5, a = 6deg. and Re = 1000, and the local 
grid has 161x41 points and the global one has 
121x121 points. Each period is divided into 
4000 intervals and the program runs for 8000 
steps, i.e, two cycles. The history of the lift, 
drag and moment about the leading edge 
coefficients are shown in Fig. 12, Fig. 13 and 
Fig. 14, respectively. In these figures, 'osc' 
represents the oscillation h/h0, the green line 
represents the force of pressure, the red line 
represents the force of pressure and friction 
and the straight lines represent the average of 
a period. And contour maps of pressure on the 
local grid are shown in Fig. 15. T represents 
the period of the heaving movement (T = π/k). 

 
In the case of potential flow, the shape of 

the lift coefficient curve becomes sinusoidal, 
but the result is not smooth in Fig. 12. There 
are ripples in the curve. Also, the drag and 
moment coefficients change. These sudden 
changes occur in the same phases. 

 

Fig. 10.  Local Grid 

 

Fig. 12.  History of Lift Coefficient 

 

Fig. 11.  Global Grid 
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In Fig. 15, vortices can be seen on the 

upside of the plate. The separation occurs at 
the leading edge when the downstroke starts 
(d), vortices move downstream (a) and reach 
at the trailing edge (b), and a small vortex can 
be seen at the downside of the trailing edge (c). 
So, vortices cause the irregular forces. 

4  Conclusion 
The wing of a lark is modeled numerically by 
the vortex ring method, and the unsteady 
aerodynamic forces are calculated. It is found 
that the lift slope is 4.12 against 4.42 for the 
fixed wing. The induced drag level is much 
higher than that of the same stationary wing 
due to the near wake effect and the interaction 
of the wing-bound vortices. The wake is well 
modeled by the present numerical method and 
the so-called continuous vortex gait is 
reproduced computationally. 

In the two-dimensional viscous flow 
simulation, we found that although the 
fundamental frequencies of the unsteady 
aerodynamic forces are the same as those of 
the potential flow, there are irregular ripples 

 
due to the vortex formation and/or separation. 
The two overlapped grid systems are effective 
in the computation. 
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Fig. 13.  History of Drag Coefficient 

 

Fig. 14.  History of Moment Coefficient 
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c. t = 16.16 (1.75T) 

 

d. t = 18.47 (2.00T) 

 

b. t = 13.85 (1.50T) 

Fig. 15.  Contour Maps of Pressure 

 

a. t = 11.54 (1.25T) 


