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Abstract 

This paper deals with the guidance law for a 
missile with varying velocity, especially during 
the boost phase. First, the two methods to 
predict the missile flight distance during the 
boost phase are shown. Second, the new 
guidance law that makes the missile fly on the 
collision course with the target is proposed. The 
proposed guidance law takes into account the 
future intercept point and is mechanized by 
combining the proportional navigation and the 
pure pursuit navigation with the mixture ratio. 
Since the performance of the guidance law 
depends on the ratio, the discussion is focused 
on the determination of the ratio. Finally, some 
simulation results show that the proposed 
guidance law can make the miss distance small 
with the small lateral divert requirements over 
the wide range of off-boresight angle and has 
the similar results achieved with the optimal 
collision course. 

Nomenclature 

Ma  : deceleration due to air drag 
0DC  : zero-lift drag coefficient 

,MP DPa C  : design parameter 
LC α  : lift curve slope 
D  : air drag 
F  : desired acceleration command vector
g  : gravitational acceleration 
SPI  : specific impulse 
k  : mixture ratio 
L  : lift 
m  : mass of a missile 

N : navigation constant 
eN : effective navigation constant 

P : position vector of the intercept point 
with respect to the present target 
position, | |P P=  

Q : position vector of the intercept point 
with respect to the present missile 
position, | |Q Q=  

R : relative distance vector, | |R R=  
S : reference area 

hT : thrust 
Bt : burnout time 
Ft : intercept time 

got : time-to-go 
cV : closing velocity along the LOS 

MV : missile velocity vector, | |M MV V=  
MCV : correct missile velocity vector, 

| |MC MCV V=  
MV∆ : M MCV V−  
TV : target velocity vector, | |T TV V=  

,x y : down and cross range 
α : angle of attack 
γ : flight-path angle 
γ : flight-path rate vector 
ε : off-boresight angle 
κ : induced drag coefficient 
ρ : air density 
σ : LOS angle 
σ : LOS rate vector 

( )τ : time constant 
Mφ : the angle between MV and the LOS 
Tφ : the angle between TV and the LOS 
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1 Introduction 
The proportional navigation (PN) is widely used 
as the guidance law for a missile because of the 
effectiveness and the easiness of the 
implementation. If the velocities of a missile 
and a target are constant and the target does not 
perform an evasive maneuver, PN is the most 
suitable guidance law for a missile [1]. However, 
if the velocity of a missile varies significantly, 
the performance of PN is seriously degraded 
because the collision course of the varying 
speed missile with a target is not the same as 
that of PN. Some papers on the guidance 
problem of variable speed missiles have been 
published. Riggs [2] used the linear optimal 
control theory to solve the problem. Cho et al. 
[3],[4] also used the linear optimal control and 
showed a new guidance law that had the similar 
structure to the augmented proportional 
navigation. On the other hand, the authors 
presented a new guidance law for a missile with 
varying velocity [5],[6], which is not based on 
an optimal guidance. This guidance law is 
derived by estimating the external force exerted 
on the missile after launch, computing the future 
intercept point and guiding the missile on the 
collision course to the point. This is mechanized 
by combining PN and the pure pursuit 
navigation (PPN) with the mixture ratio and 
thus the performance of the law strongly 
depends on the ratio. 

There are two cases where the short range 
air-to-air missile (SRAAM) speed changes 
largely. One is the boost phase and the other is 
the deceleration phase after the rocket motor 
burns out. Since the missile speed change 
during the boost phase is larger than the 
deceleration phase, this paper deals with the 
boost phase. First, we estimate the future 
position of the missile and the target and then 
calculate the future intercept point during the 
boost phase. Second, the guidance law for a 
missile to the future intercept point is presented. 
Finally, some simulations are performed using a 
two-dimensional engagement model to show the 
effectiveness of the guidance law presented. 
Especially let us focus the discussion on the 

determination of the mixture ratio and the 
comparison with the optimal collision course. 

2 Calculation of Future Intercept Point 

2.1 Calculation of Time-to-go 
Figure 1 shows the geometrical relationship 
between a missile and a target. The points M 
and T represent the actual position of a missile 
and a target, the point I is the future intercept 
point and thus the triangle TMI is the collision 
triangle. The following equation must be 
satisfied in order to form the collision triangle. 

2 2 2 2 cos 0TQ P R PR φ− − − =  (1) 

Since Q and P  are functions of time-to-go, 
Eq.(1) is the basic equation for computing the 
time-to-go. Here, the relative distance vector R , 
the missile velocity vector MV and the target 
flight direction are to be measured but the target 
position vector P  and the missile flight distance 
Q must be estimated. 

2.2 Prediction of Target Position 

First, let us predict the target position P  at the 
time-to-go. If the target has constant speed and 
does not perform evasive maneuvers on the two-
dimensional plane of the constant altitude, P  
can be written as: 

T goP V t=  (2) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometrical Relationship between 
Missile and Target 
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2.3 Prediction of Missile Flight Distance 
Next, let us predict the missile flight distance Q 
during the time-to-go. As we are considering a 
constant-altitude missile in this paper, the 
gravity can be neglected. The external forces 
acting on the missile during the boost phase are 
the thrust and the air drag. Thus, we have 

21( ) ( )
2M h M D Mm t V T V SC Vρ= −  (3) 

where 
0

0

( )

h

SP

m t m mt
Tm t

I g

= +

= −
 (4) 

ISP is a specific impulse and m0 is an initial mass 
of the missile.  The thrust Th, the air density ρ  
and the time derivative of the missile mass m  
are constant during the boost phase. Since the 
drag coefficient CD(VM) changes with the 
missile velocity, the correct closed-form 
solution of the missile flight distance Q can not 
be derived. So let us derive the approximate 
closed-form solution. The two methods are 
shown as follows. 
 
(a) Method 1 

From Eq.(3), we have  

( )
h

M M
TV a

m t
= −  (5) 

where 
21 ( )

2 ( )M M D Ma V SC V
m t

ρ=  (6) 

Assuming that the deceleration aM is constant, 
we can integrate Eq.(5) and obtain 

(0)( ) (0) log
(0)
R

M M SP M
R

tV t V I g a t
t t

= + −
−

 (7) 

where 
0( )( ) SP SP

R
h h

I m t g I m gt t t
T T

= = −  (8) 

h
SP

TI
mg

= −  (9) 

Integrating both sides of Eq.(7), we obtain the 
flight distance Q during the time-to-go tgo as 
follows: 

2(0)
2
(0) (0)1 log

(0)

M
M go go

R go R
SP go

go R go

aQ V t t

t t tI gt
t t t

= −

  − + −  −   

(10)

Equation (10) gives the good estimate for the 
flight distance if the missile velocity change is 
small. When the velocity change is large, 
however, since we cannot assume that aM is 
constant, Eq.(10) does not show the good 
estimate for the flight distance. 
 
(b) Method 2 

Though aM is assumed to be constant in the 
Method 1, let us consider CD is constant and 
integrate Eq.(3) in the Method 2. From Eq.(3), 
we obtain 

2

1
( )

M

h M

V
T V m tω

=
−

 (11)

where 

0

0.5
0.5

D

D

SC
SC

ω ρ
ρ

=
=

 (12)

Since ω is considered to be constant, both sides 
of Eq.(11) can be integrated as follows: 

0

( )

2(0)

1M

M

V t mM

V m
h M

dV dm
T V m mω

=
−∫ ∫  (13)

The integration of the left term of Eq.(13) is 
given by 

( )
12(0)

1 log
2

M

M

V t M M

V
h M Mh

dV V C
T V VT

η
ω ηω

− −
= +

− +∫ (14)

where 

hTη
ω

=  (15)

0
1

0

1 log
2

M

Mh

VC
VT

η
ηω

−
=

+
 (16)

The right term of Eq.(13) is integrated as 
follows: 

0 0

1 log
m M M

m
M

dm t t
m m m t t

 =  − ∫  (17)

where 
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0SP
M

h

I m gt
T

=  (18)

From Eq.(14) and Eq.(17), we have 

1
0

1 log log
2

M M M

M Mh

V t tC
V m t tT

η
ηω

− −  + =  + − 
(19)

Considering VM < η, Eq.(19) can be transformed 
to 

12 hM h C T

M

V p e
V

ωη
η

−− +
= ×

+
 (20)

where 

02 /M hh t T mω=  (21)

1 / Mp t t= −  (22)

Let us define ν as follows: 

1 02

0

h MC T

M

Ve
V

ω ην
η
−

= =
+

 (23)

Substituting Eq.(23) into Eq.(20) and 
rearranging it, we obtain VM as follows: 

( )
1 1

h

M h h

pV t
p p

η ην
ν ν

= −
+ +

 (24)

Integrating both sides of Eq.(24), we obtain the 
flight distance Q as follows: 

1 1
tgo

h

M h hp

pQ t dp
p p

νη ξ
ξ ξ

 
= − + + 

∫  (25)

where 
1ξ
ν

=  (26)

1go

go
t

M

tp
t

= −  (27)

Since h, ξ and ν are constant, the integration of 
Eq.(25) can be done using a hyper-geometric 
function G, that is,  

1 11 2 ,1,1 ;

1 12 ,1,1 ;

go

go go

M t

h
t t

Q t p G
h h

p G p
h h

η ν

ν

  = − + + −  
 

 − + −  
 

 (28)

Substituting Eq.(2) and Eq.(10) or Eq.(28) into 
Eq.(1) and solve it, we obtain tgo and thus P  and 

Q are determined. This means that the future 
intercept point is predicted. 

3 Modified Proportional Navigation 
Since the future intercept point is predicted, let 
us drive the guidance law which guides the 
missile to the point. From Fig.1, the LOS rate is 
given by the following vector equation.  

2 2

( ) ( )T MC MR V V R V
R R

σ × − × −∆
= +  (29)

The first term of Eq.(29) represents the LOS 
rate of the missile flying on the collision course 
and the second term represents the one due to 
the deviation from the collision course. If a 
missile is guided with a flight-path rate in 
proportion to the second term of Eq.(29), 
assuming no missile dynamic lags, the flight-
path rate of the missile becomes 

2

( )MR VN
R

γ × −∆
=  (30)

where N is the navigation constant, which is 
related to the effective navigation constant Ne as 
follows: 

cos
e c

M M

N VN
V φ

=  (31)

Thus, the required lateral acceleration command 
for a missile to fly along the correct collision 
course is given by the following equation 
[5],[6]: 

2
M

M M
N VF V P R V
R Q

  
= − × ×  

  
 (32)

In general, however, the missile uses the LOS 
rate as the guidance information. So, Equation 
(32) is not an adequate form to implement. 
Substituting Eq. (2) into Eq. (32) and arranging 
it, we obtain 

2

2

( )

(1 )

M T
M

M
M

V V RF Nk V
R
V RN k V

R

− ×
= ×

×
+ − ×

 (33)

where the mixture ratios k is defined by the 
following equations: 
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M goV tk
Q

=  (34)

The first term of Eq. (33) represents PN with the 
navigation constant Nk and the second term 
represents PPN with the navigation constant 
N(1-k). Figure 2 shows the block diagram for 
this guidance law. Since this is considered to be 
one of the modifications of PN, we call this the 
modified proportional navigation (MPN) for 
convenience. As is obvious from Eq. (33) or 
Fig.2, the performance of MPN largely depends 
on the mixture ratio k, which is given by Eq. 
(34) and changes with time. This means that it is 
very difficult to determine the mixture ratio k 
directly. Since the mixture ratio k is a function 
of aM or CD0, however, the parameters aM and CD0 
can be used as the design parameters to 
determine the mixture ratio k. So we use aMP and 
CDP instead of aM and CD0, respectively, to 
confirm that aMP and CDP are the design 
parameters for k. As is shown later, changing 
the parameter aMP or CDP depending on the 
position and the launch angle makes the miss 
distance nearly zero over the wide range of off-
boresight angle. 

4 Optimal Trajectory 

One of the most interesting missile flight 
trajectory is the optimal trajectory which 
minimize the following performance index 

2

0
( )

Ft
FJ wR t F dt= + ∫  (35)

where w is the weight on the miss distance 
( )FR t . In order to compare the trajectory of 

MPN with the optimal trajectory, we solve the 
 

Table 1. Parameters of Missile 
m0 = 94 kg tB = 5.5 s 
mtB = 63 kg Ne = 3.5 
Th = 12740 N Load limit = ±30 G 
S = 0.0127 m2 Disable time = 0.5 s 
ISP = 230.6 s Blind distance = 100 m 
τα = 0.4 s m = 5.64− kg/s 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Block Diagram for MPN 
 
nonlinear programming problem (NLP) which is 
the minimization of Eq.(35). The practical 
computation is performed using the sequential 
quadratic programming (SQP) algorithm, EZopt 
of U.S.A. AMA Company. 

5 Simulation 

5.1 Calculation of Missile Flight Distance 
Some simulations are performed to examine the 
accuracy of the two approximate solutions for 
missile flight distance Q presented in section 2.3. 
We assume that the missile is flying on the 
straight line at the constant altitude of 5000m. 
The initial Mach number is set to 0.75. The 
parameters of the missile for this simulation are 
shown in Table 1 and Fig.3. The parameter CDP 
is set to 1.54 which is the mean value of the 
aerodynamic coefficient CD0 of Fig.3. The 
parameter aMP is set to 4.42 using the following 
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Fig. 3. Aerodynamic Coefficients of Missile 
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Fig.4. Mach Number and Q 

 
equation: 

2
0

02
M DP

MP
V SCa

m
ρ

=  (36)

Figure 4 shows the time histories of the Mach 
number and the missile flight distance Q. From 
Fig.4, we see that the approximate solutions by 
Method 2 (dashed lines) show the good 
agreement with the integral solutions (solid 
lines), that is, the true solutions. On the other 
hand, the errors of the approximate solutions by 
Method 1 (dotted lines) increase gradually as 
the flight time increases. 

5.2 Engagement Simulation 
The proposed guidance law is applied to the 
model of SRAAM and examined through 
mathematical simulations. The simulation 
results are compared with those achieved with 
PN. We assume that both a missile and a target 
are point mass. Their trajectories are limited on 
a two-dimensional plane at the constant altitude 
of 5000m. The missile dynamics in Fig.2 is 
given by the first-order lag with time constant τα. 
The initial Mach number of the missile is set to 
0.75. On the other hand, the target’s Mach 
number is constant at 0.75 and the target does 
not perform evasive maneuvers. Figure 5 shows 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Symbols for Missile and Target 
 

symbols for the missile and the target and the 
equations of motion of the missile are as 
follows: 

cosM Mx V γ=  (37)

sinM My V γ=  (38)

cosM hmV T Dα= −  (39)

sinM hmV T Lγ α= +  (40)

0m m mt= +  (41)

1 1
c

α α
α α α

τ τ
= − +  (42)

20.5 M LL V SC αρ α=  (43)

2 2 2
00.5 ( )M D LD V S C C αρ κ α= +  (44)

22 /( )c M LmF V SC αα ρ=  (45)

From Eq.(33) or Fig.2, the commanded 
acceleration F for MPN is given by 

sin( )(1 ) M
M M

VF NkV N k V
R
σ γσ −

= + −  (46)

Here, k is determined from Eq.(34) but there are 
two methods to compute Q, that is, the Method 
1 of Eq.(10) and the Method 2 of Eq.(28). The 
Method 1 needs the value of aMP and the Method 
2 needs the value of CDP. In order to distinguish 
these two methods, the MPN which uses the 
Method 1 to compute k is called MPN1 and the 
MPN which uses the other method is called 
MPN2. 
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Fig. 6. Initial Geometrical Conditions for 
Missile and Target 

 
On the other hand, F for MPN is given by 

MF NV σ=  (47)

As mentioned before, the data for simulations 
are given in Table 1 and Fig.3. Figure 6 shows 
the initial geometrical conditions for the missile 
and the target.  

First, let us show the concrete way of 
choosing the design parameters aMP and CDP. 
Performing a lot of simulations changing the 
parameters aMP and CDP with respect to the 
various off-boresight angles ε, we obtain 
Fig.7(a) and Fig.7(b). Figures 7(a) and 7(b) 
depict the contour lines of the miss 
distance(MD) in ε-aMP plane and ε-CDP plane, 
respectively. From these figures, the appropriate 
design parameters aMP and CDP for the given ε 
can be chosen so as to make the miss distance 
nearly zero or small. And also we know the 
following from Figs.7(a) and 7(b). If the contour 
lines are sparse, that is, the space between the 
each other’s contour lines is wide, the relevant 
MPN is robust with respect to the change of ε. 
And if the contour lines are extended vertically, 
the relevant MPN has good robustness with the 
parameter aMP or CDP. Therefore, from Fig.7(a) it 
is said that the MPN1 has good robustness with 
respect to the change of ε but does not have 
enough robustness with aMP because the contour 
lines are inclined to the right. On the other hand, 
Fig.7(b) shows that the MPN2 has better 
robustness with ε and CDP than the MPN1 
because the contour lines are sparse and nearly 
vertical. 
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Fig.7(a). Contour Lines of Miss Distance 

in ε-aMP Plane with MPN1 
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Fig.7(b). Contour Lines of Miss Distance 

in ε-CDP Plane with MPN2 
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Fig.8(a). Off-boresight Angles vs. Miss distance 
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Fig.8(b). Off-boresight Angles vs. Lateral 

Divert Requirement ∆V 
 

Next, let us compare the off-boresight 
ability of MPN with that of PN. Figure 8 shows 
the MD and the lateral divert requirement ∆V 
for various ε. ∆V is the time integration of the 
missile commanded acceleration as follows: 
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Fig.9(a). Flight Trajectories of Missile and 

Target ( ε =30deg) 
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Fig.9(b). Time Histories of Missile Guidance 

Command ( ε =30deg) 
 

Table 2. Miss Distance ( ε =30deg) 
PN 3.1 m

MPN1(aMP=0.75) 0 m
MPN2(CDP=1.62) 0 m
Optimal(w=1.19) 0 m

 

0

Ft
V F dt∆ = ∫  (48)

From Fig.8(a), we see that the correct off-
boresight angle which makes MD zero with PN 
is only 52 deg. As is also evident from Fig.8, the 
miss distance with MPN1 is zero over the off-
boresight angle range of 30 deg to 54 deg using 
the appropriate aMP chosen from Fig.7(a). The 
miss distance with MPN2 is zero over the off-
boresight angle range of 30 deg to 38 deg using 
the appropriate CDP chosen from Fig.7(b). These 

results show that MPN1 can make the miss 
distance zero over the wider range of ε than the 
MPN2 by adjusting the parameter aMP. However, 
from Fig.8(b), it is clear that the MPN2 has the 
straight collision course but the MPN1 and PN 
do not have such kind of courses, because the 
∆V achieved with the MPN2 for the ε of 30deg 
is zero but the ∆V with MPN1 or PN never turns 
out to be zero for all ε. 

Finally, let us compare the trajectories of 
MPN1, MPN2 and PN with the optimal 
trajectory. The off-boresight angle is set to 
30deg. Figure 9 displays the flight trajectories 
of the missile and the target and the time 
histories of missile guidance command. The 
miss distances of these simulations are shown in 
Table 2. From Fig.9, the trajectory and the 
command with MPN2 coincide well with those 
of the optimal guidance and the trajectory with 
MPN1 is slightly curved with the small 
command. But the trajectory of PN missile 
curves largely and thus the command of PN is 
large. 

6 Conclusion 
In this paper, the two methods to predict the 
missile flight distance during the boost phase 
are presented. The first method, Method 1, is 
obtained assuming the deceleration due to the 
air drag is constant and the second one, Method 
2, assumes that the drag coefficient CD is 
constant. Though the errors of the Method 1 
increase gradually as the flight time increases, 
the Method 2 shows the good estimation. These 
methods are used to predict the future intercept 
point and then the new guidance law which 
guides the missile to the point is presented. This 
guidance law is mechanized by combining the 
proportional navigation and the pure pursuit 
navigation with the mixture ratio k. The 
guidance law presented is called the modified 
proportional navigation (MPN) and the MPN 
which uses the Method 1 to compute k is called 
MPN1 and the MPN which uses the Method 2 is 
called the MPN2. MPN1 and MPN2 have the 
high off-boresight ability comparing with the 
proportional navigation. As for MPN2, 
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especially, if the off-boresight angle is the 
correct lead angle, the trajectory achieved with 
MPN2 coincides with that of the optimal 
guidance. 
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