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Abstract  
This paper aims to present the study of a yaw 
rate control of the aircraft-on-ground. Such a 
control law can ease ground handling and turn 
it safer. It helps to stabilize the aircraft 
trajectory and guarantees a predictable 
behavior. 

 
Because of the high non-linearities of the model, 
the control design methodology is based on 
feedback linearizing. This technique use 
supposes that the reference model perfectly 
corresponds to the real system. This assumption 
is not verified (high tire/ground friction 
coefficient uncertainty) and under degraded 
conditions, the response time can significantly 
increase while static errors may occur.  
 
Therefore, this communication proposes a 
control law adaptation based on sliding mode 
control, to improve robustness with respect to 
such uncertainties. 

1  Introduction  
The sustained air transportation growth during 
the last decades has led to the congestion of 
many airports. It appears that one way to 
improve airside traffic conditions at these 
airports, is to perform more accurate and faster 
aircraft movements while increasing the safety 
level. All these points have recently enlarged 
the concern with the amelioration of airport use 
and safety and have promoted new studies. 
Some of them are involved in ground traffic 
control projects such as A-SMGCS (Advanced 
Surface Movement Guidance and Control 

Systems), while others are more specifically 
concerned with new on board systems devoted 
to ground navigation and guidance. 

 
The problem considered in this paper aims to 
improve the aircraft ground handling qualities. 
Nowadays, the lateral motion of commercial 
aircraft is achieved by means of an open loop 
steering control. One possible way of 
amelioration consists in adding an "aircraft 
loop" to this direct control. This philosophy 
corresponds to what has been done on flight 
control channels with the "fly by wire" concept : 
the pilots do not directly command the actuator 
deflection but command aircraft "attitude" 
parameters (e.g. roll rate and vertical 
acceleration). A first adaptation of this principle 
for ground handling has been studied by F. 
Villaumé to improve runway axis tracking 
during landing, take-off and rejected take-off 
[1]. This adaptation is based on a yaw rate 
control of the aircraft. Such a control objective 
can allow to ease on-ground control and turn it 
safer. It helps to stabilize the aircraft trajectory 
through a reduction of the number of corrections 
needed to ensure straight line roll and tends to 
guarantee an homogeneous aircraft behavior 
whatever the weather and the ground conditions 
(dry, wet, icy, …). 

 
The study mainly concentrates on taxiing. At 
such speeds, aircraft presents highly non-linear 
behavior. The aerodynamic forces become 
negligible compared with the tire/ground 
friction. During short turns, the sideslip angles 
often reach high values. It implies that linear 
models of the natural aircraft behavior are not 
representative during such maneuvers. 
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Therefore, non-linear control techniques can be 
advantageously used to cope with this non-
linear dynamics. 

 
The proposed approach is based on feedback 
linearizing control. This technique aims to 
design a non-linear controller that compensates 
the system non-linearities and constraints its 
outputs to follow a linear reference behavior. 
 
As a previous study shows [2], for normal 
taxiing conditions, the feedback linearizing 
control of yaw rate produces very satisfactory 
outcomes. However, when the tire/ground 
friction coefficient is degraded, the response 
time increases and static errors occur. 
 
This communication aims to present the 
feedback linearizing yaw rate control 
methodology and to show how robustness of the 
resulting control law can be improved using a 
non-linear robust control technique based on 
sliding mode control. At first, it briefly 
describes the equations of aircraft-on-ground 
dynamics, including tire-ground friction and 
steering system effect. Then, a second part 
recalls the feedback linearizing control theory 
and displays its application to the aircraft-on-
ground yaw rate control. A third part deals with 
the sliding mode control theory and describes 
how this technique can be used to adapt the 
feedback linearizing control law. 

2  Aircraft On-Ground Dynamics  
Before studying the control law, let us briefly 
describe the equations of the aircraft on-ground 
dynamics. Different types of models can be 
considered, from a 12 degree of freedom non-
linear model to a 2 degree of freedom linear one 
[3], considering or not actuators dynamics. 
 
The aim of this section is to present the basic 
equations that lead to these models. This 
presentation allows to put forward the global 
model architecture. 
 

2.1 General equations of ground motion 
The equations of motion form the core of the 
aircraft on ground dynamic model. They derive 
from basic Newton mechanics, applied to a rigid 
body. These differential equations can be 
written in a non-linear state-space format (m is 
the weight and I the inertia tensor) : 
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with : 
[ ]T VzVy    Vx V =  
 

The velocity vector at the 
center of gravity, 

[ ]T r  q  p Ω =  
 

The angular velocity 
vector about the c.g., 

[ ]T FzFy    Fx F =  
 

The total external 
force vector, 

[ ]T Mr  Mq  Mp M =
 

The total external 
torque vector, 

 

Here the body-axes components of linear and 
angular velocities can be regarded as the state 
and the body-axes components of the external 
forces and torques are the input variables. 
 
The external forces and torques themselves are 
non-linear functions of the aircraft motion 
variables and of the real inputs from the control 
law. By combining these functions in a single 
matrix equation, a highly non-linear state space 
model can be obtained (cf. (2)). 

( ) ( )u ,x gxf
td
xd += ,    (2) 

with    �
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�
=

Ω
V

x     and    NWθu =  

where NWθ  is the controlled steering angle. 
 

Many forces and torques should be considered : 
e.g. the gravity acceleration, the engines thrust, 
the aerodynamic effects and the tire-ground 
friction. During low speed taxi roll or 
maneuvers, the tire-ground friction has a major 
influence on the aircraft on-ground dynamics. 
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2.2 Tire-ground friction 
At low speed, the aircraft lateral behavior 
mostly relies upon the sideslip of the nose and 
main landing gear wheels (the angle between 
the wheel axis and the direction of motion).  
These angles are given by : 

��
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Where : 
- L and l represent respectively the wheels 

distances to the center of gravity and to the 
aircraft axis, 

- The suffixes "MLG R", "MLG L" and "NW" point 
out variables respectively relative to the 
right and left main landing gears and to the 
nose landing gear. 

 
Sideslip generates lateral forces perpendicular to 
the plane of the wheels (the "cornering" forces). 
The tire behavior is highly complex (non-
constant friction coefficient, lateral bending of 
carcass and belt, varying pressure distribution, 
etc). The most representative models are based 
on empirical functions, designed and tuned to fit 
measure data. Some mathematical formulations 
can be already found in literature. The Pacejka's 
Magic Formula (trigonometric formulation) [4 
and 5] is a popular model in the automotive 
industry. The NASA, through an AGARD 
project, proposed a mathematical formulation 
applied to commercial airplanes and based on 
polynomial equations [6]. 

 
In this study, the cornering force model uses a 
simplified formulation, adapted to functional 
inversion [7 and 8]. 

22
OPT 

2
OPT 

ββ
ββGy Fy

+
××=

   
(4) 

Where β OPT is the optimal sideslip angle and Gy 
the associated cornering gain (linearization of 
(4)). 
 

Such quasi-static tire models are not 
representative for very low speeds. In this case, 
it can be considered that the buckling of the tire 
carcass acts on the sideslip angle as a low-pass 
filter. To cover all the speed range, the tire 
flexibility should be taken into account, but at a 
cost of a more complex tire model. 
This particular case has been studied in [9]. For 
simplicity reason, in this communication, such 
very low speeds will not be considered. 

2.3 Steering system model 
On most Airbus commercial aircraft, the 
steering system is made of a hydraulic actuator 
electrically controlled by a steering control unit 
(SCU) [10 and 11]. Beyond a certain bandwidth, 
the steering angle rate directly corresponds to 
the electric order (I) through a non-linear 
characteristic depending upon the torque Γ  
applied around the nose landing gear : 

( ) ( )Γ=×
⋅+

×Γ=  I,f  I
I k1

1      k  θ I2
2

1NW
�   (5) 

The SCU control loop can be considered as a 
proportional controller with input and output 
saturations corresponding to a maximum 
steering authority and a servovalve spool travel : 

( )NWdNW  θ θ  γI −×=     (6) 
with, maxI I ≤     and       maxNWNW θθ ≤  
This leads to a fast first order non-linear 
differential equation with steering rate and 
angular saturations. 

3 The Yaw Rate Control Design 
The main goal of the study is to design a 

sufficiently accurate and stable control law 
insuring good ground handling qualities. The 
maneuverability criterion can be defined by 
limit behaviors inside which the controlled 
system must stay. In the case of the on-ground 
yaw rate control, these limit behaviors can 
mainly be summed up in terms of response time 
and damping (no overshoot). 

 
The proposed solution approach makes use 

of the theory of feedback linearization [12, 13 
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and 14]. Lets start by a first brief review of this 
theory. 

3.1 Theory of feedback linearization  
A single-input/single-output (SISO) non-linear 
systems is considered : 

( ) ( )
( )xhy

u ,x gxf
td
xd

=

+=
             (7)1 

where f and g are smooth vector fields on R n ; h 
is a smooth function defined on R n ; u and y are 
scalar input and output. The term smooth means 
that the function (the vector field) has 
continuous partial derivatives of any required 
order. 

 
The relative degree of the system is defined by a 
non negative integer ρ which satisfies the 
following conditions : 

( ) 2-ρ , 0,k  ,   0ux,hLL k
fg �==   (8) 

( ) 0ux,hLL 1-ρ
fg ≠  

with : fh hLf ∇=  
    (Lie derivative of h with respect to f)  

and, 
x
hh

∂
∂=∇       ( h∇ is the gradient of h) 

It is assumed that the relative degree is well 
defined and that the inverse of 1-ρ

fgLL exists. 
Then, a state transformation can be found : 

[ ] ( )xΦη ξx̂ T ≡≡ ,     (9) 
This transformation is a diffeomorphism such 
that : 

    ( ) ( )[ ] ρT1-ρ
f   xhL , , xhξ ℜ∈≡ �             (10) 

The state space description of the system in the 
new coordinates is given as follows. 
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The I/O model behavior is linearized using the 
following feedback control law : 

( )( )xA v,x Bu -1
u −=              (12) 

where -1
uB  is the inverse function of B with 

regard to u, such as, ( )( ) zz ,x B x,B -1
u =  

Thus : 

1

ρ

21

1

ξy          

vξ 

     
ξξ 

:Σ

=

�
�
�

�

�

=

=

�

�

�

               (13) 
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The system dynamics are decomposed into an 
external (input/output) part Σ1, and an internal 
part Σ2. 
 
Since the external part consists into a linear 
differential relation between y and v, it becomes 
easier to design a control law for v. For 
instance, a dynamic of the ρth order can be 
followed by output y when taking : 
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At this time, the stability of the internal 
dynamic, which are affected by the I/O control 
law has to be checked to ensure that the internal 
states remain bounded. 

3.2 Application to aircraft yaw rate control  
To design the control law, a simplified model of 
the aircraft on-ground lateral dynamics is used. 
This model is a SISO 2-degree of freedom 
model : 

[ ]

[ ]�
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1   r 

MLGNW
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    (15) 

 

1 Observe that the representation is not necessarily 
an affine form 
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The two state variables are the yaw rate and the 
lateral speed, while the longitudinal speed is 
considered as an exogenous parameter and the 
steering order as the input. Here the inner loop 
and the actuator dynamics and saturations are 
not taken into account. The aircraft is assumed 
to keep a horizontal attitude and the 
aerodynamic forces and moments are neglected, 
since here the speed is supposed to remain 
small.  
 
Within the feedback linearization approach, the 
selected output is :  ry =  
thus, [ ]NWMLG

-1 MrMrIzzry +== ��  
 

where : ( )Vx,βFyLMr NWNWNWNW ×=  

NWFNW θββ −=              (16) 
 
Introducing the auxiliary input v, the yaw rate 
dynamic associated to the expressions (16) can be 
linearized by using the steering angle 
command : 

cNWFcNW ββθ −=              (17) 

with, ��
�

�
��
�

�
= − Vx,

L
Mr

Fyβ
NW

cNW1
NWcNW  

and, MLGcNW MrvIzzMr −⋅=  
where 1

NWFy− , the inverse function of NWFy with 
regard to the nose wheel steering angle ( NWθ ), 
is assumed to exist. 
 
The yaw rate dynamic then reduces to vr =�  and 
thus, the yaw rate order can be forced to follow 
a first order dynamic, by using a proportional 
controller. 

( )rr
τ
1v d −=                (18) 

It appears that the non-linear internal dynamics, 
associated to the present output choice are 
naturally stable (understeer property of 
commercial aircrafts). 
 
The diagram in figure 1 describes the yaw rate 
control law so defined. 
 

 

Yaw Rate Dynamics 
Inversion

Yaw Rate Dynamics 
Inversion

Front Wheels Models 
Inversion

Front Wheels Models 
Inversion

Linear Control law Linear Control law 

Steering deflection

Desired Yaw Rate

Desired Yaw Rate 
derivative

Desired Yaw Rate 
torque

Desired Front 
Wheels Sideslip

++
-Estimated orientation 

angle of the speed 
vector at the nose 

landing gear

Estimated lateral 
forces at the main 

landing gears

( )rr
τ
1v d −=

�
�
�

�
�
�
�

�
= − Vx,

L
Mr

Fyβ
NW

cNW1
NWcNW

MLGcNW MrvIzzMr −⋅=

 
 
Fig. 1. Architecture of the feedback linearizing 
yaw rate control law. 
 
 
For normal rolling and ground maneuvers, 
algebraic analysis and simulation runs [2] show 
that the feedback linearizing control of the yaw 
rate can produce very satisfactory results. 
Nevertheless, it also point out that, when 
adhesion between tires and ground reduces, the 
response time increase and a static error appear. 
 
By representing the tire/ground friction forces 
reduction through a multiplicative model error 
coefficient δ, the yaw rate aircraft behavior can 
then be estimated by the equation : 

( ) ( ) ( )δ∆rr
τ
1δr 2d1 +−×∆≈�

 
           (19) 

where ∆1 and ∆2 are functions of the model 
error. 
 
An example of those results is displays figures 
2a and 2b for 4 different cases, form δ=1 
(corresponding to dry conditions) to δ=0.3 
(corresponding to snowy conditions). 
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δ =  1    0.8     0.5      0.3 

r (°/s) 

t (s)

2.3 =
τ
1

 
 

NWθ  (°) 

t (s)

2.3 =
τ
1

δ decrease 

 
 
Fig. 2a and 2b. Responses to a yaw rate step 
command from 0 to 10°/s. 

4  Control Law Robustness Improvement 
In this section, the improvement of the previous 
control law robustness is described. It mainly 
aims to cancel any static error that could occur. 
To do so, the proposed approach makes use of 
the sliding mode control methodology.  

4.1 Sliding Mode Control 
Sliding mode control [14, 15, 16, 17, 18 and 19] 
is a largely developed nonlinear control method 
that has its roots in the 1970’s, when it first 
appears in the literature (in English). The appeal 
of this methodology is based on its ability to 
treat nonlinear systems with bounded 
uncertainties and disturbances. 
 

This controller design method is based on two 
steps : 
- the definition of a ‘sliding surface’ : 

S(t) : s(x ; t)=0, over which the system state 
(x) is driven towards the desired 
equilibrium. 

- the determination of a control law such as s 
converges to 0. 

4.1.1 General theory of sliding mode control 
The single-input/single-output nonlinear system, 
defined in 3.1 (equation (7)) is considered. 
Through the diffeomorphism (10), this system 
can be transformed into the system (13), 
decomposed in the subsystem Σ1 (in companion 
form) and the subsystem Σ2, which is assumed 
to be stable. 
 
The sliding surface can be defined by : 

 
eλ

dt
ds

1ρ−

�
�

�
�
�

� +≡              (20) 

 ( )kk1ρ
1ρ

0k

k
1ρ eλC ⋅⋅= −−

−

=
−�  

with, ( )yye d −=  and 0λ >  
ρ is the relative degree of the system and, 

         ( )! p-n ! p
!n Cp

n =  

 
A sufficient condition for the convergence of s 
to 0 and for exponential stability is : 

 
0      ,  s ηsss

dt
d

2
1 2 >η⋅−≤⋅=⋅ �         (21) 

or     ( ) 0      , ssignηs >η⋅−≤�                 (22) 

where  ( ) ( ) ( )kkρ
1ρ

1k

1k 
1ρ 

ρρ
d eλCyys ⋅⋅+−= −

−

=

−
−��    (23) 

      
The condition (22) can be satisfied using a 
control law such as : 

 ( )( )xA v,x Bu -1
u −=              (24) 

with, ( ) ( )ssignηeλCyv kkρ
1ρ

1k

1k 
1ρ 

)ρ(
d ⋅+⋅⋅+= −

−

=

−
−�  

 
Considering nominal values Â  and B̂ , the 
robust exponential stability in the presence of 
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model errors (bounded along the desired 
trajectory) can be guaranteed using the control 
law [16] : 

 ( )( )xÂ v,x B̂u -1
u −=               (25) 

with, ( ) ( )ssignKeλCyv kkρ
1ρ

1k

1k 
1ρ 

)ρ(
d ⋅+⋅⋅+= −

−

=

−
−�  

where K is given by : 
         ( ) ( ) Âv1βηAβK −⋅−++∆⋅≡  

with,
 

( ) ( ) ( )tx;AxÂxA ∆<−  

  
( ) ( )

( ) ( )tx;β
ux;B
ux;B̂tx;β 1- ≤≤  

4.1.2 Quasi-sliding control using continuous 
control laws 
The previous control law is discontinuous 
across the sliding surface S and thus, induces 
control ‘chattering’. 
Such a high-frequency control activity can be 
avoided by smoothing out the discontinuity in a 
thin boundary layer neighbouring the switching 
surface [14]. 
 
This can be achieved by using the equation : 

        ( )kkρ
1ρ

1k

1k 
1ρ 

)ρ(
d eλCyv ⋅⋅+= −

−

=

−
−�             (26) 

           �
�

�
�
�

�⋅+ − ελ
ssatK 1ρ  

where ε is the boundary layer width (cf. figure 
3) and the ‘sat’ function is such as if |y|<1 
sat(y)=y and otherwise sat(y)=sign(y). 
 
The induced modifications of the control law 
(25) guarantees that all the trajectories outside 
the boundary layer will reach it in finite time : 
the layer is attractive, hence (positively) 
invariant (invariant manifold). 
Without model errors, the control law 
guarantees global asymptotic stability. 

       0   s
ελ

ssatη sss
dt
d

2
1

1ρ
2 <⋅�

�

�
�
�

�⋅−≤⋅=⋅ −
�   (27) 

 

Nevertheless, in case of model errors, the 
guaranteed tracking precision will be limited by 
the layer width. 
 
The tracking precision results from a intuitive 
balance ratio between the bandwidth to the 
power of ρ and the parametric uncertainty along 
the desired trajectory. 
 
 

x

x�

ε ε

Boundary layer

 
 
Fig. 3. Boundary layer in the case that n = ρ = 2. 
 

4.1.3 Integral sliding mode control 
The control law precision can be improved 
using integral sliding mode control, where the 
variable of interest becomes :  dτ eχ �= . 
The sliding surface is defined by : 

 χλ
dt
ds

ρ

�
�

�
�
�

� +=              (28) 

       ( )kkρ
ρ

0k

k
ρ χλC ⋅⋅= −

=
�  

       ( ) dτ eλC kkρ
ρ

0k

k
ρ� � ��

�

�
��
�

�
⋅⋅= −

=
 

Here : ( ) ( ) ( )kkρ
1-ρ

0k

k 
ρ 

ρρ
d eλCyys ⋅⋅+−= −

=
��      (29) 
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Now, the desired control law can be obtained by 
defining v as : 

( )
�
�

�
�
�

�⋅+⋅⋅+= −

=
� ελ

ssatKeλCyv ρ
kkρ

1-ρ

0k

k 
ρ 

)ρ(
d   (30) 

4.1.4 Sliding mode control versus feedback 
linearization 
Assuming that the desired output is constant, the 
auxiliary input v is then equal to : 

( )
�

=

− ⋅⋅−=
1-ρ

1k

kkρk 
ρ yλCv              (31) 

      ( ) �
�

�
�
�

�⋅+−⋅+
ελ

ssatKyyλ ρd
ρ      

which can be written : 

 ( ) (i)
1-ρ

1i
id0 yk  yykv ⋅−−⋅= �

=

            (32) 

       �
�

�
�
�

�⋅+
ελ

ssatK ρ  

with,  iρi 
ρ i λCk −⋅=  

 
Integral sliding mode control is thus equivalent 
to the previous feedback linearizing control 
(equation (14)), completed by a specific integral 
feedback term that improves stability and 
robustness. 

Remark : 
This integral feedback can be linearized using : 

( ) (i)
1-ρ

1i
id0 yk  yykv ⋅−−⋅= �

=

s
ελ

K
ρ ⋅+   (33) 

 
Inside the boundary layer, the control law is 
unchanged. Outside the layer, s behaves as : 

  s η   
ελ

sηsss
dt
d

2
1

1ρ

2
2 ⋅−≤⋅−≤⋅=⋅ −

�     (34) 

and the robust stability remains guaranteed. 
 
The combination of (33) and (28) leads to : 

( ) (i)
1-ρ

1i
id0 yk  yykv ⋅−−⋅= �

=

            (35) 

  ( ) dτ eλC 
ελ

K kkρ
ρ

0k

k
ρρ � � ��

�

�
��
�

�
⋅⋅⋅+ −

=

 

which can be written as : 

 ( ) (i)
1-ρ

1i
id0 yk  yykv ⋅−−⋅= �

=

            (36) 

           ( ) ( )
� � ⋅−−��
�

�
⋅+

=

i
1-ρ

1i
i

ρ
ρ yky  
ελ

K  

      ( ) dτ yyk d0 ��
�

�
−⋅+  

This integral feedback corresponds to the 
integration of errors between the real system 
dynamics and the reference ones which have 
been used to design the feedback linearizing 
controller. 
 
Since equation (14) is sufficient to ensure 
system stability, equation (36) will ensure it too. 
 
At equilibrium, s stays in the boundary layer, 

dτ e keks 01 �⋅+⋅−= ,             (37) 
and the tracking error tends to zero. 
Therefore, the above integral sliding mode 
control law guarantees static error cancellation. 

4.2 Application to Yaw Rate Control 
According to the previous paragraph, the yaw 
rate control law robustness can be improved 
using integral sliding mode control to design an 
additional integral feedback. 
 
The sliding surface is defined by : 

( ) ( )dτ rr 
τ
1rrs dd � −⋅+−=             (38)

 
Then, the initial control law is changed by 
defining v as : 

     
( ) sKτrr

τ
1v d ⋅

ε
⋅+−=              (39)

 

( ) ( ) ( ) �
�

�
�
�

� −⋅+−⋅
ε

⋅+−= � dτ rr 
τ
1rrKτrr

τ
1

ddd

 
According to above theoretical results, such a 
control law adaptation should improve 
robustness and cancel static errors. 
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In this case, the value of  K/ε is limited by the 
neglected steering system dynamics (simulation 
runs are used to determine this limit).  
For a given tuning of K/ε, a reduction of the 
tire/ground friction coefficient induces a 
boundary layer enlargement and thus, slows 
down the integral feedback term effect.

 

Adaptation to actuator saturations 
During on-ground manoeuvres, the aircraft nose 
wheel steering system often reach saturation. 
However, saturations cannot be taken into 
account in the theoretical developments of 
paragraphs 3 and 4 (B(x;u) must be inversible). 
 
Reference [2] shows that, adopting an adequate 
tuning of the feedback linearizing control law, 
saturation does not induce unacceptable system 
behavior. Nevertheless, its action on the 
additional integral feedback introduced in 
relation (39) can be far more harmful. 
 
The use of such a term in presence of 
saturations requires to add an anti-windup 
protection. For the aircraft yaw rate control 
application, such a protection can be easily 
provided using specific systems acquisitions. 
 
The two main saturations (in steering angle and 
rate) can be directly detected using steering 
angle and steering electric order measurements. 
The anti-windup protection can then be 
achieved by “disconnecting” the integrator, 
while the system stays at saturation. 
 
Out of saturation, the control law remains 
unchanged, however, at saturation, it will acts as 
the initial feedback linearizing control. 
 
Simulation runs drawn on figures 4a and 4b 
show that such control law acts as expected and, 
whatever the conditions, the static errors are 
cancelled. 
The response time stays nearly unchanged. This 
is mainly due to the steering system efficiency 
limitation. During most of the response time, the 
system stay at saturation and the additional 
integral feedback is not active. 

δ =  1    0.8     0.5                   0.3 

r (°/s) 

t (s)

2.3 =
τ
1

 
NWθ  (°)

t (s)

2.3 =
τ
1

δ decrease 

 
 
Fig. 4a and 4b. Responses to a yaw rate step 
solicitation with the additional integral feedback 
term. 
 

5  Conclusion 
This study shows that a yaw rate control law 
based on feedback linearization can allow the 
achievement of strong requirements. However, 
in case of important model uncertainties, 
robustness problems can occur.  
The solution, detailed in this article, proposed to 
improve classical feedback linearizing control 
by using integral sliding mode control. It leads 
to design an additional integral feedback that 
increase overall robustness. In the case of the 
aircraft-on-ground yaw rate control, it allows to 
ensure the precision goal even in very harsh 
conditions. 
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The evaluation of the proposed control law is 
still in progress through an accurate validation 
on the Airbus reference simulator and is to be 
soon evaluated on aircraft. 
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