
24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
  

1 

 
 
Abstract  

An efficient dual-time implicit approach 
combined with the unstructured moving grids is 
presented for solution of the unsteady turbulent 
flows. Unstructured grids suitable for both 
inviscid and turbulent viscous flow regions are 
generated using a successive refinement method 
and the grid is moved adaptively based on the 
boundary movements. Special care is taken to 
maintain the quality of the grid near the surface. 
The unsteady two-dimensional compressible 
Navier-Stokes equations are discretised by an 
implicit approach in a real time basis. This 
approach allows the real time step to be chosen 
on the basis of accuracy rather than stability 
thus, enabling the use of large CFL numbers for 
computational efficiency. The resulting set of 
implicit non-linear equations is then solved 
iteratively in a pseudo-time using a Runge-
Kutta scheme. The ε−k  turbulence model 
equations are solved together with the main 
flow equations in a fully coupled manner. 
Results are presented for two unsteady  test 
cases oscillating airfoils and comparisons with 
the experimental data showed good agreements. 

1   Introduction 

A great variety of flows with significance to 
aerodynamic applications are inherently 
unsteady, including bluff body wakes, turbine 
and rotor flows, store separation and aeroelastic 
problems. Most of these applications are 

concerned with the complex geometries 
including considerable moving boundaries at 
high Reynolds number flow conditions. Efforts 
in CFD community have, therefore been 
towards the efficient procedures for moving grid 
generation and unsteady flow solution 
algorithms in order to achieve the required 
accuracy with reduced computational effort. 

A number of calculations have been carried 
out using the explicit methods [1]. However, the 
numerical stability restriction imposed to the 
maximum allowable time step would increase 
the computational effort particularly in viscous 
calculations where the ratio of the maximum to 
the minimum size of the cells can span several 
orders of magnitude. Implicit methods in 
contrast allow the use of much larger time steps 
leading to the significant efficiency for viscous 
flows. Several implicit methods have been 
developed, however the implicit dual-time 
method described by Jameson [2] allows an 

implicit discretisation to be used in real time, 
while at each real time step marches the solution 
in a pseudo-time through an explicit time 
marching scheme. This method was 
successfully implemented for solution of 
inviscid flow around rigid [2] and moving 

boundaries [3] on structured grids. However, the 

geometry complexity involved in the 
aerodynamic applications requires more 
flexible, unstructured grids to be used. In 
addition, despite inviscid models yield a cost 
effective approximation to the solution of 
unsteady problems, when strong shocks and 
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separated flows are involved, it is necessary to 
incorporate viscosity and turbulent effects into 
the model. Alonso et al. [4] used a zero-
equation Baldwin-Lomax turbulence model 
while, Badcock et al. [5] have chosen a ε−k  
two equation turbulence closure. Chassaing et 
al. [6] utilized the more soffisticated Reynolds 

stress model. Despite promising results, all of 
these works have been carried out on the 
structured grids. 

Using unstructured grids for accurate and 
efficient calculation of high Reynolds number 
turbulent flows was just recently reported [7], 

[8] and mostly for steady state flow 

calculations. Thus, the objective of the present 
work is development of an implicit unstructured 
moving grid approach for application to 
unsteady turbulent Navier-Stokes calculations.  

2 Unstructured Moving Grid Generation  
Unstructured grids suitable for both inviscid and 
viscous flow regions are generated based on a 
combination of grid enrichment procedures, 
whereby new grid points and point 
connectivities are created simultaneously [7]. A 

novel feature of the method is that it does not 
require an initial distribution of grid points 
within the flow domain. Also, unlike the 
majority of the existing methods, which start 
with a well-refined distribution of the geometry, 
the present approach adopts a very crude initial 
discritisation of the geometry and the outer 
boundary of the domain. Surface and field grids 
are then generated simultaneously as the cell 
sub-division process continues. More details 
about this method can be found in reference [7] 

and would not be mentioned here. In figure 1 

generated grid around NACA64010 airfoil by 

this method is shown.  The grid is then moved 
adaptively based on the boundary movements 
using a modified spring analogy approach that 
maintain the quality of the grid near the surface. 
This approach also allows geometric deflections 
required by large CFL numbers of the implicit 
solution methods. Figure 2, shows the 

unstructured viscous grid generated around 
NACA 0012 airfoil before and after movement. 

As illustrated the quality of the grid inside the 
viscous layer is preserved during mesh 
movement process. 

3 Numerical Flow Solutions   
The two-dimensional Reynolds-averaged 
unsteady compressible Navier-Stokes equations, 
can be written in a cartesian coordinate system  
as: 
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Where ),,,( EvuQ ρρρ=  is the vector of   

conserved variables, iF  and iG  represent the 
convective fluxes and vF and vG  describe the 
effect of viscous diffusion. Here vu,,ρ  and E  
denote the density, Cartesian velocity 
components and total energy respectively. 

Consider a control volume Ω  with 
boundary Ω∂  which moves with Cartesian 
velocity components tx  and ty . The equations 
of motion of the fluid can then be written in the 
integral form as: 
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And the contravariant velocities are defined as: 

tt yvVxuU −=−= ,
 

(4) 

xyxx ττ ,  and yyτ  are the stress tensor and xq  and 

yq are the heat flux vector components. The 

coefficient of viscosity, µ , is calculated 
according to Sutherland's law. Also, for an ideal 
gas, the equation of state may be written as  
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Turbulence effects can be taken into account by 
use of a suitable turbulence model. In this work 
a two-equation ε−k  model is used. The 
turbulent transport equations can be written in a 
form similar to that used for the mean-flow 
equations 
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Where ),( ρερkQt = , i
tF  and i

tG  represent the 

turbulent convective fluxes and v
tF and v

tG  
describe the effect of turbulent viscous 
diffusion. The source term tS  describes 
production and dissipation of turbulence 
quantities. 
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Then the turbulent eddy viscosity is calculated 
from: 

ε
ρµ µ

2

t

k
C=  

(9) 

The following standard values, obtained 
empirically from experiments, are usually 
employed: 

3.1,1,92.1C,44.1C,09.0C k21 ===== εεεµ σσ  

Note that in the present work the turbulence 
equations are solved with the main flow 
equations in a fully-coupled manner. This 
method provides better solution accuracy and 
convergence compared with the sequencing 
approach. Applying equation (1) independently 

to each cell in the mesh, the spatial and time 
dependent terms are decoupled and a set of 

ordinary differential equations is obtained in the 
following form: 

0)()()()( =−++ QDQNSQEAQ
dt

d
iiiii

 
(10) 

Where, iA  is the cell area, )(QEi  are the 
convective fluxes and )(QNSi  are the viscous 
fluxes. The properties over each cell edges are 
evaluated using an averaging method. 
Following Jameson [9] in order to prevent 

oscillations in the neighborhood of shock waves 
and to provide background dissipation to 
suppress odd-even modes a blend of first and 
third-order dissipative )(QDi  is added. These 
dissipative terms provide an upwind bias and 
are added in the form of dissipative fluxes for 
conservation purposes with coefficients that 
depend on the local pressure gradient.  

4 Implicit Time Integrations   
The set of equation 10 can be integrated in time 

by using a fully implicit time discretisation (in 
real time) [2] to give:  
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Where R is the sum of the two fluxes 
contributions. The superscript 1+n  denotes the 
time level of the approximation and the dtd  
operator is approximated by an implicit 
backward difference formula of k th-order 
accuracy of the form: 
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In the present work a second order time 
discretisation is used so equation 11 becomes: 

0)Q(D)Q(R

)QA(
t2

1
)QA(

t

2
)QA(

t2

3

1n
i

1n
i

1n
i

1n
i

n
i

n
i

1n
i

1n
i

=−+
∆

+
∆

−
∆

++

−−++  
(14) 



ALIREZA JAHANGIRIAN, Mostafa Hadidoolabi   

4 

Time accuracy can be further enhanced by using 
a third-order implicit time discretisation rather 
than the second-order discretisation used here. 
However, this is achieved at the expense of 
additional storage for an extra time level of 
accuracy, which is not always necessary 
considering the reasonable good accuracy 
obtained in general with second-order time 
discretisation. Equation (14) is nonlinear for 

1+nQ  and therefore cannot be solved 
analytically. At this stage, it is convenient to 
redefine a new residual *R , referred to as 
unsteady residual, as following: 
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The new equation can be seen as the solution of 
a steady state problem, which can then be 
solved with a time marching method by 
introducing derivative with respect to a 
fictitious pseudo-time τ : 

0)( 1*
1

=+
∂

∂ +
+

n
i

n
i

i QR
Q

A
τ

 
(16) 

The pseudo-time problem can then be solved by 
using any time-marching method designed to 
solve steady-state problems, utilizing standard 
acceleration techniques. In the present work an 
explicit four-stage Runge-Kutta method with 
local pseudo-time stepping and residual 
smoothing is used as follows: 
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Where the superscript m denotes the pseudo-
time level τ∆m  and 
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It should be noted that for computational 
efficiency, the dissipative operator is frozen at 
the value of the first stage. The pseudo-time step 
is restricted by stability consideration. The 
allowable pseudo-time step for each cell is 
chosen using  
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Where 

xvyu ∆−∆=λ  
(20) 

In the present work the local pseudo-time 
stepping and residual smoothing are used to 
accelerate convergence. The real-time step can 
be chosen based on accuracy considerations. 

5 Geometric Conservation Law   
When computing the flow on a moving grid, the 
cell areas also vary in time and it is therefore 
important to discretise the time-dependent 
metrics carefully in order to maintain the 
conservative properties of the scheme. If the cell 
areas are calculated analytically in terms of the 
grid node positions, numerical errors will be 
introduced in the solution algorithm, which will 
increase with time. This is because the mesh 
motion is only approximately solved in the 
integration scheme. To avoid such numerical 
errors, the cell areas must be integrated forward 
in time by using the same method as that used to 
solve the physical conservation laws [10]. This 

is achieved by introducing a Geometric 
Conservation Law (GCL) which is derived from 
the continuity equation as follows: 
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Where, A  is the cell area, gv  is the grid speed 

and n  is the normal area vector. Using the same 
second-order time discretisation as for the flow 
equation, Equation (21) becomes: 
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And hence 
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The above geometric conservation laws must be 
satisfied at all time on the moving grid. This law 
states that the change in area of each control 
volume between nt  and 1+nt  must be equal to 
the area swept by the cell boundary during 

.1 nn ttt −=∆ +  Using the GCL to calculate the 
areas rather than calculating them geometrically 
ensures that large errors are not encountered 
when solving the physical conservation law. 
This formally introduces an error into the values 
obtained for the areas, but this is small in 
comparison with the numerical error in the 
solution procedure. The GCL needs to be 
evaluated only once every global time step to 
calculate the new cells area. 

6 Boundary Conditions   
At the airfoil surface, the no-slip boundary 
condition, need to be imposed. This is easily 
achieved by setting the velocity component to 
zero on the surface of the airfoil. Since the flow 
solver is based on a cell centered discretisation 
of the governing equations, the value of the 
pressure at the airfoil surface can be obtained by 
extrapolating from the values of adjacent cells. 
In the far-field, non-reflecting boundary 
conditions based on characteristic analysis are 

used. The wall function conditions are also 
considered for near wall turbulent calculations. 

7 Results 

A series of high Reynolds number unsteady 
transonic flows over the pitching airfoils are 
considered from the AGARD experimental test 
cases [11].  

The first case is the CT5 case for 

NACA0012 airfoil. For this case, the periodic 

motion of the airfoil is defined by the angle of 
attack as a function of time as: 

)sin()( tt m ωααα °+=  
(25) 

Where mα  is the mean incidence, °α  is the 
amplitude of the pitching oscillation and ω  is 
the angular frequency of the motion which is 
related to the reduced frequency k  by: 

∞
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Where c is the airfoil chord and ∞U is the free-
stream velocity. For all cases, the airfoil 
oscillates about its quarter chord. 

The flow conditions over the airfoil are as 
follows:  
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This case is a challenging test case due to a 
higher value of the Mach number which may 
make the viscous effects more significant. The 
flow is characterized by the presence of a strong 
shock wave, which develops alternatively on the 
upper and lower surface of the airfoil.  

Comparison of the viscous and inviscid 
predicted pressure distributions with the 
experimental data is shown in figure 3 for four 

different incidences during the cycle. An over-
prediction of the pressure jump across the shock 
wave is observed for inviscid solutions 
however, the viscous results show smeared 
more accurate shock predictions. Three 
unstructured grids are used for grid study 
calculations. The number of cells for coarse, 
medium and fine grids are 8829, 13487 and 
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15304 respectively. The comparison of the 

normal force and moment coefficients with the 
experimental data is shown in figure 4 for these 

three grids. As illustrated no significant 
difference can be seen between the medium and 
fine grids. Therefore, the medium grid is chosen 
for calculations in this paper. Another important 
issue in the dual-time method is proper selection 
of pseudo-time, steady-state error. Numerical 
experiments showed that this parameter effects 
on the accuracy of the solutions and the 
computational time. If the large values are used 
for this parameter, as shown in figure 5 the 

accuracy of the solution becomes very poor, and 
in contrast the small values, considerably 
increased the computational time. The case 
study in the present work has shown that the 
optimum value for pseudo-time, steady-state 
error has been in order of 3

10
− . The effect of 

number of real time steps per period (Npp) on 
the accuracy of the solution is shown in figure 
6. As illustrated, even reasonably low Npp, i.e. 

30, can lead to accurate results. 
The second case is the case CT6 of 

NACA64010 pitching airfoil. For this case, the 

periodic motion of the airfoil is defined as 
follow: 

)cos()( tt m ωααα °+=  
(28) 

And the flow conditions are defined as: 
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k
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The generated grid for this airfoil is shown in 
figure 1 with 10392 cells in the domain and 217 

nodes on the airfoil surface. Comparison of lift 
coefficient and pitching moment coefficient 
with experimental data and inviscid results is 
shown in figure 7. As shown the inclusion of 

viscous effects tilts the inviscid oval in the 
direction of the experimental results. Figure 8 

shows the motion of the shocks in the upper and 
lower surfaces of the airfoil for a pitching cycle. 
As the airfoil pitches up, the shock in the upper 
surface moves aft at the same time as it becomes 
stronger. The shock in the lower surface moves 
forward, weakens, and disappears. As the airfoil 

pitches down, the opposite begins to happen, 
with a small phase lag.   

7 Conclusions  
The capability of an implicit time-accurate 
algorithm for the solution of two-dimensional 
compressible Navier-Stokes equations on 
unstructured moving grid has been 
demonstrated. The results obtained confirm the 
applicability of the current time stepping 
strategy, which combines an implicit dual-time 
approach to discretise the unsteady equations 
with an explicit time stepping method for 
solution of the steady state problem in pseudo-
time. The method was incorporated within an 
unstructured mesh and was used in conjunction 
with a general moving grid technique, which 
allows rapid and efficient deformation of the 
grid in the case of different geometries. Results 
were presented for several pitching airfoil flows 
and good agreements were noted with 
experimental results. Considerable 
computational savings are also achieved using 
the present implicit scheme over fully explicit 
method.  
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Fig. 1.  Computational grids over NACA64010 airfoil  
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Fig. 2. Grid movement strategy for viscous grids (left before and right after movement) 
 

 

Fig. 3. Instantaneous pressure distribution for NACA0012, test case CT5 
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Fig. 4. Normal force and pitching moment coefficient loops for NACA0012, test case CT5 
 
 

Fig. 5. Effect of pseudo-time error on the accuracy of solution 
 
 

Fig. 6. Effect of number of steps per cycle (Npp) on the accuracy of solution 
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Fig. 7. Normal force and pitching moment coefficient loops for NACA64010, test case CT6 
 
 

Fig. 8. . Instantaneous pressure contours for NACA64010, test case CT6 
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