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Abstract 
  This paper applies LPV(Linear Parameter 
Varying) control techniques to a blimp. The aim 
of the project is the development of a practical 
technique for the unmanned aerial observation 
and surveillance. In order for a blimp to perform 
observation and detection, precise flight path 
control is needed. The error resulting from 
modeling a real system cannot be avoided, 
however accurate the model is. In order to aim 
for realistic control, robust control can 
compensate model uncertainty. Based on past 
works, the author developed a robust lateral-
directional stability augmentation system in the 
framework of the H∞ theory that could take 
account of the uncertain ranges of parameters, 
and successfully implemented it on the blimp. A 
problem exits, however, that the designed 
control system guarantees its effectiveness for 
only one design speed, although in a practical 
situation the flight-speed may vary within a 
certain operation range. Therefore, this paper is 
aimed at designing the lateral-directional flight 
control system that guarantees a certain degree 
of stability over all the operation range. It is 
shown that the resulting LPV robust controller 
yields a better performance than the 
corresponding H∞ controller. 
 
 
1. Introduction 
 

A blimp, a small-sized, non rigid airship, has 
been drawing attention as a safer platform for 
remote-sensors aimed at unmanned low-altitude 
observation and surveillance than a heavier-
than-air craft, because it is not in direct contact 

with the ground, and will not crash as the result 
of an engine failure. The operation of such a 
blimp presupposes the down-sizing of on-board 
sensors and development of autonomous flight 
control systems that may withstand ambient air 
conditions and parameter uncertainties within an 
operating range. The paper is focused on the 
development of a robust flight controller for 
such a blimp. 
Past works(Refs.1 and 2) developed the 

method for experimentally identifying the linear 
flight dynamics about a specific, constant-speed, 
level flight for the blimp introduced as a 
platform for remote-sensors to detect metallic 
objects buried underground. They also proposed 
the analytical formulas for estimating the 
parameters involved in the linear dynamics, 
enabling one to assess the uncertain ranges of 
the parameters, especially those of added mass 
and inertia that are characteristic of lighter-than-
air craft. Based on these past works, the author 
developed a robust lateral-directional stability 
augmentation system in the framework of the 
H∞ theory that could take account of the 
uncertain ranges of parameters, and successfully 
implemented it on the blimp(Ref.3). A problem 
exits, however, that the designed control system 
guarantees its effectiveness for only one design 
speed, although in a practical situation the 
flight-speed may vary within a certain operation 
range. Therefore, this paper is aimed at 
designing a lateral-directional flight control 
system that guarantees a certain degree of 
stability over all the operation range. The reason 
why only the lateral-directional control is dealt 
with is that the blimp at hand lacks lateral-
directional stability in particular because of its 
tail-volume size, and in the linear sense 
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longitudinal modes, which are sufficiently 
stable, are decoupled from lateral-directional 
modes. To this end, this work applies the Gain-
Scheduling-Technique, a technique within the 
framework the Linear-Parameter-Varying-
Systems theory: The lateral-directional control 
gain is continuously scheduled according to the 
flight speed. At the same time, the uncertainty 
of the parameters is also taken into 
consideration in the H∞ sense. 
 The paper is structured as follows: Following 
Introduction, Section 2 shows the original 
nonlinear equations of motion and 
corresponding linearized ones. For the latter, 
how the parameters change according to the 
flight speed, and the uncertain ranges at discrete 
flight speeds are also demonstrated. Section 3 
shows formulation of the Gain-Scheduling 
Technique and designs a Gain-Scheduling 
controller for the lateral-directional modes of 
the blimp in Section 4. The result of simulations 
and examinations are discussed in Section 5, 
and finally conclusions are shown in Section 6. 
 
 
2. Dynamic Equations of Motion of a Blimp 
 

Development of the equations of motion for a 
blimp must take into account two significant 
factors: buoyancy and added mass and inertia. 
Through the use of Lagrange’s equation, general 
nonlinear equations of motion can be described 
with respect to a body-fixed-axis system with 
the origin placed at an arbitrary point in the hull. 
For control purposes, linearized equations of 
motion must be derived. To simplify the 
problem, the following assumptions are set: 
1. The trimmed condition is a steady rectilinear 
level flight. 
2. Ambient atmosphere is stationary. 
3. The mass of the blimp is constant. 
4. The origin of the body-fixed-axis system is 
placed at the center of buoyancy as shown in 
Fig. 1 
5. The blimp is symmetric about the oxz plane, 
and both the center of gravity and the center of 
buoyancy lie in that plane. 

       
Fig.1 Body axis system. 

(C.B.: Center of buoyancy) 
 
 The resulting linearized equations of motion 
can be divided into the longitudinal set and 
lateral-directional set as1) 
(Longitudinal set) 
           LGLGLGLGLG QxAxM +=& ,           (2-1) 

           [ ]T
LG u w q θ=x ,            (2-2) 

           [ ]T0MZXLG =Q  ,             (2-3) 
and 
(Lateral-directional set) 
            LTLTLTLTLT QxAxM +=&  ,          (2-4) 
         [ ]T

L T v p r φ ψ=x  ,       (2-5) 

          [ ]T00NLYLT =Q  ,            (2-6) 
where 

wvu ,,    : perturbed linear velocities, 
rqp ,,    : perturbed angular velocities, 

ψθφ ,,    : perturbed Eulerian angles, 
ZYX ,,   : perturbed external forces, and 
NML ,,  : perturbed external moments. 

In Eqs. (2-1) and (2-4), coefficient matrices are 
given as 
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where 

LTLG MM , : mass matrices including added 
mass effects, and 

LTLG AA ,  : stability-derivative matrices. 
It is possible to estimate the parameter values in 
matrices Eqs. (2-7) ~ (2-10) by using analytical 
formulas such as those described in Ref.4 for 
added mass effects and those collected in Ref. 5 
for stability derivatives, while a constrained 
flight test method for identifying the parameters 
was developed in Refs. 1 and 2, which uses a 
real blimp (presented in Fig. 2). The 
dimensional data of the blimp are shown in 
Table 1.  
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Fig.2 The blimp, Sky Probe-J. 
 

Table 1 Dimensional data for Sky Probe-J 
Mass [Kg] 21.87 
Length [m] 5.50 
Width [m] 2.50 
Moment of inertia,Ixx [kg⋅m2] 22.98 
Moment of inertia,Iyy [kg⋅m2] 40.98 
Moment of inertia,Izz [kg⋅m2] 27.69 
Product of inertia,Ixz [kg⋅m2] 3.941 
XG [m] 0.06690 
ZG [m] 0.5470 
Xthrust  [m] 0.60 

Zthrust [m] 0.13 
Xtail [m] 2.40 
Ztail  [m] 0.80 
Volume [m3] 18.0  
Propulsion : 
4 vectoring thrusters, and  
a pair of tail rotors 

 
400gf for each 
100gf for each 

Fins (Cross-wing) NACA0008 
 
In this motion model, it is found that the 

yawing-motion mode is unstable, showing that 
lateral-directional movements become unstable. 
Therefore, control is needed in order to stabilize 
the divergent mode. Seeing to it that there exist 
parameter uncertainties, robust SASs(stability 
augmentation systems) are designed here as a 
yaw damper (i.e., yaw rate(r) feedback 
controller) with the use of a pair of tail rotors as 
the controller. 
 

3. Gain-scheduled Controller Design by LMI 
 
The technique of designing a gain-scheduled 
controller using LMI in the form appropriate for 
the purpose is explained.  
First, suppose that the generalized plant as 
shown in Fig. 3 is given. 
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       Fig.3 Generalized plant. 
 
At this time, a linear parameter-varying(LPV) 
plant G(v) with state-space realization is 
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The time-varying parameter of 
velocity 1 2[ , , , ]T

Lν ν ν ν= L  as well as its rates of 
variation iv&  are assumed bounded as follows. 
 
1) Each parameter iv  ranges between known 
extremal values iv and iv  

( ) [ , ]i i iv t v ν∈   0≥∀t .                        (3-2) 



 

 

2) The rate of variation iv&  is assumed well-
defined at all times and satisfies 

( ) [ , ]i i iv t β β∈&   0≥∀t ,                      (3-3) 

where ii vv ≤  and ii
ββ ≤ are known lower and 

upper bounds. 
 
 The gain-scheduled output- feedback control 
problem consists of finding a dynamic LPV 
controller, )(vK , with state-space equations 
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             (3-4) 

which ensure internal stability and a guaranteed 
L2-gain bound γ  for the closed-loop operator 
Eqs. (3-1)-(3-4) from the disturbance signal ω  
to the error signal z , that is 

2

0 0
, 0

T TT Tz zd d Tτ γ ω ω τ≤ ∀ ≥∫ ∫          (3-5) 

and for all admissible trajectories ),( vv &  and 
zero-state initial conditions. Note that A  and 

KA  have the same dimension. The formulation 
of such controllers can be handled via an 
extension of the bounded real lemma with 
quadratic parameter-dependent Lyapunov 
functions cl

T
clcl xvPxvxV )(),( = where clx stands 

for the state vector of the closed- loop system. 
The controller state-space matrices are allowed 
to depend explicitly on the derivative of the 
time-varying parameter v  . The controller of 
Fig. 4 is a certain value showing the control 
performance to disturbance. 
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Fig. 4 Gain-scheduled feedback controller. 

 
Except for the usual smoothness assumptions on 
the dependence on v , the problem data and 
variables will be unrestricted in the subsequent 
derivations. The basic characterization of gain-
scheduled controllers with guaranteed L2-gain 
performance is presented in the next theorem 
where the dependence of data and variables on 
v  and v&  has been dropped for simplicity. 
 
Theorem 1) 
Consider an LPV plant governed by Eq. (3-1), 
with parameter trajectories constrained by Eqs. 
(3-2), (3-3). There exist a gain-scheduled 
output- feedback controller Eq. (3-4) enforcing 
internal stability and a bound γ  on the L2 gain 
of the closed- loop system Eq. (3-1) and Eq. (3-
5), whenever there exist parameter-dependent 
symmetric matrices Y  and X  and a parameter-
dependent quadruple of state-space data 

),ˆ,ˆ,ˆ( KKKK DCBA  such that for all pairs ),( vv &  
the following LMI problem holds as shown in 
Eq. (3-7) at the bottom of the page, together 
with 
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In such a case, a gain-scheduled controller of 
the form Eq. (3-4) is readily obtained with the 
following two-step scheme: 
• Solve for N , M , (the factorization problem) 

TI XY NM− =          （3-8） 
• From N  and M , compute ˆ ˆ,K KA B  and 

ˆ
KC with Eq. (3-9) at the bottom of the previous 

page. 
Note that since all variables are involved 
linearly, the constraints Eqs. (3-6) and (3-7) 
constitute an LMI system, infinite in number 
due to its dependence on ),( vv & . The controller 
variables can be eliminated, leading to a 
characterization involving the variable Y  and X  
only. 
Consider a plant having an LFT dependence 

on nonlinear functions of the scheduled variable, 
that is, whose state-space data further satisfy 
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where Nii ,,1(.), L=ρ are differentiable 
functions of v . Copies of the plant’s nonlinear 
functions, (.)iρ , can be introduced into the 

quadruple ˆ (.)KA , ˆ (.)KB , ˆ (.)KC , (.)KD , and the 
pair [ (.), (.)]X Y  in an affine fashion. 
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The functional dependence of Y  and X  being 
fixed, the matrices ,0 ,

ˆ ˆ, , ,K K iA A L  play the role of 
decision variables in the infinitely constrained 
LMI Problems Eqs. (3-6) and (3-7). A simple 
remedy for turning such problems into a finite 
set of LMI’s is to grid the value set of v , since 
the derivative v&  appears linearly in the LMI’s 
Eq. (3-7). The overall procedure can be 
described as follows:  
Calculate the equation of motion for the blimp 
according to the change in the velocity( ν ) of 
the blimp. Then compute a controller for each 
operating point.  
 
Step 1) Define a grid for the value set of v . 
Step 2) Minimize γ (Supremum of the 
performance index) subjected to the associated 
LMI(Linear Matrix Inequalities) constraints. 
Step 3) Check the constraints with a denser grid. 
Step 4) If step 3) fails, increase the grid density 
and return to Step 2).  
 
If the performance level γ  in Step 2 is too high, 
then the performance weights must be redefined. 
These results make use of the continuity of the 
LMIs over the compact parameter and rate-of-
variation sets, and the fact that the solution of 
the synthesis LMIs is uniformly bounded away 
from zero. When restricted to the 
parameterization Eq (3-10), the basic and 
projected characterizations are no longer 
equivalent. It is checked by numerical 
experiments whether the resulting controller is 
an actually appropriate.  
 
 
4. Controller Design for a Blimp  
 
In this paper, velocity is the parameter of the 

linear time varying system of the equations of 
motion for the blimp, and only the matrix A  
changes according to the velocity. At this time a 
linear parameter varying plant is Eq.(3-1), 
where v  is the velocity of the blimp(variable 
parameter). Blimp velocity v  range is 
0.5~2.0 /m s . The matrix A  has linear 
parameters and also nonlinear parameters. 
Therefore, it is difficult to obtain linearized 



 

 

controllers from the designed controllers at two 
operation points ; smv /0.2,5.0= . Accordingly, 
controllers are designed for each operating 
range ,/0.1~5.0 smv =  smv /5.1~0.1=  and 

smv /0.2~5.1= , and switching controllers 
work when the operating conditions change. 
About each operating range, a polytopic matrix 

)(vA  is expressed as 
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From Eq. (3-4), the controller )(vKi  for each 
operating point model is given by 
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The parameter value v ,  the values of )(vAK , 
)(vBK , )(vCK , )(vDK  are derived from the 

values KiA , KiB , KiC , KiD . And the gain 
scheduling controller within each range can be 
obtained from  
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5. Performance Comparison of the 
Controllers  (by computer simulations ) 
 
5.1. Simulation results of Gain-scheduled H∞ 
controller 

 
In order to evaluate the characteristics of the 

feedback system corresponding to the chosen 
controller at each operation point, the plant 
output yaw rate, disturbance d (Fig.5) and the 
controller input are shown together with the yaw 
rate output for the zero disturbance and a given 
command. Some simulation results are shown in 

Figs. 6~9. The responses of the yaw rate are for 
the case where the reference input is a step 
signal (figure (a)). The results with a 
disturbance are the responses of the yaw rate 
when the peak magnitude of the disturbance is 

N1±  in the force unit (figure (b)). 

Fig.5 Disturbance signals put into the system : 
d(t). 
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(a) No disturbance case for a step command. 
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         (b) With disturbance for zero command. 
Fig.6 Response of yaw rate (velocity=0.5m/s). 
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(a) No disturbance case for a step command. 
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          (b) With disturbance for zero command. 
Fig.7 Response of yaw rate (velocity=1.0m/s). 
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           (b) With disturbance for zero command. 
Fig.8 Response of yaw rate (velocity=1.5m/s). 
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            (b) With disturbance for zero command. 
Fig.9 Response of yaw rate (velocity=2.0m/s). 
 
Next, the results of the responses of yaw rate 

are shown below when velocity changes linearly 
from 0.5m/s to 2.0m/s (Fig.10), and changes 
nonlinearly in the form of a sine wave from 
0.5m/s to 2.0m/s (Fig.11). 
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      (a) Change in the velocity of the blimp. 
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                (b) Response of yaw rate. 
Fig.10 Results for a linear velocity change. 
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(a) Change in the velocity of the blimp. 
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(b) Response of yaw rate. 
Fig.11 Results for a velocity change in the form  
of a sine wave. 

 
5.2. Comparison between H∞ controllers 3) 

and Gain-scheduled H∞ controllers  
 
The results of the comparison for the response 
of the yaw rate are shown below when the 
reference input is a step signal (Fig.12). The 
responses of yaw rate are shown in Fig.13 when 
the velocity changed in the form of a sine wave 
from 0.5m/s to 2.0m/s (Fig.11 (a)), together 
with a disturbance with its peak magnitude of 

N1±  (Fig.5). Table 2 summarizes the 
comparison, and particular responses are shown 
in Figs.12~13. It may be said that the Gain-
scheduled H∞ controller demonstrates a slightly 
better tracking capability. 

 
Table.2 Comparison between a Gain-scheduled 
H∞ controller and an H∞ controller 

 Gain-scheduled 
H∞ Controller 

H∞ Controller 

Convergence Fast Slow 

Overshoot Small Big 
Response Oscillating Slow rise time 

Robustness Good Good 
 

―： Gain-scheduled H∞ Control 
--： H∞ Control  
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Fig.12 Response of yaw rate (velocity=2m/s). 
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Fig.13 Response of yaw rate 
(velocity change in the form of a sine wave). 

 
 
 
 
 
 



 

 

6. Discussion and Conclusion 
 
Here, “Design of Robust Control Systems for 
an Unmanned Observation Blimp” is 
summarized, and a future subject is proposed.  
The purpose of this research was designing a 
stabilizing controller for a blimp. The control 
system design was performed using the Gain-
scheduling theory. A controller that presents 
robust stability with respect to plants with 
changing velocity has been designed. Very 
important characteristics of the feedback control 
system have been attained that the controller is 
robustly stable, as the result of the formulation 
of the problem as an LPV gain-scheduled 
system. The Gain-scheduled H∞ controller and 
an H∞ controller are compared. It is difficult to 
talk strictly about which is better, although the 
Gain-scheduled H∞ controller has faster 
convergence and the response shows a small 
oscillating overshoot; while the H∞ controller 
has slow convergence and a large overshoot. It 
has been shown that the Gain-scheduled H∞ 
controller works well within a certain precision 
needed for the mission of the blimp.  

 
 Some future research subjects are summarized 
as follows :  
 

1. Set up the hardware of acceleration sensors 
for the control. 

2. Execute a real flight test and compare the 
data from the experiment. 

3. Develop newer control methods drawing on 
the comparison between a Gain-scheduled 
H∞ controller and an H∞ controller. 

 
 
REFERENCES 
 

1. Yamasaki, T., Fujita, H. and Goto, N. : 
“Identification of Blimp Dynamics by 
Constrained Flight Tests”, Proceedings 
of AIAA Atmospheric Flight Mechanics 
Conference, AIAA, pp.464-474, 2001. 

2. Yamasaki, T. and Goto, N. : 
“Identification of Blimp Dynamics by 

Flight Tests”, Trans. JSASS, Vol. 46, 
No. 153, pp.195-205. 

3. Mo, Y.-H., Kawashima, M. and Goto, 
N. : “Implementation of Robust 
Stability Augmentation Systems for a 
Blimp”, Trans. JSASS, Vol. 46, No. 153, 
pp.155-162. 

4. Khoury, G. A. and Gillett, J. D.: Airship 
Technology, Cambridge Aerospace 
Series 10, Cambridge University Press, 
Cambridge, 1999. 

5. Hoak, D. E.: USAF Stability and 
Control DATCOM, AFFDL, Wright-
Patterson Air Force Base, Ohio, 1968. 

6. Apkarian, P., Becker, G., Gahinet, P. 
and Kajiwara, H. : LMI Techniques in 
Control Engineering from Theory to 
Practice Workshop Notes CDC 1996, 
Kobe, Japan. 

7. Apkarian, P. and Adams, R. J. : 
Advanced Gain-scheduling Techniques 
for Uncertain  Systems, IEEE 
Transactions on Control Systems 
Technology, Vol.6(1998), pp.21-32. 

8. Chilali, M. and Gahinet, P.  : H∞ design 
with Pole Placement Constraints: An 
LMI approach, IEEE Transactions on 
Automaric Control, Vol.41 (1995),      
pp.358-367. 

 
 
 

 
 


