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Abstract

The present paper addresses the vortex instabil-
ity as a possible source mechanism of wake vor-
tex sound. We study a family of circular pla-
nar vortices that have zero total circulation, with
the swirl velocity being presented by a general-
ized Taylor-type distribution in the radial direc-
tion. The vortex is assumed to be compressible
and homentropic; its azimuthal velocity is char-
acterized by two parameters: intensityµ that is
proportional to the maximal velocity and "steep-
ness"β that defines the typical scale of the op-
posite vorticity zone surrounding the core of the
vortex. The linear analysis is conducted to inves-
tigate the evolution of normal mode disturbances
imposed on the field of the basic flow. Results
obtained concern the effect of the parametersµ
andβ on instability characteristics. The far field
analysis shows that the instability evolution in
the linear stage is accompanied by radiation of
monochromatic sound waves with the frequency
that equals the phase frequency of the unstable
mode. Also included are results of the numeri-
cal simulation of the non-linear stage, which is
related to the vortex breakdown and subsequent
sound emission.

1 Introduction

Vortex motion is a dominant property of wake
flows. Resulted from instability of shear layers,
large vortical structures are created in the wake
and travel downstream. These structures com-
monly reveal unstable behavior that eventually

can lead to the well-known phenomenon of vor-
tex breakdown. Therefore, a mechanism that can
be suggested as a possible source of aerodynamic
sound in the wake flow is the presence of instabil-
ities within the vortex itself, their evolution, and
as a result, the vortex breakdown. The question
we address in the present paper is the sound that
emitted in the far field because of these phenom-
ena.

Just as an illustration to the foregoing, we
show some results of one calculation in Fig.
1. This is the direct numerical simulation of
theM∞ = 0:12 compressible viscous flow past a
fence-type obstacle. In the figure, the flow is rep-
resented by instantaneous pressure (Fig. 1a) and
velocity divergence (Fig. 1b) distributions. The
pressure field reveals large vortical structures that
appear in the flow behind the obstacle. The veloc-
ity divergence, which actually represents small
fluctuations of density because of the effect of
compressibility, clearly shows that these vortices
are destabilized as they propagate downstream
and acquire a typical 4�leafed structure. One can
also see that the vortex destabilization is accom-
panied by the radiation of sound waves (Fig. 1b).

If the vortex were two-dimensional and
monotonic with one-signed vorticity (finite non-
zero circulation), it has been shown [1] that it
would be stable by the Rayleigh criteria. How-
ever, real wake vortices actually have more com-
plicated structure. In particular, they may include
an annulus of opposite vorticity that surrounds
the core so that the circulation around the vortex
vanishes with the radial direction [2]. A strong
shear layer just behind the core characterizes the
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Fig. 1 Results of DNS for air flow with a Mach numberM∞ = 0:12 past a fence obstacle. (a) pressure
field; (b) velocity divergence field.

distribution of the azimuthal velocity in such vor-
tices, which can be destabilized and trigger the
vortex instability.

The family of vortices with zero total circula-
tion was introduced in [3] and now referred to as
isolated vortices. For isolated vortices, the circu-
lation vanishes at a finite distance from the core
depending on a single parameter, the steepness
β. In the present paper, we adopt the model of
isolated vortex to simulate the wake vortices, and
proceed to the stability analysis to obtain tempo-
ral instability characteristics and investigate the
asymptotic behavior of disturbances in the far
field.

There are lots of investigations have been car-
ried out to the present day, which are devoted
to the stability of isolated vortices. Most of
these studies concern the model of incompress-
ible fluid. The evolution of two-dimensional per-
turbations in an axisymmetric vortex was studied
in [3], where the instability was found that results
in the formation of multipolar vortex structures
like tripoles and quadrupoles. It also was shown
that the azimuthal shear is the major mechanism
of the multipolar formation and that the order of
the multipole depends on the steepness of the ve-
locity distribution in the opposite vorticity region
surrounding the vortex core ([4] and [5]). The
three-dimensional instability of isolated vortices
was studied in [6] by the direct numerical simula-
tion of the linear impulse response. The results of
this study showed that whereas the axisymmetric
mode is the most unstable mode (the centrifugal

instability), yet larger azimuthal modes are also
destabilized as the steepness of the opposite vor-
ticity zone is increased.

The focus of the present paper is to investi-
gate the effect of compressibility on the stabil-
ity of isolated vortices with the emphasis on the
sound that is resulted in the far field from the in-
stability development in the basic vortex. The
paper is organized into 2 parts. First, the linear-
stability analysis is performed to determine un-
stable normal modes and their quantitative char-
acteristics - the growth rate and azimuthal phase
velocity. These parameters govern the asymp-
totic behavior of eigenfunctions in the far field,
which just represent the sound from the insta-
bility. Second, the numerical calculation of the
Navier-Stokes equations is carried out to simu-
late the non-linear stage of the instability devel-
opment that involves the vortex destruction and
its decay into child vortical structures.

2 Linear-Stability Analysis

2.1 Formulation

We consider the two-dimensional equations gov-
erning the motion of a nondissipative compress-
ible fluid in polar coordinates(r;φ). We will use
conventional notationsρ, u, v, p, s, c to denote
the density, radial and azimuthal components of
the velocity vector, pressure, entropy, and speed
of sound, respectively. The notations are used
in large letters for the basic flow parameters, but
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the small letters are for the corresponding distur-
bances. All parameters are made nondimensional
by using

ro; ro
pρ∞=pp∞; pp∞=ρ∞; p∞; ρ∞

as scales for length, time, velocity, pressure, and
density respectively, withr0 being a characteris-
tic core radius. The infinity subscript denotes the
value at infinity.

The flow to be studied is a stationary vortex
whose parameters do not depend on the polar an-
gle φ and radial velocity is zero. Other flow pa-
rameters must satisfy the following relation:

dP
dr

= RV2

r
; S= lnP=Rγ (1)

which can be integrated providing that distribu-
tions of two parameters in the radial direction are
known, e.g.,V =V(r) andS= S(r). HereSis the
relative entropy, i.e.,S�S∞.

The linear-stability analysis is applied to this
flow, which considers the behavior of an infinites-
imal disturbance superposed on the basic flow.
The disturbance is analyzed into normal modes,
when all parameters have a similar(t;φ)� depen-
dence given by exp[i(λt+mφ)℄, with λ andmbe-
ing a constant, generally complex, and a positive
integer, respectively, e.g.,

p(t; r;φ) = p(r)exp[i(λt +mφ)℄ (2)

By introducing new variablesξ andη related
to the velocity componentsu andv as

u= iσξ
R

; v=�1
R

�
iση� r

d(Ω)
dr

ξ
�

(3)

which can be treated as an analog of the La-
grangian displacement introduced [7] for the cir-
cular flow of an incompressible fluid, and elimi-
nating the amplitudesη(r), ρ(r), ands(r), the re-
sulted system of linearized equations can be rep-
resented by two differential equations for the am-
plitudesp(r) andξ(r):

dp
dr

= �
2m
rσ

Ω� rΩ2

C2

�
p� �σ2�Φ

�
ξ(4)

1
r

d(rξ)
dr

= �
m2

r2σ2 � 1
C2

�
p+�2m

rσ
Ω�E

�
ξ

whereΩ = V=r andC = p
γP=R are the local

angular velocity the speed of sound of the basic
flow,

Φ = 2Ω
r

d(r2Ω)
dr

� rΩ2E; E = 1
γ
C2dS

dr
(5)

andσ= λ+mΩ is the Doppler-shifted frequency.
Eqs. (4) must be solved for all domain 0�

r �+∞ under the boundary condition

ξ = 0 f or r = 0 (6)

Another condition is that the solution must re-
main bounded, i.e.,jξj; jpj �M <+∞ f or all r; 0� r �+∞ (7)

with M being a positive constant. Taking a posi-
tive integer form, Eqs. (4)-(7) define an eigen-
value problem forλ, which is generally com-
plex. Its real part,λr = Re(λ), represents the
azimuthal phase frequency, while the imaginary
part,λi = Im(λ), gives the temporal growth rate.

Note that neither the equations nor the bound-
ary conditions involve any complex uniti. There-
fore, the spectrum of eigenvalues must be sym-
metrical with respect to the real axis. To each
decaying mode there must be a corresponding
growing mode. Hence, existing complex eigen-
values ensures the instability of the basic vortex
flow.

2.2 Basic vortex flow

We assume that the basic vortex is homentropic,
i.e.,S(r)= 0, and isolated, with the azimuthal ve-
locity profile defined by the steepness parameter
β in the similar way as it was proposed in [3]:

V(r) = µrexp(�rβ) (8)

whereµ characterizes the strength of the vortex
and equals the non-dimensional angular velocity
of gas rotation in the vicinity of the vortex cen-
ter. For the foregoing,E in Eq. (4) vanishes and
the sound velocity squared acquires the following
profile:

C2(r) = γ� γ�1
β

�
1
2

�2=β
µ2Γ

�
2
β
;2rβ

�
(9)
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whereΓ(a;x) is the incomplete Gamma function.
The pressure and density profiles of the basic

flow are defined, respectively, by

P(r) = �
1
γ
C2
� γ

γ�1 ; R(r) = �
1
γ
C2
� 1

γ�1

(10)

The conditionC2 � 0 imposes the following re-
striction on the vortex parameters:

µ2� γ
γ�1

22=β β
Γ(2=β;0) (11)

As the strength increases, the pressure in the vor-
tex lowers until it reaches zero at the center. Fur-
ther increase in strength beyond the limit of Eq.
(11) leads to the regime when gas evacuates the
vicinity of the center. This regime is beyond the
scope of the present study and is not considered
here.

2.3 Boundary conditions and far field
asymptotics

As r ! 0, the angular velocityΩ approaches the
valueµ, and the asymptotic solution is given by

ξ = ξ�mrm�1; p= ξ�σ0(σ0�2µ)rm (12)

whereσ0 = λ+mµandξ� is a constant that can
be chosen arbitrarily.

We will study only the casesm� 2. The ax-
isymmetric modem= 0 has been investigated in
[8]. Whenm= 1, no non-trivial solutions exist
that satisfy both Eq. (4) and the condition of zero
velocity at the origin, and therefore them = 1
mode cannot be realized.

The asymptotic solution forr !+∞ is given

by the Hankel functionH(2)
m as

p(r) = p�H(2)
m (ζ) (13)

ξ(r) = p�
λC∞

�
H(2)

m�1(ζ)�m
ζ

H(2)
m (ζ)�

whereζ = λr=C∞, p� is the constant that depends
on the choice of the constantξ� in the asymp-
totic solution forr ! 0. In Eq. 13 we consider
only the eigenvalues that have negative imaginary

parts,Im(λ) < 0. For complex conjugate eigen-
values withIm(λ)> 0, corresponding temporally
decaying modes, the solution is given by the Han-

kel functionH(1)
m , which describes inward-going

waves.
The asymptotics of Eq. (13) represents out-

ward going waves. Using the asymptotic behav-
ior of the Hankel function at infinity

H(2)
m (z)�r 2

πz
exp

��i

�
z� 1

2
mπ� 1

4
π
��

for �2π � argz< π, the disturbance pressure in
the far field can be written as

p(r;ϕ; t) � r
2
πr

�
C∞

λ2
i +λ2

r

� 1
4

exp(λit
�) �

exp[�i (λrt
�+ψ�mϕ)℄

where t� = r=C∞ � t is the retarded time and
ψ = 0:5argλ�0:75π�0:5mπ is the phase shift.
Thus, unstable eigenfunctions in the far field re-
semble spiral out-going sound waves with the
circular frequency given by the real part of the
eigenvalueλr . The wave lengthδ (the distance
between 2 convolutions of the spiral) is also de-
termined byλr and given byδ = 2πmC∞=λr .

2.4 Solution of the eigenvalue problem

Eliminating p� in Eq. 13 yields the fol-
lowing asymptotic relation betweenξ� and
p�amplitudes asr !+∞:

λC∞H(2)
m (ζ)ξ(r) = (14)�
H(2)

m�1(ζ)�m
ζ

H(2)
m (ζ)� p(r)

The calculation of the complex eigenvalueλ
can then be fulfilled by solving Eq. (4) as an
initial-value problem with Eq. (12) applied at
some smallr = r00. The iteration parameter is
the eigenvalueλ which is varied until the solu-
tion satisfies the asymptotic relation given by Eq.
(14) at a larger = r∞. The calculation is started
with r∞ = 3. The convergence inλ is typically
achieved at the value ofr∞ � 5.
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This approach is realized with the use of
theMATLAB, a software for mathematical com-
puting. The calculation is performed with the
MATLAB’sprogrambvp4cthat solves differential
equations subject to general, two-point boundary
conditions involving a vector of unknown param-
eters. With this program, the eigenvalue problem
is solved on a sequence of intervals[r00; r∞℄ with
different, gradually increasing values ofr∞ until
the eigenvalueλ converges.

2.5 Results: eigenvalues and eigenfunctions

This section presents some results of working the
eigenvalue problem formulated in the previous
sections. We start with them= 2 mode. The cal-
culated eigenvalues are shown in Fig. 2 as func-
tions of the vortex intensityµ for several different
values of the steepnessβ. We draw only those
eigenvalues that have negative imaginary parts;
the complex conjugate eigenvalues are not given
because they correspond to temporally decaying
modes, which describe inward-going waves.

Fig. 2 Eigenvalue of them= 2 mode versusµ.

The lower part of Fig. 2 displays the imag-
inary part that represents the growth rate of dis-

turbances while the upper one the real part that
is proportional to the phase angular velocity (the
latter is equal to�λr=m).

The instability of the vortex is strongly de-
pendent on the steepness of the peripheral region
of opposite vorticity; as steeper this region as
stronger the instability. Also, one can see that
weak vortices with smaller intensitiesµ are un-
stable at any positive steepness. However this in-
stability is rather weak. The growth rate is ris-
ing with increasing ofµ. But the further behavior
depends on the steepness. For moderate values
(β < or � 2:2), the growth rate reaches a maxi-
mum and then rapidly decreases so that the vor-
tex can even fall into a stable state at a certain in-
tensity and remains stable at all higher intensities
almost up to the limit (evacuation) intensity; only
highly-intensive vortices, nearly evacuated, again
become unstable. Vortices of a higher steepness
(β> 2:5) are unstable at all intensities, with insta-
bility becoming stronger as the intensity strength-
ens.

The behavior of the real part of eigenvalues
againstµ is nearly linear for allβ. It is convenient
to normalize the phase velocity by the angular ve-
locity of the basic vortex that is represented byµ.
Thus, the parameter�λr=(mµ) defines how fast
the angular phase velocity is with respect to the
basic vortex angular velocity. One can see, that
independently on the velocity profile in the basic
vortex this parameter is roughly 0:2, the angular
phase velocity is roughly 5 times slowly than the
speed of the vortex rotation.

Eigenvalues for higher modes are shown in
Figs. 3 (m= 3) and 4 (m=4). One can see that
the instability of these modes becomes stronger
(the growth rate rises) as the vortex intensity in-
creases. However, unlike them= 2 mode case, it
peaks at a certain intensity and after that quickly
descends. Therefore, most of strong isolated vor-
tices appear to be stable with respect to higher
modes; only those with a large steepness (β �
or > 6) still remain unstable to them= 3 modes
over the all range of intensities.

The real part of eigenvalues for higher modes
is about linear function withµ and only slightly
depends on the steepness. The slopes are� 0:75
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Fig. 3 Eigenvalue of them= 3 mode versusµ.

Fig. 4 Eigenvalue of them= 4 mode versusµ.

and� 1:2 for m = 3 and m = 4, respectively.
Thus, the azimuthal phase velocity is about a
quarter (form= 3) and a third (form= 4) of the
vortex angular velocity.

For comparison, the eigenvalues for differ-

Fig. 5 Comparison between eigenvalues for the
m= 2; 3; and4 modes;β = 6.

ent modes are presented in Fig. 5. The eigen-
value is given versus intensity for the caseβ = 6.
Typically, the higher the mode of disturbances is
the weaker their instability (smaller growth rate).
One can also note that the growth rates ofm= 2
andm= 3 modes are almost coincides for weak
vortices withµ� 0:5.

Finally, we describe typical patterns of eigen-
functions. A common feature of the disturbance
pattern is the set of alternating eddies (4 form=
2, 6 form= 3, and 8 form= 4) located at the pe-
riphery of the basic vortex. These eddies form an
eddy wave that travels in the azimuthal direction
with the angular phase velocity equal�Re(λ)=m.
The eddies that are co-rotating with the basic vor-
tex produce a higher pressure (positive values of
the disturbance pressure), while those counter-
rotating a lower (negative) pressure. Thus, the in-
stability shows itself as an eddy wave in the vor-
tex periphery, where constituent eddies roll over
the core in the direction of the vortex rotation.
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3 Non-linear stage

In this section we deal with the non-linear stage
of the evolution of instabilities in the isolated
vortex considered in the previous section. This
study is conducted by numerically solving the
unsteady compressible two-dimensional Navier-
Stokes equations.

The initial distribution of flow parameters are
taken in the form of the basic isolated homen-
tropic vortex, on which a small disturbance is su-
perimposed in the form of normal mode. The dis-
turbance pressure amplitude is 10�5 of the basic
pressure at infinity.

The basic computational domain is a square
with a non-dimensional length of 6, which is sur-
rounded by outflow boundary zones extended by
a length of 20. The boundary zones are involved
in the calculation to absorb outgoing disturbances
with minimal reflection. The grid of the basic do-
main consists of 400 cells uniformly distributed
in each direction. The equations are discretized
in space with the Godunov method implemented
by the third order accurate MUSCL-type inter-
polation ([9], [10]). The time integration is per-
formed with the third order accurate Runge-Kutta
scheme.

3.1 Them= 2 mode instability

First, we consider the development of them=
2 normal mode superimposed on the vortex with
µ = 0:5 andβ = 6. Instantaneous flow patterns
are given by the velocity vector field for several
time instants in Figs. 6-8. The time is given in
Trot that is the period of one basic vortex rotation
(µ=(2π)).

The characteristic time of the linear stage
for the considered conditions is defined by�1=Im(λ) and equals to 5:2 or 0:4Trot . There-
fore, the first instant presented in Fig. 6 cor-
responds to the linear stage: disturbances have
grown by one order, but are not still seen on the
background of the basic flow. The next instant,
2:87Trot , is that when disturbances have been suf-
ficiently developed to modify the basic flow; the
vortex acquires an oval shape. Also, two small

counter-rotating secondary eddies can be seen in
the periphery.

The following two snapshots illustrate the
process of vortex breakdown. The vortex is
stretched with forming two counter-rotating ed-
dies (time=3:82Trot) that gradually recede from
the origin (time=4:78Trot).

The instant 5:73Trot shows the formation
of small secondary eddies orbiting nearby the
primary those. These primary and secondary
eddies make two pairs of counter-rotating ed-
dies. The further motion of the pairs is de-
fined by the interaction between these eddies:
the pairs recede each other (time=8:60Trot) and
then approach (time=11:46Trot). At the max-
imal approach (time=13:38Trot) they rotates at
an angle (time=15:23Trot), and then again re-
cede (time=19:10Trot), and so on. Thus, the vor-
tex breakdown result in the formation of two
pairs of counter-rotating eddies that orbit the
center of the original vortex, periodically reced-
ing from (time=19:10Trot) and approaching to it
(time=24:83Trot).

3.2 Them= 3 mode instability

Figs. 9 and 10 show successive instants of the
evolution of them= 3 disturbance mode super-
imposed on the vortex withµ = 0:5 andβ = 6.
For this mode,Im(λ) =�0:19 so that the charac-
teristic time of the linear stage is nearly the same
as for the casem= 2, 5:3 or 0:42Trot .

This evolution differs from that of them= 2
mode described in the previous section. The non-
linear stage is appeared after the basic vortex ex-
ecutes 1�2 rotations. At time=3:82Trot the basic
vortex is compressed by 3 counter-rotating eddies
and acquires a typical triangle-type shape. Un-
like the m = 2 case, this flow pattern does not
destroyed and remains for a long time; yet at
time=7:64Trot) one still can see the similar pat-
tern. However, by this instant the position of the
counter-rotating eddies is slightly asymmetrical.
One revolution after that (time=8:60Trot), two of
the three eddies merge, and we can see a flow
pattern with only two secondary eddies, similar
to that observed for them= 2 case.
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From this instant, the process of vortex break-
down begins: the two secondary eddies stretch
the basic vortex (time=9:55Trot) and tear it in
half. As this takes place, two pairs of counter-
rotating eddies are formed (time=11:46Trot).
However, these pairs are asymmetrical with re-
spect the center, and move independently each to
other as seen for the instant 14:32Trot .
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Fig. 8 Non-linear evolution of the vortex dis-
turbed by them= 2 mode eigenfunctions (β = 6
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Fig. 10 Non-linear evolution of the vortex dis-
turbed by them= 3 mode eigenfunctions (β = 6
andµ= 0:5)
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