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Abstract  

This paper deals with thermally induced 
dynamic response control analysis of a rotating 
composite blade, modeled as a tapered thin-
walled beam induced by heat flux. The displayed 
results reveal that the thermal environment 
yields a detrimental repercussions upon their 
dynamic responses. The blade consists of host 
graphite epoxy laminate and spanwise 
distributed transversely isotropic (PZT-4) 
sensors and actuators. The controller is 
implemented via the combined negative 
displacement and velocity feedback control 
methodology, which prove to overcome the 
deleterious effect associated with the thermally 
induced dynamic response. The structure is 
modeled as a composite thin-walled beam 
incorporating a number of nonclassical features 
such as transverse shear, secondary warping, 
anisotropy of constituent materials, and rotary 
inertias. 

1  Introduction 
The increasing use of fiber-reinforced, 

composite, thin-walled beam construction for 
rotor blades used in helicopter, tilt rotor aircraft, 
turbo engine, spacecraft boom and other 
applications, has generated a great deal of 
research activity aimed at enhancing their 
dynamic response performances. For reasons of 
efficiency involving gas dynamics and weight, 
they must be thin, yet to operate in severe 
thermal environments and at higher rotational 
speeds.  

Boley[1] was the first to include inertia 
effects in calculating the thermal-structural 

response of a beam subject to rapid heating and 
presented the governing equations for the 
problem of thermally induced vibrations. 
Seibert and Rice [2] investigated coupled 
thermoelastic effect for Euler-Bernoulli and 
Timoshenko beam model. Johnston and 
Thornton [3] analyzed the effects of thermally 
induced structural disturbances of an appendage 
on the dynamics of a simple spacecraft.  

Thornton and Kim [4] developed an 
analytical approach to determine the thermal-
structural response of a flexible rolled-up solar 
array due to a sudden increase in the external 
heating. The coupled thermal-structural 
responses were compared with the uncoupled 
analysis results. I. Yoon [5] investigated 
thermally induced vibration of composite thin-
walled beam. The structure is modeled as a 
circular thin-walled beam of closed cross 
section and has constant cross area ratio. 

Although of an evident importance, to the 
best of authors’ knowledge, no such studies 
including thermally-induced dynamic response 
control of nonuniform composite thin-walled 
rotating blade, have been found. The rotating 
beam may be constitutes part of a rotating 
spacecraft boom. 

Both the dynamic equations involving the 
temperature effects and the related boundary 
conditions are obtained via the application of 
Hamilton’s variational principle. In its modeling 
the effects of anisotropy of constituent materials, 
transverse shear, warping, rotary inertia, etc are 
incorporated. In addition, in order to induce 
elastic couplings between flapwise bending and 
chordwise bending, a special ply-angle 
distribution achieved via the usual helically 
wounding fiber-reinforced technology is 
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implemented. The numerical simulations 
display eigenfrequencies and deflection time-
history as a function of the fiber orientation of 
the composite materials, rotating speed, taper 
ratio. 

2  Thermal Analysis  

2.1 Basic Assumptions  

A thin-walled beam of radius R and wall 
thickness h  is considered (Fig. 1). The blade is 
subjected to a known incident heat flux S 
applied at time t=0. The associated problem is to 
determine the transient temperature response of 
the tip of the blade. To this end, the following 
assumptions are adopted. 

1. Heat is conducted only in the 
circumferential direction, implying that 
the heat conduction along the blade length 
is negligible, 

2. Thermal energy losses at the cantilevered 
support at x=0 are neglected, and thermal 
energy is emitted from external surface of 
the blade assuming diffuse radiation, but 
internal radiation within the blade is 
neglected, 

3. The temperature field is assumed to be 
uniform across the beam thickness, 
implying that the temperature gradient 
across it is neglected, 

4. Convection heat transfer inside and 
outside the beam is negligible, 

  

 (a) Heat Flux    (b) Beam Cross Section 
Fig.1 Heat flux for coupled thermal-structural analysis 

2.2 Thermal Analysis 

In such a context, the thermodynamic equation 
of heat conduction and radiation is 

2
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In Eq. (1), Tª(z,φ,t) is the absolute temperature 
at an arbitrary point of beam, k is the thermal 
conductivity, ρ and c are the weight density and 
the specific heat of the material, respectively, t 
is time coordinate and δ is unity for the values 
of circumferential coordinate φ corresponding to 
the portion of beam surface exposed to radiation 
and zero otherwise. The heat flux intensity of 
radiation source at an angle β with respect to the 
direction normal to the undeflected beam axis, 
S0 , is related to the counterpart one at an 
arbitrary point of the deflected beam surface, S, 
by 

0 cos( )xS S β θ= +                       (2) 
The thermodynamic equation of heat-

conduction-radiation can be linearized. As a 
result, one can represent T as 

1( , , ) ( , , )T z t T T z tφ φ= +                    (3) 
where T1(z,φ,t) is the disturbance temperature, 
and T  is the steady-state absolute temperature 
fulfilling the condition T T1(z,φ,t). 
 Further, we will consider 

1
ˆ( , , ) ( , )cosT z t T z tφ φ=                   (4) 

where T̂  is the maximum disturbance 
temperature. As a result of Eq. (3), T4(z,φ,t) 
intervening in Eq. (1) is expressed as a truncated 
binomial series expansion about T   in the form 

4 4 3 ˆ( , , ) 4 ( , )cosT z t T T T z tφ φ≅ +            (5) 
Moreover, the heat flux distribution on the right 
of Eq. (1) is represented as: 
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By virtue of Eqs. (5) and (6), from Eq. (1) one 
obtains 
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 denote a characteristic time and the time-
independent maximum disturbance temperature, 
respectively, when the blade is deflected 
statically. Assuming zero initial conditions, from 
Eq. (8) one obtains  

/ *
/

0
ˆ( , ) cos( )

t t p t
x

e TT z t e dp
τ

β θ
τ

−

= +∫         (10) 

where p is a dummy time variable. It is readily 
seen that the disturbance temperature as 
expressed by Eq. (10) depends nonlinearly on 
θx. Assuming θx to be small, one can linearize  
ˆ( , )T z t as to become 

/ *
/

0
ˆ( , ) (cos sin )

t t p t
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e TT z t e dp
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β θ
τ

−

= −∫      (11) 

3 Formulation of The Composite Thin-Walled 

Beam Model 

3.1 Basic Assumptions and Kinematics of the 
Modeling Formulation 

The tapered composite blade consisting of a 
single cell thin-walled beam is mounted on a 
rigid hub (radius R0) that rotates with constant 
angular velocity Ω about origin O (Fig. 2). 
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Fig.2 Geometric Configuration of the Rotating 
Blade 

The inertial reference system (X, Y, Z) is 
attached to the center of the hub O. By (i, j, k) 
and (I, J, K), we define the unit vectors 
associated with the coordinate systems (x, y, z) 
and (X, Y, Z), respectively. The equations of 
rotating thin-walled beam are based on the 
following statements [6, 7, 8]: 

(i) the original cross-section of the beam is 
preserved; (ii) the secondary warping effects are 
included; (iii) transverse shear, Coriolis effect, 
and centrifugal acceleration are incorporated; 
and finally, (iv) the constituent material of the 
structure features thermomechanical anisotropic 
properties. 

The linear distribution of the chord ( )c η and 
height ( )b η of the mid-line cross-section profiles 
along the beam span is considered as 

       [ ]( )
1 (1 )

( )
R

R

cc
bb

η
η σ

η
⎧ ⎫⎧ ⎫

= − −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

             (12) 

Herein /T Rc cσ ≡  denotes the taper ratio, 
/z Lη ≡ is the dimensionless spanwise 

coordinate, where L denotes the beam semi-span, 
and subscripts R and T identify its 
characteristics at the root and tip cross-sections, 
respectively. In the same context, the radius of 
curvature of the circular arc associated with the 
midline contour at section η  along the beam 
span varies according to the relationship: 

[ ]( ) 1 (1 ) RR Rη η σ= − −                   (13) 
The points of the beam cross-sections are 
identified by the global coordinates x, y and z, 
where z is the spanwise coordinate and by a 
local one, n, s, and z, where n and s denote the 
thicknesswise coordinate normal to the beam 
mid-surface and the tangential one along the 
contour line of the beam cross-section, 
respectively. (see Fig. 2)  
In accordance with the above assumptions and 
in order to reduce the 3-D problem to an 
equivalent 1-D, the components of the 
displacement vector are expressed as [6] 
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Eqs. (14) and (15) reveal that the kinematic 
variables, u0(z,t), v0(z,t), w0(z,t), θx(z,t), θy(z,t) 
and φ(z,t) representing three translations in the x, 
y, z directions and three rotations about the x, y, 
z directions, respectively are used to define the 
displacement components, u, v and w, while 
following coordinates description, θx(z,t) and 
θy(z,t) denote the rotations about axes x and y 
respectively, while γyz and γxz denote the 
transverse shear in the planes yz and xz 
respectively and the primes denote derivatives 
with respect to the z-coordinate, respectively. 
Notice that the z - axis is located as to coincide 
with the locus of symmetrical points of the 
cross-section along the wing span. 
The kinetic energy K, and potential energy V, 
expressions for a beam are 

( )0 ( )
1

1 (R R )
2
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2
1  [ ]
2

i i

bij bij

NL
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K d
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τ
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σ ε τ
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=

= ⋅

=

= + +

∫

∫

∑∫ ∫ ∫

(16) 

The expressions for the virtual work done by 
externally applied forces are 

0
( , ) ( , )

L

fW f z t v z t dzδ∂ = ∫                (17) 

In these equations dτ(≡dndsdz) denotes the 
differential volume element and the position 
vector R≡R(x,y,z,t) relative to a fixed origin is 
defined as: 

0R R r ∆= + +                       (18) 
In Eq. (18), r(≡xi+yj+zk) defines the 
undeformed position of a point measured in the 
beam coordinate system and ∆(≡ui+vj+wk) 
denotes the displacement vectors of the points 
of the blades, while R0= R0k. 
 
3.2 The Equations of Motion and Boundary 

conditions 
Employment of constitutive equations and 

strain-displacement relationships in the Eq. (16), 
and carrying out the indicated integrations with 
respect to n and s, one can obtain simplified 
kinetic and potential energy, which is applied to 
the extended Hamilton’s principle in order to 
obtain the coupled bending equations of 

adaptive rotating beams and the associated 
boundary conditions. 
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1

0

0 0 1 2

0

0 at ,

t

t

x y

K V W dt

u v t t t

δ δ δ

δ δ δθ δθ

− + =

= = = = =
∫        (19) 

Herein K and V denote the kinetic and strain 
energy, respectively, δW is the virtual work of 
external forces, t1 and t2 are two arbitrary 
instants of time, while δ is the variational 
operator.  
 
The Equations governing the (flap-lag) 
Bending-Transverse Shear Motion: 

2 2
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(20a-d) 
The associated BCs for the rotating beams 
clamped at z=0 and free at z=L are: 
At z =0,     

0 0 0y xu v θ θ= = = =                    (21a-d) 
At z =L, 

43 44 0 4

52 55 0 5

22 25 0 2

33 34 0 3
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In Eqs. (20) through (22), aij, bi denote global 
stiffness and mass quantities, respectively. P(z) 
is obtained as  

( )1 0( ) ( )
L

z
P z b z R z dz= +∫                  (23) 

and hi
T(≡hi

T (z,t)) denote the thermal stress-
resultants and thermal stress-couples defined as: 
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(24a-d) 
3.3 Piezoelectric Distribution and the Control 
Law 
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For the general case, the expression of the 
piezoelectrically induced flap and lag bending 
moment is given by, respectively 

[ ]
[ ]

1 2

1 2

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

a
x x

a
y y

M z t C V t H z z H z z

M z t C V t H z z H z z

′ = − − −

′ = − − −
      (25a,b) 

where Cx, Cy are constants dependent on the 
mechanical and geometrical properties of the 
piezoactuator and host structure and V(t) is the 
applied input voltage that is equal and opposite 
in sign in the upper and lower 
piezoactuators(out-of-phase actuation). H(·) 
denotes the Heaviside function representing the 
actuator distribution. (Fig. 3) 
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                  Fig. 3 Distribution of Piezoactutors 

In the previously displayed equations, due to 
the special distribution of piezoactuators, it was 
shown that the piezoelectrically induced 
moment intervenes solely in the boundary 
conditions associated with the bending motion, 
prescribed at the beam tip, and hence it plays 
the role of the boundary moment control. Within 
the adopted feedback control law the 
piezoelectrically induced bending moment at the 
blade tip is expressed as  

( ) ( ) ( )       

( ) ( ) ( )

a
x vx x px x

a
y vy y py y

M L k L k L

M L k L k L

θ θ

θ θ

′ = +

′ = +
 (26a,b) 

Herein kx, ky denote the feedback gains, and in 
the numerical simulations nondimensional 
counterpart of kx, ky is Kx, Ky defined by 

2 0 2 0
33 33

2 0 2 0
22 22

/     , /

/     , /
vx vx px px

vy vy py py

K k L a K k L a

K k L a K k L a

= =

= =
 (27a,b) 

4. Results and Discussions 

A numerical study was performed to 
investigate the quasi-static and the dynamic 
response of the system consisting of a rotating 

composite thin-walled blade exposed to an 
incident heat flux applied instantaneously at t=0. 
The data on which basis the numerical 
simulations have been generated are supplied in 
Table 1.  

Figs. 4 and 5 show the average, 
perturbation temperature response of the 
composite blade, while Fig. 6 displays 
temperature distribution along the blade cross-
section from the uncoupled analysis. Fig. 4 
shows average temperature T  is approximately 
330.8K, when 0T  is 290K. Temperature profiles 
for the upper one-half of the blade cross-section 
at various times are shown in Fig. 6, which 
proves the development of the blade thermal 
gradients. 
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Fig.4 Average temperature response of a composite blade 
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Fig. 5 Perturbation temperature response of a composite 
blade 
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Fig.6 Temperature distribution for a composite blade 

 
From Figs. 7 to 9 the plots highlight the 

effects of angular velocity, taper ratio and ply 
angle orientation on the natural frequencies of 
the coupled flap-lag bending motion. From the 
results it becomes evident that as the beam taper 
increases (i.e. when σ  goes above 1.0) the first 
and second coupled natural frequencies decrease 
whereas the third one increases.  The plots also 
display the sensitivity of natural frequencies to 
ply angle orientation. A general remark 
emerging from Figs. 7 to 9 is that the stiffening 
effect due to beam rotation contributes to the 
increase of natural frequencies for all taper 
ratios.   
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Fig. 7 First coupled flap-lag bending frequency vs. Ω for 

different ply angles 
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Fig. 8 Second coupled flap-lag bending frequency vs. Ω 

for different ply angles 
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Fig. 9 Third coupled flap-lag bending frequency vs. Ω for 

different ply angles 

Figs. 10 and 11 highlight the effect of the 
incident angle of heat flux and of taper ratio on 
the dynamic response behavior. The results 
reveal that taper ratio plays a significant role in 
confining the deflection response and the 
increase of incidence angle can decrease both 
the flapwise and chordwise response.  
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Fig. 10 Nondimensional flapping response for various 
heat incident angle,θ=30o, Ω=200 rad/s 
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Fig. 11 Nondimensional flapping response for various 
heat incident angle, θ=30o, Ω=200 rad/s 
 

Fig. 12 displays the time-history of 
transversal deflection response. This graph 
highlights the strong effect played by the 
angular velocity to flapping dynamic response.  
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Fig. 12 Nondimensional flapping response for various 

angular velocity, σ=2, θ=30o, β=15o 
 

 
Fig. 13 Uncontrolled and controlled first coupled flap-lag 
bending frequency vs. Ω for different ply angles, σ=2 
 

In Figs. 13 through 15 there are depictions of 
the effects of angular velocity and ply angle 
orientation on the uncontrolled and controlled 
natural frequencies of the coupled flap-lag 
bending motions. The results reveal the 
potential role played by the piezoelectric 
actuation upon the enhancement of 
eigenfrequencies. Figs 16 and 17 displayed 
uncontrolled and controlled time history of 
lagging and flapping response of a blade 
subjected to heat flux, respectively. The results 
reveal negative displacement feedback control 
provides a powerful tool for improved structural 
responses, relatively, in low range of angular 
velocity 
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Fig. 14 Uncontrolled and controlled second coupled 
flap-lag bending frequency vs. Ω for different ply 
angles, σ=2 
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Fig. 15 Uncontrolled and controlled third coupled 
flap-lag bending frequency vs. Ω for different ply 
angles, σ=2 
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Fig. 16 Uncontrolled and controlled lagging response 
for various angular velocity, σ=2, θ=30°, β=15° 
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Fig. 17 Uncontrolled and controlled flapping response 
for various angular velocity, σ=2, θ=30°, β=15° 

5. Conclusions 

A comprehensive structural model of 
composite thin-walled rotating blade was 
developed and the problem of the thermally 
induced vibration was addressed. 

The effects of the heat incident angle, rotating 
speed, blade taper ratios and ply angles of 
composite materials to the dynamic response of 
the blade structure are studied by using the 
coupled thermal-structural analysis. The 
implications of a number of factors such as 

blade taper ratios, ply angles of composite 
materials, rotational speed, heat incident angle 
and piezoelectric actuation may improve the 
quasi-static and dynamic deflection of the blade. 
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Appendix 
 

Table. 1 Material and geometric properties of composite 
material (Graphite/Epoxy) 

Parameter Value 
L 2.032 m 
h 2.35E-4 m 
R 0.254 m 
E1 2.068E11 N/m2 

E2=E3 5.171E9 N/m2 
G12 3.103E9 N/m2 

G23=G31 2.551E9 N/m2 
µ12=µ23=µ13 0.25 

ρ 1528.227 kg/m3 
α 0.92 
α1 1.1E-6 K-1 
α2 25.2E-6 K-1 
ε 0.84 
σ 5.67E-8 W/m2K4 
k 1.731 W/mK 
c 1044 J/kgK 
S0 1.35E3 W/m2 

 
 


