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In this paper, the high L/D characteristic in 
a supersonic region of the OFW are studied. 
Setting up a parameter about the body shape and 
flight conditions creates an OFW model. 
Optimization is performed on the model, using 
the downhill simplex method[2].  

Abstract  

The Oblique Flying Wing (OFW), which is a 
concept of the next generation SST, has the 
favorable characteristic of attaining a high 
L/D in a supersonic region. In this paper, OFW 
is defined by the local airfoil section, incidence 
distribution and bending. Sweepback angle and 
freestream mach number are taken into 
consideration as flight conditions. Some 
optimizations of the shape of the OFW and the 
flight conditions using the downhill simplex 
method are studied in order to demonstrate a 
high L/D or the ideal lift distribution in the 
span direction. 

 

 

1 General Introduction 
Today, the supersonic transporter (SST) has 
disappeared temporarily with the retirement of 
the Concorde. However, development of the 
next generation SST as a succession is rapidly 
being undertaken. OFW has some excellent 
features as a candidate of the next generation 
SST. The following are as some of these 
features. 

Fig.1.  Oblique Flying Wing[1] 

2 OFW Model 
We use the following elements to define the 
model of the OFW. 

• Weak shock wave reaching to the 
ground 

• airfoil and incidence at each span station 
• bending  

•  High L/D in a subsonic and supersonic 
region. 

• planform 
We choose the method to determine the airfoil 
using 11 parameters. Incidence at each span 
station is given with non-linear distribution in 
the span direction. Bending is the perpendicular 
displacement at each span station and is set to 
the parabolic distribution. In this research, the 
two types of planform, symmetric and 
asymmetric, are considered. A simple example 
of the OFW shape is shown below. 

These features are produced from the simple 
body shape of the OFW and that should be 
noted as features that compensate for the flaws 
of the present SST. However, it is also due to 
this simple body shape that complicates the 
problem of flight stability, and this is pointed 
out as a flaw of the OFW.  
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In Fig.2, we see the OFW model with an 
asymmetric planform. In this figure, λ is the 
sweepback angle which is the parameter of the 
flight. 
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Fig.2.  Oblique Flying Wing – planform 

 
Fig.3 shows the airfoil and incidence changing 
according to the span station, and Fig.4 shows 
the parabolic distribution of the bending. 
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Fig.3.  OFW- airfoil and incidence 
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Fig.4.  OFW- bending 

 

3 Computational Method 

3.1 Governing Equations and Numerical 
Scheme 

In this study, supersonic viscid free stream 
is considered. However viscous effects are 
evaluated by the T’ method[2]. Then the 

governing equations to be solved here are the 
three-dimensional Euler equations. 

0Q E F G
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (1)

Yee’s Up-wind TVD scheme is used for 
calculating the flux, and time integration is 
performed using the LU-SGS scheme. 

3.2 Optimization Method 
The downhill simplex method is used as the 
function minimization technique in the 
optimization. This method can change many 
parameters simultaneously aiming at the 
objective function minimum by a simple rule. 
The objective function, which should be made 
the minimum, is as follows when we want to 
attain only a maximized L/D. 

( )/G L= − D  (2)

3.3 Calculation Conditions 
The coarse grid is used for optimization 
repetition calculation. After being completed by 
optimization calculation, a more exact OFW 
performance is checked by calculating the body 
shape and flight conditions, which were 
acquired by the optimization, using a fine grid. 

The sweepback angle λand free stream 
mach number M∞ shown in Fig.2 are set as the 
flight conditions. As for the body shape 
parameters, several points in the span direction 
made into the control points are changed at 
optimization calculation, and at the other span 
station, the value of each parameter is set by 
spline interpolation. The number of 
optimization parameters which includes the 
sweepback angle, taking some airfoil definition 
restrictions into consideration, is about 35. The 
summary of the setup of each parameter is 
shown below. 
Grid 

• O-O type 
• around the wing× spanwise× body-

normal direction 
= 125×40×31 (fine grid) 
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An example of the body pressure 
distribution is shown here in Fig.5. 

=   53×31×26 (coarse grid) 
Body shape parameters 

 • incidence : Set 5 control points in the 
span direction 
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• bending : Set the different ybend max at 
both ends of the span. 

• airfoil : Set 11 parameters at three 
spanwise points. 

 
Flight condition 

• M∞ =1.2～2.2(1.2,1.4,1.6,1.8,2.0,2.2) 
• λ(sweepback angle) 

Fig.5.  Pressure distributions on the wing 
(M∞=1.6) 

4 Results and Discussions  
The shock wave does not arise on the body, 

and the distribution to which a lift becomes 
large especially in a middle-lower stream is 
mentioned as a feature. Although the value of 
the lift differs in other flight speeds, it becomes 
a similar pressure distribution. That is, it is 
possible to realize such a distribution in which 
the body shape and sweepback angle are 
optimized according to the flight speed. 

Some flight conditions (M∞=1.2～2.2) are given, 
and the optimal body shape and sweepback 
angle at each speed are calculated. First, some 
optimizations are performed on the OFW with 
the asymmetric planform. And then the 
symmetric shape models of OFW are 
considered. 

4.1 Optimization with Asymmetric planform 4.1.2 Off-design performance 
These shapes optimized at each flight speed can 
attain a high L/D also related to the flight speed, 
which originally was not optimized. If the L/D 
of the flight speed that is not an optimal point is 
examined in relation to the body shape 
optimized in M∞=1.6 as an example, it will 
become like Fig.6. It is the value on the 
optimization body in each flight speed, which 
was set to "original" in the figure. Also 
excluding the optimal point (M∞=1.6), a high 
ML/D is maintained and more than ML/D =23 
can be attained in all domains at the flight speed 
calculated in this paper. 

 

4.1.1 L/D Optimization 
Performing L/D optimization at each flight 
speed, the L/D achieved by the optimized body 
shape and sweepback angle described in the 
following Table 1. 

 
Table 1.Optimized values at each flight speed 

 
11.84 
12.81 
14.00 
15.30 
17.39 
22.87 
L/D 

26.04 72.98 2.2 
25.62 71.61 2.0 
25.20 69.91 1.8 
24.48 67.64 1.6 

24.35 64.62 1.4 

27.45 58.76 1.2 

ML/Dλ[deg] M∞ 

The OFW can achieve a high L/D also in 
different flight conditions even when the body 
shape is the same and can respond to the 
supersonic flight speed of a large range by 
changing the sweepback angle suitably 
according to the flight speed. 

 
It turns out that taking a large sweepback 

angleλ  may attain high L/D as flight speed 
increases. Although the L/D decreases with the 
increase in the flight speed, the ML/D will be 
optimized with about 24.4 to 27.5 
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where m=n=1.  

M∞

M
L/

D

1.2 1.4 1.6 1.8 2 2.220
21
22
23
24
25
26
27
28

ML/D
ML/D(original)

 

Optimizations are performed at each speed 
using this objective function as a simple L/D 
optimization. An example of the lift distribution 
obtained by these optimizations is shown in 
Fig.7. By the comparing calculation of the 
simple L/D optimization, it turns out that the lift 
distribution approaches to an ellipse distribution 
well all over the region of the span by the 
optimization of a lift distribution. On the other 
hand, in the flight of those other than the 
optimal point, it becomes a different distribution 
from an ellipse distribution. 

Fig.6.  ML/D at the non-optimal flight speed 
using body shape optimized at M∞=1.6 

 
Furthermore, a high L/D can be further 

attained by giving incidence to the free stream 
in off-design conditions. L/D which can be 
attained when changing incidence α in the 
optimal point and some off-design conditions of  
the body shape optimized in M∞=1.6 as shown 
previously, is summarized to Table 2. 
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Table 2.L/D and ML/D at some conditions 

using body shape optimized at M∞=1.6 

 
12.36 
15.30 
20.20 
L/D 

24.71 2.0 2.0 
24.48 0.0 1.6 

24.23 -2.0 1.2 

ML/Dα[deg] M∞ 

Fig.7.  Lift distributions at each flight speed 
using body shape optimized at M∞=1.6 

 
The result of the optimization in all flight 

speeds is summarized in the following Table 3 
regarding the sweepback angle, L/D and etc. 
Since the lift distribution was taken into 
consideration, L/D decreases twenty percent 
from the case of simple L/D optimization. High 
L/D still can be obtained. δ load cannot be 
simply compared, when L differs, since it is the 
value standardized at the partial maximum of 
the lift in the span direction. In every flight 
speed, a lift distribution can be brought close 
enough to an ellipse distribution. However, in 
this optimization, a certain optimized shape 
cannot obtain the optimal δ load under other 
flight conditions as already stated.  

It was shown that the optimization shape 
can achieve high L/D by giving incidence 
suitably also in off-design flight conditions. 

4.1.3 Lift Distribution Optimization 
The problem of stability is mentioned as one of 
the flaws of the OFW. How much of this 
problem can be solved is determined by the 
optimization of the body shape. Here, we 
consider that an ellipse distribution is ideal 
regarding the lift distribution of the span 
direction, and searches for the body shape, 
which realizes such distribution. This is 
concerned with the moment of the short axis. 
The objective function is arranged containing 
the deviation value from an ideal load 
distribution δload. 

 
 
 
 

( )/ 1/ 1
m

n
loadviscid span

span
G L D δ

 
= − × + 

 
∑

 

(3)
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Table 3. Optimized values at each flight speed 

 
 
Since a lift distribution is unnaturally 

adjusted to the ideal distribution with a unique 
wings shape appearing so that it can grasp as in 
Fig.8, it is considered that an ideal lift 
distribution is unmaintainable on flight 
conditions other than the optimal point. 
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Fig.8.  Body shape of lift distribution and L/D 

optimized at M∞=1.6 

4.2 Optimization with Symmetric planform 
The OFW has been so far optimized using a 
model with the planform shown in Fig.2. This 
planform changes a little in both ends of the 
span, and it is made for the sweepback angle to 
become large locally. On the other hand, from 
here, it considers the planform to be in a simple 
ellipse shape, and allotting a body shape 
parameters symmetrically to a half-span 
position creates the OFW model of the 
symmetrical shape. It verifies what influence it 
has with the restricting shape symmetrically by 
performing the same optimization as the 
asymmetrical shape, and checking the 

performance on this symmetrical model of the 
OFW. 

3.54 24.48 15.30 67.64 1.6 
(L/D opt.)

 

0.89 
 

25.23 
 

11.47 
 

72.14 
 

2.2 
21.68 
21.96 
23.33 
23.12 
24.19 
ML/D 

0.846 
1.088 
0.884 
0.997 
1.101 
Σ|δload|

10.84 
12.20 
14.58 
16.51 
20.16 
L/D 

69.72 2.0 
68.14 1.8 
67.02 1.6 

63.11 1.4 

57.73 1.2 

λ[deg] M∞ 

4.2.1 L/D Optimization 
The result of the L/D optimization using a 
symmetrical shape body is shown in Fig.9 as 
compared with the result using an asymmetrical 
shape.  
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Fig.9. Optimized L/D and sweepback angle comparing 

symmetric and asymmetric shape 
 

As shown in the figure, it is not clear 
which is more suitable between the symmetrical 
and asymmetrical shape in achieving L/D. On 
the other hand, with the symmetrical body, the 
sweepback angle becomes large about 1-2[deg] 
compared with the asymmetrical shape. 
 

4.2.2 Lift Distribution Optimization 
Using a symmetrical shape, the lift distribution 
of the span direction optimizations are 
performed, and a lift distribution of one 
example of these optimizations is shown below. 
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Fig.10. Lift distributions at each flight speed 

using symmetric body shape optimized at M∞=2.0 
 

In optimal flight speed, even if it compares 
with what was optimized only in regards to L/D, 
we can understand that lift distribution of the 
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OFW using a symmetric planform can fully 
approach ellipse distribution. Moreover, in off-
design, the deviation from an ellipse distribution 
is suppressed as compared with the result 
(Fig.7.) in the asymmetrical shape. This 
optimization body shape is shown in Fig.11. 
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Fig.11.  Symmetric body shape of lift distribution 

and L/D optimized at M∞=2.0 
 

There is no unique wing shape seen in the 
asymmetrical shape. It turns out that the body 
shape is not changing in particular, in order to 
change the lift distribution. Unlike the 
optimization using the asymmetrical shape, it is 
optimized by the natural body shape like simple 
L/D optimization. Each value under each flight 
condition of this symmetrical shape 
optimization body is summarized to Table 4. 

 
Table 4. L/D and δload at each flight speed using 

body shape optimized at M∞=2.0 

 
This body shape can attain L/D equivalent 

to the body shape acquired by simple L/D 
optimization. Furthermore, we can understand 
that this can also realize a lift distribution target. 

Thus, the OFW can control a lift 
distribution, without reducing L/D greatly by 
defining a suitable body shape. In off-design, it 
shifts from the ideal a little. However, since the 
body pressure distribution changes with flight 
conditions continuously, it is possible to expect 
a lift distribution by changing from the optimal 
point. These facts lead to the expectation with 

the elements in connection with other stabilities 
that the OFW can be controlled only by the 
definition of the body shape. 

As to the shape of the OFW, it is possible 
to prevent being optimized by optimizing using 
a symmetrical shape OFW model for an  
unnatural body shape. There is no fault, such as 
optimization L/D becomes low by using a 
symmetric shape. We can define the OFW body 
shape twice as accurately as the body of an 
asymmetrical shape by using a symmetric shape 
when assuming the same number of parameters. 
If these points are taken into consideration, it 
will be concluded finally that the symmetrical 
shape OFW model is more superior. 

5 Conclusions 
1. Downhill simplex method can be adapted 

for the optimization of OFW. 
2. According to each flight condition of M∞ 

=1.2～2.2, L/D optimization is possible for 
the OFW. Each optimized OFW can achieve 
ML/D=24.4 ～ 27.5. Moreover, each 
optimization body can achieve a high L/D 
also by changing the sweepback angle and 
incidence suitably in a different flight speed 
from the optimal point. 

3. OFW can be optimized simultaneously with 
the L/D using an appropriate body shape for 
the lift distribution of the direction of span. 
But this ideal lift distribution may be 
realized by a local unique shape of the OFW 
in the asymmetrical planform. In this case, 
with off-design flight conditions, a lift 
distribution differs greatly from an ideal. 22.00 

22.45 
24.48 
ML/D 

0.70 
1.98 
3.13 
Σ|δload|

11.00 
14.03 
20.40 
L/D 

2.0 
1.6 

1.2 

M∞ 

4. Optimization of L/D etc. is possible on a par 
with an asymmetrical-shaped OFW as well 
as in a symmetrical shape. Moreover, it is 
possible by assuming a symmetrical shape 
to prevent the optimization of an unnatural 
body shape. Furthermore, in terms of the 
definition of the body shape, a definition can 
be given twice as detailed as asymmetrical. 
Therefore, if these points are taken into 
consideration, it is appropriate to think that 
the body definition by a symmetrical shape 
is optimal for the OFW model. 
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