
24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
  

1 

 

  
Abstract  

The paper presents the possibility of 
aircraft control using its engines (propulsion 
systems), when the flight commands are 
inactive (or damaged). An automatic system 
can be imagined and realized, which can 
assure the aircraft (airplane) control; the stick 
and the rudder bar are no more the input 
signal sources for the aerodynamic surfaces 
(elevator, ailerons, rudder), but realize a 
complex input signal for the engines’ 
regulators (controllers), using a signal forming 
block (BFS) and an on-board computer. The 
studied system can be applied for twin or more 
engines aircraft (airplanes).  

One studies the aircraft movements 
(longitudinal and lateral), taking into account 
the engines’ operating effects, which leads to 
the classic mathematical model’s modifying. 
For both of the models one elaborates the 
linearised non-dimensional forms. 

In order to estimate the performances, one 
has studied a passenger airplane’s behavior. 

The authors have established the new 
mathematical models, the command laws for 
engines and also have performed the 
simulation for the case of a line airplane 
(passenger plane).  

 

1 Introduction 

 It is well known that an airplane 
(aircraft) horizontally flying, with all flight 
commands on neutral positions, if the engine’s 
thrust grows, it tends to climb; similarly, thrust 
decreasing leads to the opposite effect, 
aircraft’s descent.  
 If the plane is twin engine (or multi-
engine), having the engines symmetrical 
mounted (on the wings, or on the rear 
fuselage), if one engine’s thrust grows and the 
other one’s diminishes (or is kept constant), the 
plane banks slowly and executes a slide-slip 
turn, toward the engine which thrust is lower. 
 For both of the situations, the thrust 
modifying generates the torque variation, 
which leads to the balance modifying and, 
consequently, the flight attitude modifying. 

2 System presentation  

Starting of these observations, one can 
realize the airplane’s (aircraft’s) control using 
the engines, when the flight commands are 
stucked up or inactive. Normally, if for a 
reason or another (hydraulic failure, servo-
amplifier’s stucking, or some command’s 
chain’s elements stucked up) the aircraft 
control becomes impossible and the crush is 
imminent. Even so, the pilot can regain the 
control and land safely if he could synchronize 
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the engines in order to realize the 
climbing/descent and turns. Although, it is very 
difficult for the pilot to determine properly the 
thrust exact values, the exact throttles 
positioning, because of the huge quantity of 
information which must be processed. 

A new automatic system can be imagined, 
based on an unique command of the airplane-
engines ensemble; using a board computer and 
specific software, the pilot can control the 
airplane (aircraft) using the engines. So, the 
stick and rudder-bar don’t realize the input 
signals for the aerodynamic control surfaces, 
but the input signals for a complex signal 
forming block, which output represents the 
input signal for the board computer (engine’s 
auto-pilot).       

This one realizes the signals for the 
engines, that means the throttles positioning is 
less precisely and could lead to uncontrollable 
effects (because the engine’s response time is 
bigger then the aerodynamic command’s 
response time). 
 A practical solution for the control’s 
improvement is the commands transmissions 
ratio’s modifying; the stick’s and rudder-
barrel’s tasks are undertaken by a control panel 
equipped with trimmers (in fact small control 
wheels, thumb-wheels meaned to preset the 
command parameters: flight speed, pitch angle, 
banding angle, flight course etc). These signals 
(parameters) will be processed by the board 
computer, together with the airplane’s 
(aircraft’s) flight parameters furnished as feed-
beck signals. 
 From the pilot’s point of view, this one 
will preset the input arguments (parameters) 
using the board panel or the stick’s and rudder 
bar’s displacement. The board computer 
realizes the transforming into signal for 
engines, with respect to the airplane’s 
(aircraft’s) flight altitude and attitude. 
 In order to emphasize the aircraft 
behavior when the engine’s thrusts is modified, 
the system’s mathematical model must be re-
written, including the engine’s operating effect. 
 

3 Aircraft control 

3.1 Longitudinal motion’s control 

 The linearised non-dimensional 
mathematical model is [2] 
 

ˆˆdˆd d d d
ˆ ˆ ˆ ˆ ˆd d d d d

T
yv H

t t t t t
ωα θ⎡ ⎤

=⎢ ⎥
⎣ ⎦

 

ˆ ˆˆˆ
T

yA v Hα θ ω⎡ ⎤= +⎣ ⎦  

1 2 3
ˆ ,

T

m p zB z z zδ δ υ⎡ ⎤⎣ ⎦  

 

 

(1) 

 
where 
 

ˆˆ ˆˆ, , , ;
* * *y y

a a

t v b Ht v H
v v v

ω ω
τ τ

∆ ∆
= = = =

 

(2) 

 
aτ  is the aerodynamic time constant,  

v*=const. – uniform horizontal flight’s speed, 
v-flying speed, α -attack angle, θ -pitch angle, 

yω θ=  - pitch speed, H-flight altitude, mδ -
engine’s command,, pδ - elevators angle, 

1 2 3, ,z z z -disturbances, vz
z

v
v

υ = , vzv - wind 

vertical speed, ˆ ˆ,A B - matrix (5x5), respectively 
(5x6). 

For a simplified form of the system, one 
ca renounce at "^", so the mathematical model 
becomes equivalent to 

11 12 13 1(s ) θ= (s)m ma v a a b zα δ− − − + , (3) 

21 22 23 2(s ) (s )θ=z ,a v a aα− + − − −  (4) 

2
41 42 44 43

0 2 3

(s s )θ=
= (s)p p

a v a a a
b b z z

α
δ

− − + − −
+ +

 
(5) 
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s θ - zH α υ= + , (6) 

The command law’s components can be chosen 
as: 

One assume that the airplane (aircraft) 
has the flight commands stucked up on the 
neutral position, so the elevator’s angle 0pδ = , 
then from (8) one obtains: 

(s) (s)H H HvH k k k vθ
θθ θ= − − , (9) 

where the co-efficient are: 

(s) (s)
, (s) , ( )p p pv

H H HvH H H
p p p

k k k
k k k s

k k k

θ
θθ

θ= = =

 

(10) 

Substituting H from Eq (9) into (7), one 
obtains: 

(s) (s) ( (s)
(s) (s)) ( (s)

(s) (s)) .

v
m m H mH mv

mH Hv m

mH H

k v k k k
k k v k

k k

θ

θ

θ

δ θ

θ

= − − −
− − −

−
 

(11) 

Supplementary, from Eq. (6) and Eq. 
(9)  α becomes 

s (1 s (s)) s (s) .H Hv H zk k k vθ
θα θ θ υ= − + + +

 
(12) 

One eliminates mδ  between Eq. (4) and 
Eq. (11). One also eliminates α between the 
first and the second equation of the 
mathematical model (Eqs.(3) and (4)), 
respectively Eq. (12); it results  

11 12

12 13

12

12 1

[s s (s) ( (s)
(s) s)] [( )
s (s) ( (s)

(s) (s))]

( s (s)) ,

Hv m mv

mH Hv

H m m
v

mH H m m

H m mH

a a k b k
k k v a a

a k b k

k k b k

k a b k z

θ θ

θ

θ

θ

θ

− − + −
− + + +

+ − −

− = −

− + +

 

 

(13) 

21 22

22 23 22

22 2 22

[ s(s ) (s)]
[ ( ) s(s ) (s)]

s(s ) (s ) .

Hv

H

H z

a a k v
a a a k

k a z a
θ

θ

θ

θ υ

− + − +
+ − + + − =

= − + − −

 

(14) 

So, the above equation system (13) and 
(14) can be expressed by 

P1v(s)v + P1 = f1(s),  (15) 

P2v(s)v + P2 = f2(s),  (16) 

Identifying properly the arguments, one 
obtains: 

1 11

12

(s) (s ) (s) (s)
( (s) (s)),

v m mv Hv

m mH

P a b k k
b k a

= − + −
+

 (17) 

1 12 13

12

(s) [( ) (s) (s)
( (s) (s)),

m m H

m mH

P a a b k k
b k a

θ θ θ= − + − +
+

 

(18) 

P2v(s) = −a21 +s(s − a22 )kHv(s),  (19) 

P2 (s) = −(a22 + a23 ) +s(s − a22 )kH (s);  (20) 

f1(s) = bmkm
v v − kH(bmkmH(s) + a12s) + z1,  (21) 

f2(s) = kHs(s − a22 ) + z2 − (s − a22 ) z. (22) 

 
Imposing that the two channels (pitch 

angle’s and longitudinal speed’s channel) are 
independent, in order to eliminate any 
interaction between, it leads to the 
simultaneous fulfilling of the conditions 

 P1 = 0, P2 v = 0 . (23) 

 
 

(s) (s) (s)

(s) ,

v v v
m m mv m

v
mH

k v k v k

k H
θδ θ= − − −

−
 

(7) 

(s) (s) (s) H
p p p pv pk k k v k Hθ

θδ θ θ= − − −  (8) 
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Consequently, the system described by 

Eq.  (15) and (16) becomes: 

P1v(s)v = f1(s),  (24) 

P2 (s) = f2(s). (25) 

The first equation of (23) can be expressed 
as: 

12 13

12

[ (s) ( )]
(s)[ (s) s] 0,

m m

H m mH

b k a a
k b k a

θ

θ

− − +
+ + =

 (26) 

equivalent to the equation system 

bmkm (s) = bmkm = a12 + a13,  (27) 

bmkmH(s) = bmkm
*
H(s) = −a12s. (28) 

 
 For the second equation of (23) one can 

impose (s) v
Hv Hk k=  ; so 

2 2 221
22 2 2 2s s - 0 s 2 s+ 0.v

H

aa
k

ξ ω ω− = ⇔ + =

 

(29) 

 Imposing the  2ω  frequency and 
properly identifying, one obtains,  

kH
v = − a21

2
2 , kH

*v = 0 (30) 

Taking into account the Eq. (28) form, Eq. (24) 
and Eq. (25) become: 

[s − a11 + bmkmv(s)]v = bmkm
v v + z1,  (31) 

22 22 23

22 2 22

[s(s ) (s) ( )]

s(s ) (s )
H

H z

a k a a

k a z a
θ

θ

θ

θ υ

− − − =

= − + − −
 (32) 

 
Analyzing the left member’s terms in 

the above equations, it results that the 
transmission functions can have the forms 

kmv(s) = km
v , kH (s) = kH + kH

*

s. (33) 

 
Imposing also the frequency range in the 

speed’s channel  1
1

1
T

ω = , where 1T - transfer 

function’s time constant of 
 

11 1

(s)(s)
(s)

,
s ( ) s

v
v

v v
m m m m

v
m m

vH
v

b k b k
b k a ω

= =

= =
+ − +

 

(34) 

 
one obtains:  

bmkmv(s) = bmkm
v = a11 + 1. (35) 

If the transfer function H θ
θ  has a 

Vishnegradsky form [see 3,5], that means  

22
3 2 2 3

2 0 1 0 0

(s) s(s )(s)
(s) s s s

Hk aH
A A

θ
θ
θ

θ
θ ω ω ω

−
= =

+ +
 

(36) 

identifying member by member Eq. (36) 
and Eq. (32), one obtains the system 
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          Fig.2.a Longitudinal (pitch angle) control system’s block diagram 
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                     Fig. 2.b Equivalent block diagram 
 

3 22 23
0

2 0 0 22

,

2

H

H

H

a a
k

kA a
k

θ

θ

θ

ω

ω ξω

+
= −

= = − +

 

(37) 

 Imposing 0ω  and ξ , from Eq. (37) one 
obtains the values of the transitions ratio Hkθ  

and Hkθ . 
Introducing Eq. (27), (28), (30), (33) and 

(35) into (11), one obtains the command law as 
12 22 23

11 1 3
0

12 21
22 11 1 2

2

12 22 23
12 13 3

0

22 0

( )( )

( 2 )s s

( )[( ) s

(s 2 )]

m m
a a ab a v

a aa a v

a a aa a

a

δ ω
ω

ξ θ ω
ω

ω
ξω θ

+
= + −

⎛ ⎞
+ − + − −⎜ ⎟

⎝ ⎠
+

+ −

+ +

 

 

 

(38) 

so, this one has a specific form 
sm v vf v f f v fθθδ θ θ= + − −  (39) 

If .constθ = , then 0sθ θ= =  so Eq. (39 
becomes).  

m = fvv − fvv − f . (40) 

 The system’s block diagram is shown in 
fig.2.a, and its equivalent form –in fig.2.b.  
 The engine’s transfer function has one 
of the following forms [2,5] 
 
 
 
 
 

  
1 1(s) , (s) ,

s 1 s( s 1)
( 's 1)(s)

s( s 1)

m m

M
m

H H

kH

τ τ
τ
τ

= =
+ +

+
=

+

 

(41) 

 

where m

a

ττ
τ

=  - time constant; mτ - engine’s 

time constant with respect to the engine’s thrust 
and aτ -airplane’s (aircraft’s) aerodynamic time 
constant. 
 

3.2 Lateral motion’s control 

 
The linearised non-dimensional 

mathematical model of an airplane (aircraft is 
[2] 

[ ]

1 2 3

ˆ ˆ ˆd d d d d d
ˆ ˆ ˆ ˆ ˆ ˆd d d d d d

ˆ ˆ ˆ ˆ

ˆ ,

T
x z

T
x z

T

e d y

y
t t t t t t

A y

B z z z

β ω ω ϕ ψ

β ω ω ϕ ψ

δ δ υ

⎡ ⎤ =⎢ ⎥⎣ ⎦

= +

⎡ ⎤+ ⎣ ⎦

 

 

(43) 

where 

ˆ ˆ ˆ ˆ, , , ;
*x a x z a z

a a

t yt y
v

ω τ ω ω τ ω
τ τ

∆
= = = =

 

(44) 

aτ is the aerodynamic time constant, v*- 
flight speed’s horizontal component, β - 
sliding angle, ϕ - banking angle, xω ϕ= - 
banking speed, ψ - flight course, zω ψ= -
gyration speed rate, y- lateral displacement; 

θ
_ C  A  L  C  U  L U S

B L O C K
(BOARD COMPUTER)

E N G I N E (S)
A  I  R  C  R  A  F  T

(AIRPLANE)

θ
_

V V
δm F
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ˆ ˆ,A B - matrix (6x6); eδ - aileron angle, dδ - 
rudder angle, 1 2, 3,z z z - disturbances and  

,vy
y vy

v
v

v
υ = - lateral wind speed.. 

 Renouncing at ''^'', the liberalized non-
dimensional mathematical model of the lateral 
motion becomes 

*
= a11 + a12

* +a13
* +a14 + z1,  (45) 

**= a21 + a22
* +a23

* +z2 + b2e e,  (46) 

31 22 33 3 3

3

ψ= e e

d d M M

a a a z b
b b

β ϕ ψ δ
δ δ

+ + + + +
+ +

 (47) 

*y= − + y. (48) 

 
 Similarly, assuming that all command 

surfaces are stucked up 

e = 0, d = 0. (49) 

The command law’s components are 
chosen as 

(s) (s)

(s) (s) ;
d d d

y
d d d

k k

k k k y

ψ
ϕ

ψ ε

δ ψ ϕ

ψ ε

= − −

− −
 

(50) 

(s) (s)

(s) (s) ;
M M M

M My

k k

k k y

ψ
ϕ

ψ

δ ψ ϕ

ψ

= − −

−
 

(51) 

where the co-efficient , , ,y y
d M d Mk k k kψ ψ  are 

transmission ratios and the others are 
transmissions functions: 

(s) s, (s) ,

(s) s, (s)

(s) s;

d d d d d d

M M M M M M

y y
My M M

k k k k k k

k k k k k k

k k k

ψ ϕ ϕ ψ ψ
ψ

ϕ ϕ ψ ψ
ϕ ψ ψ

= + = +

= + = +

= +
 

(52) 

ε - radio beacon’s direction. 
Imposing that 0dδ = , one obtains 

 (53) 

(s) (s) (s) ,y y y yy k k k kψ
ϕ ψ εψ ϕ ψ ε= − − −

 

where 
(s)

(s) s,d
y y yy

d

k
k k k

k
ϕ ϕ ϕ

ϕ = = +  (54) 

( )
(s) s,d

y y yy
d

k s
k k k

k
ψ ψ ψ

ψ = = +  (55) 

(s) 1(s) .
s

d
y y yy

d

kk k k
k

ε εε
ε = = +  (56) 

Substituting y from (53) in Eq. (51), this 
one becomes: 

(s) ( )
(s) (s) ( (s)

_ (s) (s)) ( (s) (s)
(s)) ( (s) (s) (s))

y
M M M y

My y M

My y M My

y M My y

k k k
k k k

k k k k
k k k k

ψ ψ

ε ϕ

ϕ ψ

ϕ ψ ψ

δ ψ

ε

ϕ

ϕ ψ

= − +

+ − −

− −

− −

 

 

(57) 

 and Eq. (48), considering Eq. (52), also 
becomes: 

s (1 s (s))

s (s) (s)
y y

y y y

k k

k sk

ψ
ψ

ϕ ε

β ψ ψ

ϕ ε υ

= − + + +

+ + +
 

(58) 

Assuming that 0e dδ δ= = , from Eq. (47) 
and  (49), written in complex, one obtains 

13 12 14 11 1s ( s ) (s )a a a a zψ ϕ β+ + − − = −
 

(59) 

2
33 32 31

3

(s ) s M Ma s a a b
z

ψ ϕ β δ− − − − =
= −

 
(60) 

Eliminating  Mδ  and β  between Eq. (57), 
(58), (59) and (60); a new system is obtained 

P1 (s) + P1 (s) = g1(s),  (61) 

P2 (s) + P2 (s) = g2(s),  (62) 
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2
1 33 31

31

(s) (s s ) (s)

(s)( (s) s),
M M

y M My

P a a b k

k b k a
ψ ψ

ψ

= − − + −

− +
 

(63) 

1 32

31

(s) s (s)
(s)( (s) s),

M M

y M My

P a b k
k b k a

ϕ ϕ

ϕ

= − + −

− +
 

(64) 

P2 (s) = a11 − s(s − a11 )ky (s),  (65) 

P2 (s) = a12s+a14 −s(s − a11 )ky (s);  (66) 

1 31

31 3 31

(s) [ s ( )]
(s)( (s) s) ,

y
y M M M y

y M my y

g k a b k k k
k b k a z a

ψ ψ ψ

ε

ψ

ε υ

= − + − + +

+ + − +
 

(67) 

1 11 11

1 11

(s) s(s )] s(s )
(s) (s ) .

y

y y

g k a a
k z a

ψ

ε

ψ

ε υ

= − − + −

+ + −
 

(68) 

 One assume that the two cannels are 
independent; imposing this condition, 
equivalent to 

P1 (s) = 0, P2 (s) = 0, (69) 

the system (58) and (59) can be described 
by two independent sub-systems, so it becomes 

P1 (s) = g1(s),  (70) 

P2 (s) = g2(s). (71) 

The firs condition of (69) can be written as 
32

31

( s (s))

(s)( (s) s) 0,
M M

y M My

a b k

k b k a
ϕ

ϕ

− + −

− + =
 

(72) 

which is equivalent to the system 

32

32

( s) 0,

,
M M M M

M M

b k k a k

b k a

ϕ ϕ ϕ

ϕ

− = ⇔ =

=
 

(73) 

31

31

( s) 0,

.

y y y
M M M M

y
M M

b k k a k

b k a

− = − ⇔ =

= −
 

(74) 

 
The second condition (69) is equivalent  to 

s2 + 2 2 2s + 2
2 = 0. (75) 

Identifying properly, one obtains 
11
2
2

, 0y y
ak kψ ψ

ω
= − = . (76) 

Considering Eq. (73), the system based on  
(70) and (71) becomes: 

2
33 31

31 3 31

[(s s ) (s)]

( s ) ,
M M

y M M y

a a b k

k a b k z a
ψ

ψ ψ

ψ

ψ υ

− − + =

= − + − +
 

(77) 

12 14 11

11 11

1 11

[( s ) s(s ) (s)]

s(s ) s(s ) (s)
(s ) .

y

y y

y

a a a k

k a a k
z a

θ

ψ
ε

ϕ

ψ ε

υ

+ − − =

− − + − +

+ + −

 

(78) 

Analyzing the left member’s terms 
structure of the above system, the transmission 
functions can be properly chosen as 

(s) s, (s) sy y
M M M y M Mk k k k k kψ ψ

ψ ϕ= + = +  (79) 

Imposing ζ and 0ω , and identifying, from 

( )
31

2
33 31

31
2 2

0 0

(s)(s)
(s)

s
s s ( )

s
s 2 s

y M M

M M M M

y M M

H

k a b k
b k a b k a

k a b k

ψ
ψ

ψ ψ

ψ ψ

ψ ψ

ψ
ψ

ξω ω

= =

− +
= =

+ − + −

− +
=

+ +
 

 

 

(80) 

it results 
2

31 0 33 0, 2M M M Mb k a b k aψ ψω ξω= + = +  (81) 

 
substituting (s)yk ϕ in Eq. (78), and imposing 1ξ  
and 1ω values, it results 

14
11 1 13

1

, ( 2 )y y y
ak k k aϕ ϕ ϕ ξ ω
ω

= − = +  (82) 

Because ( ) y
My Mk s k s= , yk ε of (57) can be 

chosen as 
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1(s) .
sy y yk k kε ε

ε = +  (83) 

Taking into account the transmission 
functions forms, Eq. (57) becomes 

( )
( )

2
31 0 33 0

31 14
11 1 1 323

1

2 11 31
31 0 33 0 2

2

(s) ( s)

s

s

( ) ( 2 )( s)

(s 2 )

( ) 2 s

y
M M M M M M y y

y y
M M y M M M M

y
M M M M M M y

y y

b b k b k k k

b k k k b k k

b k b k b k k

a a k k

a a a a

a aa a

ψ ε ε

ϕ ϕ ϕ

ψ ψ ψ

ε ε

δ ψ ψ ε

ϕ

ψ

ω ψ ξω ε

ξ ω ϕ
ω

ω ξω
ω

= + +

⎡ ⎤+ − + −⎣ ⎦
⎡ ⎤− + − =⎣ ⎦

= + + + +

⎡ ⎤
+ + + − −⎢ ⎥

⎣ ⎦

⎛ ⎞
+ + + −⎜

⎝
.ψ

⎡ ⎤
⎢ ⎥⎟

⎠⎣ ⎦
 

 

 

 

(84) 

 System’s block diagram is presented in fig.3. 

4 Numerical simulation   

In order to estimate the performance, a 
passengers airplane was studied, which has the  
mathematical model’s co-efficient [3] 
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If one uses for V
Hk  a  PID-type law, the results 

are not acceptable, because the stabilizing 
process is divergent. Renouncing at the 
integrator component, V

Hk  becomes PD-type, so  
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One has considered that the airplane 
(aircraft) has a constant flight speed, without 
any disturbances ( 0, 0V υ= = ), and θ  as a 
input argument for the estimation. The best 
results were obtained using a transfer function 
for the engines as shows Eq. (41); the results 
are presented in fig. 4, which shows the system 
behavior, for a positive θ  input argument.  

The main parameters evolve in 
acceptable range and after acceptable laws; the 
flight altitudine an the climbing speed are 
growing (4.a), but the climbing speed’ slope is 
constantly decreasing (especially for the last 
part of the trajectory, when the altitude has 
grown enough ); the engine’s thrust grows 
spectacularly in the first 1..1,5 seconds, in 
order to obtain a properly attack angle for the  
airplane (aircraft), which must raise the nose, 
than decreases until reaches , after 4..5 sec, the 
new base level (2% bigger than the initial 
thrust); furthermore, the thrust growing 
continues (but with a smooth slope) in order to 
assure the climbing (fig.4b).  
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Fig.3 Lateral Control system’s equivalent block 



 

9  

AIRCRAFT CONTROL USING THE ENGINES
(JET PROPULSION SYSTEMS)

 
11 14 31 32

33 0 1 1

22 23

0.9; 0.2; 2,5; 0.01;
0.1; 0.5; 0.5; 0.4; 0.6;
2.31; 0.7
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a
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calculated for a low altitude flight regime 
(airplane’s configuration for landing). Fig 5  
shows the main parameters behavior, for an 
input argument 9oψ ≈ .One has neglected the 
disturbance’s and also the radio beacon signal 

influence (the terms containing ε  were 
considered 0 both in the mathematical model 
and in the command law). The curves in fig.5 
show that ψ angle (flight course) is self 
stabilizing at the preset (input) value. The 
banking angle ϕ  is growing (as absolute 
value), then, during the turnback, it tends to 
return to the initial null-value.  

 
 

Fig.4 Longitudinal behavior

Fig.5 Lateral behavior 
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The sliding angle β grows at first, 
following the turning sense, then, in order to 
bring back the plane on its trajectory, it 
changes sense and at least it reaturns to its 
initial null-value. The thrusts of the two 
engines have opposite senses of variations, in 
order to realize the airplane’s rotation torque 
during its turn. 

5 Conclusions  

The paper deals with a possible automatic 
control system for airplanes (aircrafts ) using 
its jet engines , as back-up system in case of 
damaged or accidental non-active flight 
commands. 

The authors have established new 
mathematical models for aircraft’s longitudinal 
and lateral motion, which include the engine(s) 
operating effects; both models are linearised 
and transformed in non-dimensional linear 
systems. Imposing the channels’ decoupling, 
the authors have determined the command laws 
for each motion, respectively they have 
determined engines’ command laws for both 
channels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The performed numerical simulation 
(which had as studied object a medium-heavy 
line airplane, twin-engines) has confirmed the 
designed engines’ command laws; the study 
was realized for low altitude flights, which 
means that the propulsion flight control can be 
used for emergency landings. 

The paper presents the first results of 
some specific studies performed by the 
Avionics Division of the University of Craiova 
and can be useful for airplane (aircraft) and 
engine’s control systems designers, 
aeronautical specialists and students. 
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