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Abstract  

Two methodologies of extracting dynamic 
models of flexible structures with piezoelectric 
transducers (i.e. smart structures) are presented 
in this paper. However, these techniques are 
general and valid for system identification of 
any dynamic system. As for the first method, 
i.e. theoretical system identification, the Finite 
Element Method (FEM) is employed to model 
the dynamic system and to obtain the Frequency 
Response Function (FRF). Then the µ synthesis 
technique is used to match a transfer function to 
the FRF plot. A test bed was developed to 
investigate the second method, i.e. experimental 
system identification. A state space model 
produces the best fit to the experimental data.  
Results demonstrated good agreement between 
the two methods. The outcome of this study is 
an essential part of the control design and 
implementation for smart structures.  

1  Introduction  
Conventionally system identification, i.e. 

system ID, refers to identification of the transfer 
function of a dynamic system from 
experimental data. This is essential for complex 
structures when derivation of a mathematical 
model of the system is difficult or impossible. 
However, as described in this paper for complex 
structures the transfer function of the system can 
also be obtained from a Finite Element (FE) 

model. This so called theoretical system ID is 
much easier and cheaper than experimental 
system ID particularly in the development of an 
integrated flexible structure with numerous 
sensors and actuator placement possibilities, 
such as in smart structures.  

Several experimental system ID techniques 
have already been investigated in the literature. 
Genetic algorithms have been employed to 
identify systems through their input-output 
behavior. This technique does not depend on the 
deterministic or stochastic nature of the systems 
[1]. Recursive identification techniques have 
been used to obtain the transfer function of a 
system in real time [2]. The development and 
application of a fast transversal filter was also 
presented. A method to obtain an unique 
optimized system ID model has been 
investigated [3]. It was shown that the identified 
stiffness matrix was always unique if the 
identified matrix was unique as well.   

In flexible structures with integrated 
sensors and actuators, such as piezoelectric 
transducers (i.e. smart structures), due to the 
complexity of the system it is difficult to predict 
the dynamic response by simulation. Thus, 
numerous studies have been performed on the 
experimental system identification of smart 
structures. System identification and state 
estimation have been used to achieve self-
maintenance of a self-sensing piezoelectric 
cantilever structure [4]. Using a simple 
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experiment, a model of the system has been 
identified by the subspace state space 
identification method. A Multi-Input Multi-
Output (MIMO) model using the Hankel 
singular value decomposition was identified 
from the experimental data of a curved plate 
with two piezoelectric actuators [5]. The model 
was fitted simultaneously across all of the 
transfer functions in the MIMO system. Neural 
networks have been used for an experimental 
system identification of smart structures with 
piezoelectric sensors and actuators [6]. Auto 
Regressive Moving Average (ARMA) has been 
implemented for a real-time system 
identification [7]. A hardware demonstration of 
a smart structure using this algorithm for real-
time health monitoring has been presented in 
that study. Finite Impulse Response (FIR) and 
State Space Model techniques have been 
applied for experimental system identification 
of a smart isolation mount in an active vibration 
control system [8]. In another study a frequency 
domain curve fit technique was employed to 
identify the transfer function of a system [9]. In 
that study an experimentally identified transfer 
function was used to synthesize a MIMO active 
smart antenna.  

Due to the integration of actuators and 
sensors with the host structure, it is usually very 
cumbersome, if not impossible, to develop a 
mathematical model for a complex smart 
structure. Thus, in many cases, FEM is used to 
predict the structural response. For example an 
electromechanical coupling effect of 
piezoelectric materials was employed to 
establish a FEM model of a flexible plate with 
piezoelectric sensors and actuators [10]. In the 
present study, NASTRAN was employed as the 
FE solver with the thermal load analogy used to 
model piezoelectric actuators.  

FE codes usually provide the structural 
response to a specific loading. However, in this 
study, a procedure of extracting a mathematical 
representation of the system (i.e. theoretical 
transfer function) from a FE model is described 
and results are compared to the experimental 
system ID. As an application, an Aluminum 
flexible fin with PZT (Lead Zirconate Titanium) 
piezoceramic actuators was considered as the 

target structure. Results of this research will be 
used in the system identification and control of 
a full-scale model under a joint 
US/Australia/Canada project [11] for active 
suppression of vertical tail buffeting vibrations. 

2  Physical Model of the Smart Structure 
The physical model considered in this 

study was a simple scaled model of the vertical 
tail fin of a F/A-18 fighter jet, which 
approximately replicated the first two natural 
frequencies of the full-scale vertical fin. This 
model included a flexible Aluminum fin, with a 
thickness of 1 mm, fixed at the base. A total of 
24 Piezoceramic actuators1 were bonded onto 
both sides (12 on each side) of the Aluminum 
plate. An accelerometer was used to monitor the 
dynamic response of the fin tip. The actual 
system is shown in Fig. 1 and the schematic of 
the smart fin showing the placement of the 
actuators and sensors is presented in Fig. 2. 
Material properties of the structural components 
(including the Aluminum fin and piezoelectric 
patches) are given in Table 1. 

 
 
 
 
 
 
 

Figure 1. Flexible fin with piezoelectric actuators
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Table 1. Material properties 

Property Aluminum 
2024-T3 

PZT 
BM500 

Density [Kg/m3] 2796 7650 

Elastic Module [MPa] 73.0 64.5 

Thermal Expansion [µm.oC] 23.2 - 

Thickness [mm] 1.02 0.50 

Charge Constant, d31[pC/N] - 175 

 

3 FE Modeling  

Finite Element Modeling (FEM) was used 
to model the integrated smart fin. A frequency 
response analysis was performed to get the FRF 
of the dynamic system. Afterward, the 
MATLAB µ synthesis toolbox was used to 
derive the transfer function which identified the 
model of the dynamic system. 

3.1 Piezoactuator Modeling  

Although there are a few FEM software 
packages which provide an electromechanical 
modeling of piezoelements, for simplicity a 
thermal analogy was employed in this study to 
simulate the piezoelectric effect in the finite 
element model. This is a valid analogy in the 

linear range (low applied voltage and low 
bandwidth) and for thin piezoelements.  114 

9 

The induced strain in a piezoelement due to 
an applied voltage of ∆V is given by: 

Accelerometer 

10 Piezoelectric 
Actuators 
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where  is the piezoelectric charge constant. t 
and ∆V represent piezoelement thickness and 
applied voltage respectively. For a thermoelastic 
material, the temperature change of ∆T causes a 
strain of  

31d25
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where α is the thermal coefficient. Comparing 
linear Equations 1 and 2 one can simply make 
an analogy by substituting td31  with α. Thus, 
in the finite element model, piezoelectric 
elements can be modeled as thermoelastic 
elements.  In this paper SOLID elements, 
HEX20 (20 nodes) were used to model the 
piezoelectric actuators in PATRAN as shown in 
Fig. 3. Thermal loads were applied to these 
elements to simulate the applied voltage to the 
piezoactuators. 

184 
369 

Figure 2. Schematic of smart fin (all dimensions in mm) 

3.2 Integrated Structure Modeling  

The substructure Aluminum fin was 
modeled using SHELL elements, QUAD8 (8 
nodes) in PATRAN. The FE model of the 
integrated smart fin is presented in Figure 4. 
NASTRAN was used as the solver in this study. 
A modal analysis of the Aluminum fin alone 
was performed to obtain the first 5 dynamic 
modes and the natural frequencies are listed in 
Table 2.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Solid HEX20 elements used for piezoelectric 
actuator modeling 
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Table 2. Natural frequencies of the flexible fin 

Mode Experiment [Hz] FEM [Hz] Error [%] 

1 15.7 16.6 +5.7 

2 55.1 51.8 -6.4 

3 82.2 88.5 +7.2 

4 117.0 125.5 +6.8 

5 184.0 194.4 +5.2  

3.3 Experimental Verification of the FE Model  

In order to verify the simulation results and 
the accuracy of the FE model, the actual fin was 
tested on an electrodynamic shaker. Initially, a 
sine sweep of 5-200 Hz was conducted on the 
fin alone (before bonding piezoactuators) to 
obtain the natural frequencies of the fin. The 
LMS TEST.Lab vibration control system was 
used to run the test. A real time FFT analysis by 
LMS provided the frequency spectrum of the tip 
acceleration which in turn identified the natural 
frequencies of the smart fin. Results of the FE 
modal analysis and experimental sine sweep are 
compared in Table 2. The results match closely. 
However, the FEM predicted higher frequencies 
except for the second mode. This might be due 
to the assumption of perfect boundary 
conditions at the cantilever end of the fin in the 
FE model. Later, the smart fin was tested on the 
shaker. Natural frequencies of the integrated 
flexible fin with piezoelectric actuators obtained 
from the experiment are compared with the FE 
modal analysis results in Table 3. Modal 
damping ratios are also extracted from the 

experimental data and are listed in Table 3. 
These modal damping ratios were later used to 
incorporate damping into the FE model to 
obtain the FRF.  

There are some interesting observations in 
comparing Tables 2 and 3. In the FEM results 
the natural frequencies of the integrated smart 
fin are lower than those of the fin alone except 
for the first mode. This means that adding 
piezoelements in the model had a great 
contribution to increasing the modal masses 
than the modal stiffness in general. In the 
experimental results the natural frequencies of 
the smart fin are higher than those of the fin 
alone except for the second and fifth mode. This 
is due to the effect of the stiffness introduced by 
the bonding glue and wiring, which apparently 
exceeds the effect of the added mass of the 
piezoelements. The natural frequencies of the 
integrated smart fin predicted by FEM were 
lower than the experimental frequencies mainly 
due to the effects of the glue and wiring of the 
actuators, which made the structures stiffer (e.g. 
higher natural frequencies).  

        Figure 4. FE model of the smart fin alone

The first three dynamic mode shapes are 
shown in Fig. 5. The first mode was the first 
bending mode of the fin, the second mode was 
the first torsional mode of the fin and finally the 
third mode was the second bending mode. 

 
Table 3. Modal frequencies and damping ratios of the 

integrated flexible fin with piezoelectric actuators 
Mode Frequency [Hz] Experimental 
 Exp. FEM Error [%] damping ratio
1 17.9 16.9 -5.3 0.016 

2 53.8 49.0 -8.7 0.012 

3 83.5 80.3 -3.7 0.025 

4 126.0 120.7 -3.9 0.008 

5 172.0 166.4 -3.3 0.016 

4 Theoretical System Identification  
System identification often means 

obtaining the transfer function of a dynamic 
system from the experimental data (a relation 
between output and input). However, it is 
possible to simulate the same technique using a 
FE model of the system (i.e. theoretical system 
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        FRF from FEM 
  - -  6th order µ curve fit 

Second mode 
(1st torsional) 

Third mode 
(2nd bending)

First mode 
(1st bending) 

     Figure 5. First 3 modes of the smart fin 
        FRF from FEM 
  - -  6th order µ curve fit identification). In this section a methodology to 

extract the transfer function between the 
accelerometer signal (output) and the 
piezoactuators voltage (input) of the FE model 
of the smart fin is presented. 

A Frequency Response Analysis between 
5-100 Hz with a step of 0.5 Hz was performed 
on the smart fin. Nodal thermal loads were 
applied onto the piezoactuators to simulate the 
input voltage. The phase and magnitude of 
acceleration, which represented the FRF, at the 
location of the accelerometer was read from the 
FE results. This FRF was basically a 
representation of the smart fin in the frequency 
domain. The µ synthesis Toolbox of MATLAB 
was then used to curve fit a transfer function to 
this FRF. A 6th order system was found to be a 
good representation of the FRF for the first 
three modes. The bode plot of the original FRF 
obtained from the FE analysis is compared with 
the bode plot of the 6th order transfer function in 
Fig. 6, and as it is seen, they match well. The 
µ curve fit is the final presentation of the smart 
fin in the frequency domain and is given as the 
following transfer function in the Laplace 
domain, Eq. 3, which concludes the theoretical 
system identification task. This transfer function 
could replace the actual system for any dynamic 
response simulation as well as control design 
and implementation.  

Figure 6. FRF from FEM and the 6th order µ synthesis 
curve fit 

        Figure 7. Experimental configuration 
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5 Experimental System Identification  
The transfer function of a dynamic system 

can also be obtained experimentally which in 

general is called “system ID”. In order to 
identify the dynamic model of the smart fin and 
also to verify the theoretical system 
identification model such an experiment was 
conducted. 

5.1 Experimental Configuration 

The experimental test bed for the smart 
structure system identification developed at the 
National Research Council Canada (NRC) is 
shown in Fig 7. The smart fin configuration is 
presented in Fig. 1. The Real-Time Workshop 
Toolbox and xPC TargetBox of MathWorks 
were employed to conduct the real time data 
acquisition. 
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Figure 9. Bode plot of the experimental system ID 
model using a 6th order state space model 

4
x 10

4 Input and output signals

]5.2 System identification from experimental data 

The frequency range of interest was 
focused on 5-100 Hz which covered the first 
three dynamic modes. These are the major 
modes of the actual model of the vertical tail 
fin. A frequency sweep of 5-100 Hz was applied 
to the piezoactuators using a chirp signal of 

. The fin response monitored by the tip 
accelerometer is shown in Fig. 8 which clearly 
shows the first three resonances of the smart fin. 
Input and output signals of the smart fin have 
been fed into the Matlab System Identification 
Toolbox to define a proper dynamic model of 
the system. Several experimental system ID 
techniques such as ARMAX and the state space 
model were investigated to establish the most 
accurate dynamic model of the system from the 
time domain response. The state space model 
technique offered the best approximation of the 
system and a 6th order state space model was 
found to be a good representation of the smart 
fin with a correlation factor of 84.5%. The Bode 
plot of this model is shown in Fig. 9 which 
represents the transfer function between the 
accelerometer and piezoelectric actuators. This 
transfer function can also be described in state 
space format (A, B, C and D matrices) or as an 
equation in Laplace domain for control design 
and implementation.  

6. Results Comparison 

The bode plots of the theoretical and 
experimental system identification models of 
the smart fin are compared in Fig. 10. As for the 
theoretical model, a discretization with time step 
of 0.004 sec (the same sampling rate as in the 
experiment) has been performed to obtain the 
discrete model from the continuous model 
shown in Fig. 6.  Both methods used a 6th order 
model to represent the smart fin. It is 
worthwhile to mention that there are always 
approximations associated with FE modeling 
such as perfect boundary conditions, perfect 
bonding, and negligible glue stiffness, mass and 
slip motion at the interface of the piezoelectric 
transducers and substructure. Consequently, it is 
typical to have some

V40±
Figure 8. Fin acceleration sweep between 5-100 Hz 

        Experimental system  ID
  - -  Theoretical system ID 

        Experimental system ID 
  - -  Theoretical system ID

Frequency  (Hz)Frequency Hz] 

Figure 10. Comparison of the experimental and
theoretical system ID models  discrepancies between 
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simulation and the experimental system ID. 
Moreover, structural damping values and the 
method of incorporating these into the FE model 
are major challenges, which need to be 
investigated to improve the agreement between 
the simulation (µ synthesis) and experimental 
models. Despite these facts, it is seen that good 
agreement between the experimental system ID 
using the state space model technique and the 
theoretical system ID using µ synthesis has been 
achieved (Fig. 10). The natural frequencies 
(peak frequencies) match closely and the overall 
trend in both magnitude and phase plots are 
similar. The impulse response of the two models 
is also compared in Fig. 11 which demonstrates 
the accuracy of the theoretical model compared 
with the experimental model. 

 
 
 
 
 
 0

 0

 
 
 
 

7. Conclusions 
Although the terminology of system ID is 

largely used for experimental identification of 
the dynamic model of an actual system, it was 
shown in this paper that even for complex 
flexible structures it is possible to obtain a 
representation of the system as a transfer 
function from the FE model, i.e. theoretical 
system identification. The FRF of a flexible fin 
with bonded piezoactuators was obtained from a 
frequency analysis of the FE model. As an 
example a 6th order transfer function matching 
the FEM FRF was then extracted by the µ 
synthesis technique.  In order to verify the 
theoretical system ID model an experimental 
test bed was developed at NRC on which a 6th 
order state space model was found to be a good 
representation of the actual smart fin for the 
frequency range of 5-100 Hz. Very good 

agreement of peak frequencies, magnitudes and 
phases between theoretical and experimental 
system ID models was observed. Theoretical 
system ID is much easier and cheaper than 
experimental system ID particularly in the 
development of an integrated smart structure 
with numerous sensors and actuator placement 
possibilities. The results of this paper 
demonstrate the reliability and accuracy of the 
theoretical system ID. 
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