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Abstract 
Up to the present various flight control systems 
have been proposed for linear aircraft motion on 
some equilibrium point such as steady flight, but 
very little has been done for nonlinear one on 
dynamic maneuver. Originally aircraft motion is 
expressed with six-degree-of-freedom nonlinear 
equations, especially the equations become more 
complicated for some special VTOL aircraft which 
change the form because the thrusts act like 
variable vectors. 

To solve the problems, we propose a nonlinear 
model matching method. This method will give a 
hint to solve other complicated nonlinear control 
problems. 
 
1 Introduction 
Recently many advanced middle size airplanes 
have been developed for transportation of the 
passengers and the freight. Generally airplanes need 
vast airports [1], especially the long run ways. Also 
it seems that it costs a vast sum of money to 
construct and manage an airport. Then it is useful if 
a VTOL [2] and middle size aircraft, which does 
not need the airports, could be developed. 

The VTOL and middle size aircraft suggested 
in this study has the flat body, no main plains, and 
the four duct fans which angles can be adequately 
controlled. It hovers from the apron near a coast 
line, speeds up above sea surface making the best of 
the ground effect by the four duct fans, turns the 
duct fans backward gradually and flies like a 
normal airplane with the lift arisen by the flat body. 

It is named “Lift/Cruise Fan Aircraft (L/CFA) [3]”. 
In the past time NASA had tried to develop a 

Lift/Cruise Fan Type VTOL Aircraft X-22A [4] 
which was very similar to above aircraft, but the 
plan was suspended for some reason. At present 
time some Tilt Rotor Type VTOL aircraft like 
BA609 [5] have been already developed, but this 
type VTOL aircraft has the small payload. 

And so far linear control laws like PI control 
law with gain scheduler have been used for normal 
airplanes. But in the case of above VTOL aircraft, 
the equations of aircraft motion [6] include several 
terms of the products and the trigonometric 
functions with respect to the state-space variables. 
That is, this controlled system is complicated 
nonlinear one. Perhaps the enough control 
performance can not be obtained by linear control 
law such as PI controller. Especially in the 
equations there exist several terms of the products 
of the thrust and the trigonometric function of the 
duct fan angles. It means that the control law can 
not be determined uniquely, because both the 
thrusts and the duct fan angles may be considered 
as the main control inputs for L/CFA. Then we 
have a question, whoever or whatever turns the duct 
fans backward gradually on taking off and landing 
and makes the aircraft go forward? We think the 
answer is only an expert pilot at present time. 

To solve the above problems, we propose a 
nonlinear model matching method [7] and attempt 
to apply it for the maneuver of L/CFA. This method 
will give a hint to solve other complicated nonlinear 
control problems. 



2 Longitudinal Nonlinear Equations of Aircraft 
Motion 

Where TF and TR: thrusts of the front and rear duct 
fans [N], TFu and TRu: horizontal elements of TF and 
TR [N], TFw and TRw: vertical elements of TF and TR 
[N], Θ F and ΘR: angles of the front and rear duct 
fans [deg]. 

In this section, the longitudinal nonlinear equations 
of aircraft motion [6] for L/CFA are shown as the 
controlled system. At first the nonlinear ones are 
constructed in continuous time, secondly they are 
transformed to the discrete form [7]. 

Then X, Z and M [6] in the right hands of 
qs.(1), (2)& (4) may be given as follows: E  
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2.1 Longitudinal Motion of L/CFA 
The body axes of L/CFA can be set as in Fig.1. 

 
 Fig. 1. Body Axes of L/CFA 

 where : air density [kg/mρ 3], 222
T W+V+U=V :  

CThen the longitudinal nonlinear equations of 
L/CFA motion are expressed as follows: 

resultant linear velocity [m/s], S: wing area [m2], : 
mean aerodynamic chord [m], : length from 
center of gravity to duct fans [m], C

l

x, Cz, Cx FΘ , 
Cx RΘ , CzΘ F, CzΘ R, Cm, CmΘ F, Cm R Θ and CmQ: 
non-dimensional aerodynamic derivatives. 

 

)4(              M=J)R-P(+)I-I(PR+IQ
)3(                                        sinR-cosQ=
)2(                Z=)coscosg-UQ-PV+W(m
)1(                        X=)sing+VR-QW+U(m

xz
22

yxy
&

&

&

&

ΦΦΘ

ΦΘ

Θ

 Moreover the lateral-directional state variables 
in Eqs.(1)-(4) can be given as , 0==R=P=V Φ
a s a result the following equations can be obtained.  

where m: aircraft mass [kg], g: gravity acceleration 
[9.8m/sec2], Ix, Iy, Iz: moments of inertia about each 
body axis [kg • m2], Jxz: product of inertia [kg • m2], 
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[Vertical force] 

X: thrust and aerodynamic force in direction of X 
body axis [N], Z: thrust and aerodynamic force in 
direction of Z body axis [N], M: aerodynamic 
moment about Y body axis [N • m]. 

Also the longitudinal model of L/CFA motion 
[3] can be considered such as Fig. 2. 
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[Pitch rate] 

 
Q=Θ&                              (10) 

Fig. 2. Longitudinal Model of L/CFA  



[Pitching moment] c 3  = [ 0  0  0  0  1  0  ] 
c 4  = [ 0  0  0  0  0  1  ] 
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Now we have a problem for the control inputs. As 
you see, the products of the thrust and the 
trigonometric function of the duct fan angles exist 
in the above equations, the control law can not be 
determined uniquely. Because both thrust and duct 
fan angle can be considered as the control inputs. 
Then consider the front and rear duct fan angles as 
the state variables, the following first order systems 
are added to the above equations. 
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 Where T: time constant of duct fan actuator, UF and 
UR: piloted front and rear duct fan angles. 
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2.2 Discrete Time Nonlinear Equation of L/CFA 
Normally we have no strict transform method for 
nonlinear equation between continuous and discrete. 
Then apply following first order approximation [7] 
to the differentiation terms of state variables in left 
hands of Eqs.(8)-(13).  is the sampling time [s]. ∆
 

       x& i(t) ≡ [xi (k+1) – xi (k)] /     (14) ∆
 
The discrete time nonlinear state-space equation 
can be given as follows: 
 

  x (k+1) = F(x) + B(x)u(k), y (k) = C x(k)  (15) 
 
where x(k) = [U(k), W(k), (k), Q(k), Θ Θ F(k), 
Θ

Θ

R(k)]T: state variable vector, u(t) = [TF(t), TR(t), 
UF(t), UR(t)]T: input vector, y(t) = [W(t), Θ (t), 

F(t), ΘR(t)]T: output vector and 
 
C  = [ c1

T c 2
T c 3

T c 4
T ]T 

c 1  = [ 0  1  0  0  0  0  ] 
c 2  = [ 0  0  1  0  0  0  ] 



3 SYNTHESIS OF NONLINEAR MODEL 
MATCHING CONTROL SYSTEM 

[Definition] 
For the following condition of System and 

eference Model
Σ

Σ M In this section a design method using our proposed 
nonlinear model matching method [7] for nonlinear 
system is generally described. 

R 
x0 = 0,  xM0 = 0,  F(x0) = 0,  B(x0) = 0 

, when  
yM(k) = y(k)   for  k ≥  0 3.1 Formulation of the Problem  

Consider the following nonlinear system as a 
ontrolled system. 

can be achieved, it is called that System can be 
model-matched to Reference ModelΣ

Σ

M . c 
 (System ) Σ
3.2 Nonlinear Model Matching x(k+1) = F(x) + B(x)u(k),  x(0) =x 0    (16) 
In this subsection, for System  and Reference 
System

Σ
Σ M, the dynamic model matching control 

system based on Hirschorn's algorithm [8] extended 
with Silverman's structure algorithm [9] is proposed. 
For System  and Reference SystemΣ Σ M, perform 
he following procedure. 

y(k) = Cx(k)                       (17) 
where 
F(x) = [f1(x) , f2(x), , f • • • n (x)]T , f i (x) : R n→R 
B(x) = [b1

T(x),b2
T(x), ,b• • • n

T(x)]T, b iT(x):R n→R p 
C = [c1

T,c2
T, ,c• • • p

T ]T∈Rp x n t  x(k) = [x1(k), x2(k), • , x• • n(k)]T∈Rn 

[Step 1]  Consider the time shift signals of the 
output y1(t) and left-multiply the both sides of Eqs. 
(17) & (19) by z, the following equations are 
btained 

 y(k) = [y1(k), y2(k), • , y• • p(k)]T∈Rp 
u(k) = [u1(k),u2(k), , u• • • p(k)]T∈Rp   

x(k)∈R n , y(k) R ∈ p and u(k) R ∈ p are the state 
variable vector, the output signal vector and the 
input signal vector, and the above inverse system is 
assumed to be stable. Let F(x) and B(x) be the real 
polynomial functions with respect to the state 
variable. 

o 
      z y1(k)  = c1F(x)+ c1B(x)u(k) 

z yM1(k) = cM1AMxM(k) + cM1BMuM(k)  
where z is the time-shift operator. 
    Next formally replace the above equations 

ith as follows:     On the other hand, consider the following 
equation as a reference model which the system 
esigner sets arbitrarily. 

w 
    z f11y1(k)   = Ca11(x) + Da11(x)u(k) 

d   z f11yM1(k) = CaM11(x)xM(k) + DaM11(x)uM(k)  (Reference System ΣM ) where the left "1" of subindex "11" means the 1st 
output, the right "1" means the 1st power of z1. And 
generally Ca11(x), CaM11(x), Da11(x) and DaM11(x) 
are polynomial functions and matrices with respect 
to x. In the above equations, when if Da11(x)≠ 0, 
replace f11, Ca11 and Da11with f1, Ca1 and Da1 and 
go to the next step. When if Da11(x) = 0, the 
following equations are obtained by repeating the 
ime shift 

xM(k+1) = AMxM(k) + BMuM(k)      (18) 
yM(k) = CM xM(k)                 (19) 

where  
       xM(k) = [xM1(k),xM2(k), ,x• • • Mm(k)]T 
       yM(k) = [yM1(k),yM2(k), ,y• • • Mp(k)]T 
       uM(k) = [uM1(k),uM2(k), ,u• • • Mp(k)]T 
        CM  = [ cM1

T,cM2
T, • ,c• • Mp

T]T 

t xM(k) R∈
∈

m is the reference state variable, 
uM(k) Rp and yM(k) R ∈ p are the bounded 
reference input and output. 

     z f1j y1(k)  = Ca1j(x) + Da1j(x)u(k) 
      z f1j yM1(k) = CaM1j(x)xM + DaM1j(x)uM(k) 

    The objective of this study is to design a 
model matching control system which forces the 
output of the state vector nonlinear system y(k) to 
match the reference model output yM(k). 

where Da1j(x) 0 and it is assumed that "j" which 
satisfies the above equations exists. Likewise, 
replace the subindices "1j" of f, Ca and Da in the 
above equations with "1" and go to the next step. 

≠

    And here the model matching is defined as 
follows:  



[Step 2] Do the same procedure as Step 1 for the 
utput y2(k), the following equations are obtained o 

   z f 2 j y2(k) = Ca2j(x) + Da2j(x)u(k) 
    z f 2 j yM2(k) = CaM2j(x)xM + DaM2j(x)uM(k) 

[Step 3] When if Da2j(x)≠ (x)Da21α 1(x);[α (x)≠  21

0], replace the subindex "2j" with "2" and do the 
same procedure from Step 2 for y3(k). Where, 

(x) is a polynomial function with respect to x(t). 21α
    When if Da2j(x)=α (x)Da21 1(x), consider the 
ew outputs[10] as follows: n 

         -α (x)z 21
f1y1(k) + z f 2 j y2(k) 

          -α (x)z 21
f1yM1(k) + z f 2 j yM2(k) 

a nd do the same procedure from Step 2. 
[Step 4]  By repeating the above procedure to the 
outputs yp(k) and yMp(k), the following equations 
an be obtained c 

Na(z, x)y(k) = Ca(x) + Da(x) u(k)         (20) 
Na(z, x)yM(k) = CaM(x)xM(k) + DaM(x)uM (k) (21)  

where Na(z, x) is a lower triangular matrix in which 
the diagonal entries are z f i , and Ca(x) and Da(x) 
re respectively a 

  Ca(x) = [Ca1(x), Ca2(x), , Ca• • • p(x) ]T 
  Da(x) = [Da1

 T(x), Da2
 T(x), • , Da• • p

 T(x)]T 
  CaM(x) = [CaM1(x), CaM2(x), • , Ca• • Mp(x) ]T 

   DaM(x) = [DaM1
 T(x), DaM2

 T(x), , Da• • • Mp
 T(x)]T.  

Then it is clear that Na(z, x) is a lower triangular 
matrix because of the procedure in Step 3 which the 
relations between yj(k) and u(k) can be obtained 
with the time shift form of yj (k). 
   Using the above relation the following theorem 
can be obtained. 
<Theorem> 
I f the following condition is satisfied 

rank (Da(x)) = p  for  x(k)∈R ∀ n  
System  can be model-matched to Reference 

ystem
Σ
Σ M by the control law u(k) as S 

u(k) = Da(x)-1[ - Ca(x) + CaM(x)xM(k) 
+ DaM(x)uM(k)]  (22)  

( Proof) Define the output error e(k) as 

             e (k) = yM(k) - y(k)          (23) 
the following relation can be obtained using 

qs.(20)--(23) E 
             Na(z , x) e(k) = 0           (24)  
Where notice the form of Na(z , x), especially the 
diagonal entries which have the stable polynomials, 
for the condition : x(0)=0, xM(0)=0, F(x0)=0, 

(x0)=0, the following relation can be obtained B 
y(k)  =  yM(k),  for  k  0   (25) ≥ 

and the model matching can be achieved. Also 
because of Eq.(24), for the arbitrary initial values, 
he following relation can be obtained t 

y(k) y→
M(k),   for  k → ∞ 

 
[Comment] As a result, by replacing Na(z, x) with 
an interactor matrix [10] of a system, we can 
understand that this method is a extension of the 
linear model matching control system proposed by 
Wolovich [11]. 
 
4 Application to Lift/Cruise Fan Aircraft 
In this section, we attempt to apply the proposed 
method to the flight control system for the L/CFA, 
and investigate the feasibility by numerical 
simulations. The data [4] of L/CFA, flight condition 
[12] and reference models are given as follows. Yet 

any data of another aircraft are included in them. m 
[Data of L/CFA] 

m: 5195 [kg], Iy: 178457 [kg • m2], S: 39.56 [m2], 
: 4.89 [m], : 4.5 [m], : 0.05 [s] l ∆C 

[Flight Condition] 
Hovering at altitude 6,000 [m], :0.5495 [kg/mρ 3], 
Cx:-0.0325, Cz:-0.851, Cm:-0.0373, Cx FΘ

Θ

:1.6, 
Cx RΘ :2.5, Cz FΘ :3.4, Cz RΘ :4.3, Cm F:5.2, 

mΘ R:6.1 and CmQ:-6.0. C 
[Reference Model] 

2nd order transfer functions with damping ratio  
= 0.9 and natural frequency 

ζ
ωn = 5.2 [rad/s] are 

given for each output. The reference inputs are 
given as uM(k)={0.1[m/s], 0[deg], 0[deg], 0[deg]} 
from the beginning to 1 sec, uM(k)={1[m/s], 0[deg], 
10[deg], 10[deg]} from 1 sec to 5 sec, uM(k) = {-1, 
0, 10, 10} from 5 sec to 10 sec. 
 



 

 

 

Fig. 4 Control Inputs 
 
[Evaluation] 
The results show that each output perfectly matched 
to the reference model outputs and the smooth 
vertical translation keeping the pitch angle 0 deg 
could be accomplished. Especially the front and 
rear duct fans are gradually turned backward, the 
forward velocity approximately 60 km/h could be 
obtained. Also the thrusts of front and rear duct fans 
are made within the range of available power. 
 
5 Conclusions Fig. 3 Responses of State Variables In this paper, we suggested a new type of L/CFA 
and attempted to apply our nonlinear model 
matching control method for its maneuver. And we 



showed the feasibility of proposed method with 
numerical simulations. However it is necessary to 
consider the following premises or assumptions. 1 
The inverse system is stable. But normally an 
inverse system of nonlinear plant can not be defined 
and its stability can not be proved. 2 All state 
variables of the aircraft can be measured. 3 The 
plant is an M inputs and M outputs system. 4 The 
plant parameters [3,13,14] such as non-dimensional 
aerodynamic derivatives are fixed. 5 The effect of 
disturbance [15,16] such as gust is not considered. 
These are remained as the theme which should be 
improved. 
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