
24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
  

1 

 

 
Abstract  

In this paper, the stability of non-parallel 
flowfield has been investigated by applying the 
global stability analysis. Chiba’s method, which 
is a method for the global stability analysis, is 
modified in order to increase the efficiency of 
the calculation and to calculate the stability of 
an arbitrary domain of the flowfield. The 
modified method was applied for the laminar 
flowfield around a NACA0012 airfoil. We focus 
on the domain which is over the leeside of the 
airfoil. Oscillatory modes of the domain were 
numerically calculated using the modified 
method. The period and the wavelength of the 
most amplified mode were compared with the 
result of the local stability analysis 
incorporating Kelvin-Helmholtz instability. The 
results of our study agree with those of the local 
stability analysis. 

1 Introduction  
The flow around a wing demonstrates various 
oscillatory phenomena, for example, Karman 
vortex which is observed at wake region, and 
Kelvin-Helmholtz instability which is observed 
in the laminar separation bubble. Such 
oscillatory phenomena were explained by the 
results of the local stability analysis. However, 
to study the stability of a general flowfield, in 
other words, the stability of a non-parallel 
flowfield, other approach is needed. 

The stability of flow around a various 
shaped body can be analyzed using the 
application of the global stability analysis. In 
the global stability analysis, the unstable 
distribution of the velocity perturbation, which 
is known as "mode", is calculated. Natarajan[1] 

examined the global stability of the flow around 
a sphere and explained the mechanism of the 
transition from steady axisymmetric flow to 
steady non-axisymmetric flow. In this paper, the 
term “transition” stands for such a change of 
flowfield in laminar flow. This phenomenon is 
different from the transition from laminar flow 
to turbulent flow.  

 In the case for a flow around a sphere, a 
steady non-axisymmetric flow is observed when 
the Reynolds number is between 210 and 270. 
The critical Reynolds number from steady flow 
to oscillatory is obtained as Re=270. However, 
the critical Reynolds number from non-
oscillatory axisymmetric flow to non-oscillatory 
symmetric flow is also obtained. This critical 
Reynolds number is 210. Since this value is 
lower than the critical Reynolds number for 
oscillatory flow, non-oscillatory non-
axisymmetric flow is observed.  

In the author's previous study, the global 
stability of flow around an ellipsoid[2] and a 
blunt cylinder[3] at angles of attack was 
investigated. To calculate the global stability of 
the flowfield, Chiba's method[4] was used, 
because it can be easily coupled with the 
Navier-Stokes analysis using the finite-
difference method on the generalized 
coordinates. A characteristic of Chiba's method 
is that several sets of velocity disturbances are 
added to the numerical result of Navier-Stokes 
equations which becomes the initial conditions 
used to calculate the Navier-Stokes equations. 
The stability of flow is estimated whether the 
velocity disturbances are magnified or not. 
Three-dimensional flow around a sphere was 
analyzed to check the validity of the numerical 
code used. The results were in good agreement 
with the results of Natarajan[1]. 
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In the case of the flow around above-
mentioned configurations, the region of 
flowfield which is transformed by the 
appearance of transitional mode is limited only 
in the wake region of the body. Calculating the 
stability of flow by adding a disturbance 
velocity to the whole computational domain is 
considered as inefficient. If we calculate only 
the region of flowfield which is supposed to be 
significant for the stability of flowfield, the 
efficiency of calculation will be improved[5].  

The governing equation of the modified 
method is obtained analytically by the 
perturbation expansion of the Navier-Stokes 
equations. Using this modified method and 
calculating a certain region of flowfield, the 
computational time becomes shorter than the 
Chiba’s method.  

In this study, the flow over a two-
dimensional NACA0012 airfoil at angle of 
attack is analyzed using the modified stability 
analysis. The laminar separation and subsequent 
transition to turbulent flow over the airfoil plays 
an important role for the flow around the airfoil, 
especially at a high angle of attack and for 
airfoil stall. Although numerous researches have 
been conducted, precise predictions of 
separation and transition to turbulent flow over 
the airfoil have not been accomplished[6].  

The main purpose of this paper is to apply 
the modified global stability analysis to the 
laminar separation flow over the airfoil. 
Stability analysis is considered as a promising 
approach to clarify the mechanism of the onset 
of transition to turbulent flow observed in the 
separated flow over the airfoil. The Reynolds 
number based on the chord length is set as 

51.0 10Re = × . From the result of our numerical 
simulation, it is verified that a sequence of 
vortex is generated on the airfoil and these 
vortices are convected to leeward. This 
phenomenon is considered to be caused by the 
Kelvin-Helmholtz instability. Therefore, our 
result of stability analysis is compared with the 
result of Kelvin-Helmholtz instability. To 
investigate the effect of the Reynolds number, 
the stability of flow in a different Reynolds 
number of 52.0 10×  was also calculated. 

2. Numerical Method 

2.1 Global Stability Analysis 
The incompressible laminar Navier-Stokes 
equations are written as follows: 

 / ( )t∂ ∂ =u f u , (1) 

where the vector u  is the column of the 
velocity components at all the computational 
nodes. 

 
max max max max1,1 1,1 , ,( )Ti j i ju v u v=u ,  

If the number of computational nodes 
( max maxi j× ) is N , the dimension of u  becomes 
2N  in the two-dimensional case. Pressure is not 
included in the dependent variables, since it is 
calculated from the velocity. A Taylor series 
expansion is applied to Eq. (1) around the 
stationary solution 0u :  

 20
0 0

( )( ) ( ) ( )O∂+ = + +
∂
f uf u u f u u u
u

, (2) 

where u  is a small disturbance. Considering 
that the second or higher order terms with 
respect to | |u  are negligibly small, the 
linearized stability equation is given as:  

 0( )
t

∂∂ = ≡
∂ ∂

f uu u Au
u

, (3) 

where 0( )/≡ ∂ ∂A f u u  is the Jacobian matrix. 
Substituting the eigenvalue λ  and 

eigenvector φ  of matrix A into Eq.(3), we 
obtain 

 / t λ∂ ∂ =φ φ .  

We can evaluate the stability of flow by the 
real part of λ  (i.e. ( )λℜ ). The mode of velocity 
disturbance is represented by φ . When the real 
part of the eigenvalue is positive or negative, the 
magnitude of the mode is growing (the flow is 
unstable) or diminishing (the flow is stable), 
respectively. The period of the oscillatory mode 
is evaluated by the imaginary part of λ  (i.e. 
( )λℑ ). The imaginary part represents the 

frequency of the oscillation. When the 
imaginary part of the eigenvalue is zero or non-
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zero, the mode is steady or oscillatory, 
respectively. 

2.2 Application of the Approximate 
Eigensystem Analysis  

2.2.1 Approximate Eigensystem Analysis  
The global stability is analyzed by the 
eigensystem analysis of Eq.(3). However, the 
size of matrix A  is 2 2N N× . It is inefficient to 
calculate the eigensystem of matrix A  directly. 
Chiba[4] adapted Eriksson's method[7] to 
determine the critical Reynolds number in the 
case of a circular cylinder and obtained 
reasonable results. In his approach, Arnoldi's 
method[8] was used to calculate the eigenvalue 
approximately.  

Integrating Eq.(3) with respect to time 
from 0 to T  gives: 

 ( ) exp( ) (0)T AT=u u , (4) 

The approximate eigensystem of 
( exp( ))T≡B A  is numerically calculated by 

Arnoldi’s method. 
 Suppose the approximate eigensystem of 

matrix B  is expressed by the vector which is 
contained in the Krylov subspace 

 1
1 1 1span{ , ,..., }M

MK
−= B Bζ ζ ζ . 

The normalized orthogonal basis vectors of 
subspace MK  which are written as iζ  

( 1 i M≤ ≤ , M N ) are introduced. iζ  is a 
column vector and the number of elements are 
2N . The vector 1ζ  is given by random numbers. 
To obtain the basis vector iζ  (2 i M≤ ≤ ), the 
Gram-Schmidt orthogonalization method is 
used. Suppose that 1Bζ  is calculated, then 2ζ  is 
defined by the orthogonality condition. The 
vector 2ζ  is introduced to describe the vector 

1Bζ  by using a set of orthonormal basis 1ζ  and 
2ζ : 

 1 1,1 1 2,1 2c c= +Bζ ζ ζ . (5) 

The procedure of the Chiba’s method to 
calculate 1Bζ  is expressed in section 2.2.2. 

The vectors,  3ζ ,  4ζ ,...,  Mζ  are calculated 
in the same way: First, calculates the vector 

iBζ . Then, the vector 1i+ζ  is introduced as: 

1, 1 2, 2 , 1, 1i i i j i j i i ic c c c + += + + + + +Bζ ζ ζ ζ ζ .(6) 

Gram-Schmidt orthogonalization was applied to 
calculate 1i+ζ . The coefficient ,j ic  of 
orthonormal basis jζ  ( 1 j i≤ ≤ ) is calculated 
as: 

 ,j i i jc = ⋅Bζ ζ . (7) 

Then, 1, 1i i ic + +ζ is calculated from the following 
relation: 

 1, 1 1, 1 2, 2 ,( )i i i i i i i i ic c c c+ + = − + + +Bζ ζ ζ ζ ζ . (8) 

At the end of the calculation, the following 
equation is obtained 

 
1, 1 2, 2 ,

, 1, 1

M M M j M j

M M M M M M

c c c

c c + +

= + + + +

+ +

Bζ ζ ζ ζ
ζ ζ

. (9) 

In the case that M  is large and 1, 1| |M M Mc + +ζ  is 
small, we can approximate Eq.(9) as 

 1, 1 2, 2

, ,

M M M

j M j M M M

c c

c c

= + +

+ + +

Bζ ζ ζ
ζ ζ

. (10) 

The coefficient ,j kc  and basis vector jζ  satisfy 

 

1 1

1,1 1, 1 1,

2,1 2, 1 1,

, 1 ,

{ ,..., } { ,..., }

0

0 0

M M

M M

M M

M M M M

c c c

c c c

c c

−

−

−

=

 
 
 
 
 
 ×  
 
 
 
   

B

H

ζ ζ ζ ζ

.(11) 

The M M×  matrix H  whose elements are 
,j kc  is obtained. The eigensystem of B  is 

approximately calculated from the eigensystem 
analysis of the matrix H  of size M M×  instead 
of the matrix B  of size 2 2N N× . The 
eigenvalue ( )Hλ  and eigenvector ( )Hψ  of matrix 
H  satisfies the equation: 

 ( ) ( ) ( )H H Hλ=Hψ ψ .  
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Then, the Eq.(11) becomes 

 

( ) ( )
1 1

( ) ( )
1

( ) ( )
1

{ ,..., } { ,..., }

{ ,..., }

{ ,..., }

H H
M M

H H
M

H H
M

λ

λ

=

=

=

B Hζ ζ ψ ζ ζ ψ

ζ ζ ψ

ζ ζ ψ . (12) 

Therefore the eigenvalue ( )Hλ  of matrix H  is 
an approximate eigenvalue of matrix B . The 
vector ( )

1{ ,..., } H
Mζ ζ ψ  becomes the approximate 

eigenvector of matrix B . The approximate 
eigenvalue ( )Bλ  and eigenvector ( )Bφ  of matrix 
B  is calculated from the Eq.(13)(14). 

 ( ) ( )B Hλ λ= , (13) 
 ( ) ( )

1{ ,..., }B H
M=φ ζ ζ ψ . (14) 

The eigenvalue ( )Aλ  of the matrix A  is 
obtained by the relation:  

 ( ) ( )exp( )B ATλ λ= . (15) 

The eigenvector ( )Aφ  for the system A  is the 
same as that for the systemB . 

 ( ) ( )A B=φ φ . (16) 

It should be noted that in this method, less 
stable mode with larger real part of the 
eigenvalue is computed more accurately. The 
transition of flow from a state to another state is 
caused by the mode that has the largest real part 
of eigenvalue. So by using the approximate 
eigensystem analysis, the mode which dominate 
the transition is obtained efficiently. 

2.2.2 Calculation of  iBζ  by Chiba’s method 
From the relation of Eq.(2), we can say that 
(0)u  is a vector disturbance at 0t = , and ( )Tu  

is a vector disturbance at t T= . In Chiba’s 
method, the Navier-Stokes equations are solved 
from 0t =  to t T=  using such initial value 
that contains the velocity disturbance. Two 
types of initial values: (ini)

0 1( )i ε+ ≡ +u u ζ  and 
(ini)

0 1( )i ε− ≡ −u u ζ  are introduced. 0u  is the 
converged solution of the Navier-Stokes 
equations which is considered as a basic flow of 
the stability analysis.  

In order to calculate 1Bζ , the Navier-
Stokes equations are solved using (ini)

i+u  and 

(ini)
i−u  as an initial value. The result at t T=  are 

written as (fin)
i+u  and (fin)

i−u , respectively. Then 

1Bζ  is obtained as: 

 (fin) (fin)
1 1 1( )/2ε+ −ζ = −B u u . (17) 

 The vector iζ , whose number of elements 
are 2N , should satisfy the normalized condition 
| | 1i =ζ . Then, the component of iζ  becomes 
small if the number of elements 2N  is large. 
For N  is the number of gridpont, the magnitude 
of iζ  depends on the size of computational 
mesh. Therefore, to control the magnitude of the 
initial disturbance, the parameter ε  is 
introduced.  

2.3 Derivation of the Linearized Perturbation 
Equations 
In MAC method[9], which is a numerical 
method for incompressible Navier-Stokes 
equations, the Navier-Stokes equations (18), 
(19) and a Poisson’s equation (20) are derived. 

 ( )/t x y x xx yyu uu vu p u u Re+ + = − + +  (18) 
 ( )/t x y y xx yyv uv vv p v v Re+ + = − + +  (19) 

 
2 22

( )/
xx yy x y x y

x y

p p u u v v

u v t

+ = − − −

+ + ∆
 (20) 

 These equations are coupled and solved 
numerically.  

In this study, first-order perturbation of 
Eq.(18)-(20) are introduced to calculate ( )Tu .  
Let U , V  and P  be the converged steady 
solution of Navier-Stokes equations which was 
considered as base flow. Substituting U , V  and 
P  into Eq.(18)-(20) gives: 

 ( )/x y x xx yyUU VU P U U Re+ = − + +  (21) 
 ( )/x y y xx yyUV VV P U V Re+ = − + +  (22) 

 
2 22

( )/
xx yy x y x y

x y

P P U U V V

U V t

+ = − − −

+ + ∆
 (23) 

Substituting U u ′+ , V v ′+  and 'P p+  
into Eq.(18)-(20), yields: 
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( ) ( )( ) ( )( )

( ) (( ) ( ) )/
t x y

x xx yy

U u U u U u V v U u

P p U u U u Re

′ ′ ′ ′ ′+ + + + + + +

′ ′ ′= − + + + + +
 (24) 

 
( ) ( )( ) ( )( )

( ) (( ) ( ) )/
t x y

y xx yy

V v U u V v V v V v

P p V v V v Re

′ ′ ′ ′ ′+ + + + + + +

′ ′ ′= − + + + + +
 (25) 

 2 2

( ) ( )

( ) 2( ) ( ) ( )

(( ) ( ) )/

xx yy

x y x y

x y

P p P p

U u U u V v V v

U u V v t

+ + +

= − + − + + − +

+ + + + ∆

 (26) 

Calculating the difference between 
Eqs.(21)-(23) and Eqs.(24)-(26), and neglecting 
the higher order term of the perturbation, we get 
the linearlized perturbation equation: 

 
 

 

2 2 2

2 ( )/
xx yy x x y x y x

y y x y

p p U u u V U v

v V u v t

′ ′ ′ ′ ′+ = − − −

′ ′ ′− + + ∆
 (27) 

 
( )/

t x x y y

x xx yy

u u U Uu v U Vu

p u u Re

′ ′ ′ ′ ′+ + + +

′ ′ ′= − + +
 (28) 

 
( )/

t x x y y

y xx yy

v u V Uv v V Vv

p v v Re

′ ′ ′ ′ ′+ + + +

′ ′ ′= − + +
 (29) 

The velocity perturbation at time T  is 
calculated by the time marching of Eqs. (27)-
(29). If the initial disturbances, (0)u ′  and (0)v ′ , 
are given, ( )u T′  and ( )v T′  which are the 
disturbances at time T  is calculated by Eqs. 
(27)-(29). Then the eigensystem of matrix B  is 
calculated by using the Arnoldi’s method. This 
approach reduces the computational time almost 
by half comparing to the Chiba’s method. This 
is because the Chiba’s method requires twice 
calculation for Eqs.(18)-(20) to get ( )Tu . In the 
first calculation, the initial condition of Navier-
Stokes equation is 0 (0)ε+u u  and then 
0 (0)ε−u u  becomes the initial condition. If we 

use the perturbation equations (27)-(29), ( )Tu  
is obtained by single calculation. Therefore the 
computational cost for the  calculation of the 
stability is reduced by using the perturbation 
equation. 

2.3 Numerical scheme for linearized 
perturbation equation 

 The central difference was applied for the 
discretization of the equation except the 
convection term. If we discrete the convection 
term by central difference, numerical oscillation 
may diverge and we may not calculate the flow. 
Therefore, upwind difference is applied to the 
convection term for the numerical simulation of 
the flow. In this study, third-order upwind 
difference[10] was applied to the convection 
term.  

 
2 1 1 2

2 1 1 2

8( )
( )

12
4 6 4

12

i i i i
x i i

i i i i i
i

u u u u
u u u

x
u u u u u

u
x

∆

∆

+ + − −

+ + − −

− + − +
=

− + − +
+

 (30) 

 To simplify the expression, the first term 
and the second term of the right-hand side 
which correspond to the first and the fourth 
derivative is expressed as 1( )if u  and 4( )if u , 
respectively. Then, Eq. (30) is simplified as: 

 1 4( ) ( ) | | ( )x i i i i iu u u f u u f u= +  (31) 

The first term and the fourth term of the 
linearlized perturbation equation (28) 

 x x y yu U Uu v U Vu′ ′ ′ ′+ + + , (32) 
correspond to the convection term of the numer
ical computation. If we apply the upwind differ
ence to the first and the second term of Eq.(32) 
(i.e. x xu U Uu′ ′+ ), we get  

 1 4

1 4

( ) | | ( )

( ) | | ( )
x x i i i i

i i i i

u U Uu u f U u f U

U f u U f u

′ ′ ′ ′+ = +

′ ′+ +
. (33) 

However, the second term of the right-hand 
side calculates the absolute value of the 
perturbation iu ′ . If iu ′  and iu ′−  are substituted 
to Eq. (33), the value of the second term 
becomes the same. When the input of a linear 
system is a sign inversion of iu ′ , the output 
should be a sign inversion. Hence, Eq.(33) is an 
incorrect method to solve the convection term of 
the linear perturbation equation. We have to 
make other method for Eq.(33). If the 
convection term is treated inadequately, the 
numerical divergence will be caused. The result 
of the stability analysis is affected by the 
scheme of the convection term. To check the 
influence of the numerical viscosity, three types 
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of scheme (A), (B) and (C) are introduced to 
discrete the convection term. 

Scheme (A)  
Scheme (A) is derived from an idea to 

solve the perturbation equations numerically. 
The first term of Eq. (32) implies that if the 
basic flow is accelerating or decelerating, the 
disturbances decay or amplify in the streamwise 
direction, respectively. Therefore, this term is 
considered not to cause numerical divergence. 
The perturbation equation may be calculated 
numerically if the numerical viscosity of this 
term is omitted. Then, the following equation is 
used in scheme (A). 

 1 1 4( ) ( ) | | ( )i i i i i iu f U U f u U f u′ ′ ′+ +  (34) 

Scheme (B)  
Scheme (B) is consistent with the Chiba’s 

method which calculate the amplification of the 
disturbance by adding velocity disturbances to 
the basic flow and solving the Navier-Stokes 
equations using such initial conditions. 
Substituting U  and P  into Eq. (31) gives  

 1 4( ) | | ( )i i i iU f U U f U+ , (35) 

and substituting U u ′+  and P p ′+  into Eq. 
(31) gives 

 1 4( ) ( ) | | ( )i i i i i i i iU u f U u U u f U u′ ′ ′ ′+ + + + + . (36) 

Considering the limit of 0u ′ → , the 
absolute value of the second term of Eq.(36) is 
defined by the sign of U . 

If U  is larger than zero: 
 1 4( ) ( ) ( ) ( )i i i i i i i iU u f U u U u f U u′ ′ ′ ′+ + + + + . (37) 
If U  is smaller than zero: 
 1 4( ) ( ) ( ) ( )i i i i i i i iU u f U u U u f U u′ ′ ′ ′+ + − + + . (38) 

Calculating the difference of Eq.(35) and 
neglecting the second order terms gives 

If U  is larger than zero: 
 1 1 4 4( ) ( ) ( ) ( )i i i i i i i iu f U U f u u f U U f u′ ′ ′ ′+ + +  (39) 
If U  is smaller than zero: 
 1 1 4 4( ) ( ) ( ( ) ( ))i i i i i i i iu f U U f u u f U U f u′ ′ ′ ′+ − +  (40) 

Therefore, Eqs.(39)(40) are used by Scheme (B). 
 

Scheme (C)  
Scheme (C) has no numerical viscosity in 

the convection term. 
if we neglect the third term of Eq.(34) 

which is a numerical viscosity of xUu ′ , we get 
Eq.(41). 

 1 1( ) ( )i i i iu f U U f u′ ′+  (41) 

In the case of a subcritical condition, 
physical damping is considered to be 
dominating when compared to the numerical 
instability. Then, the numerical divergence is 
suppressed by the physical damping. If this 
consideration is true, we can calculate the 
perturbation equation by Eq.(41) which has no 
numerical viscosity. Then,  scheme (C) is 
derived. If the amplification factor and the 
distribution of the velocity disturbance is the 
same among the scheme (A), (B) and (C), the 
effect of the numerical viscosity is considered to 
be negligible. In our previous study[11], the 
stability of the flow around a circular cylinder 
was calculated and the result calculated by using 
scheme (A), (B) and (C) are compared. Those 
results are the same if the amplification factor of 
the mode is large. This result indicates that 
physical instability is dominating when 
compared to the numerical instability and the 
effect of the numerical viscosity is negligible. 
To calculate the convection term of the 
perturbation equation, the choice of the scheme 
dose not cause any problem. In this study, the 
scheme(A) is applied to solve the perturbation 
equation. 

2.4 Computational Conditions 
For accurate evaluation of the stability of 

the flow, M  must be large enough. To 
investigate the onset of the oscillation, the mode 
which has a large amplification factor was 
focused on. The value ( )( )Aλℜ  of such mode is 
large. According to the increase of M , the value 
of ( )Aλ  converges if the real part of ( )Aλ  is large. 
When M  is 40, the dependency of M  becomes 
very small. Therefore, M  is set as 40. 

If T  is larger than the half period of 
oscillation, aliasing occurs and the period of 
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oscillation appears longer than the actual period. 
In this study, the order the magnitude of the 
frequency can be estimated by the result of 
numerical simulation. Then, T  is set as 0.01. 

The MAC method[9] was used to solve the 
Navier-Stokes equations. The Poisson's equation 
for pressure was solved by the SOR method. 
The Euler explicit scheme was used for time 
integration. The third-order upwind finite-
difference[10] is applied for the convection term. 
The grid is C type around the body and the 
number of grid is 501 x 101. At the outer 
boundary, the free-stream boundary condition 
and zero-th order extrapolation are applied at 
the inflow and outflow boundary, respectively. 
The value of the velocity vector u  at the inflow 
boundary is set as freestream condition and the 
value of the disturbance velocity vector u  is set 
as zero.  

3. Results 

3.1 51.0 10Re = ×  Case 

The flow around a NACA0012 airfoil was 
numerically calculated. The Reynolds number 
was 51.0 10×  and the angle of attack was 10 
degrees. The initial condition of the velocity and 
pressure was given by an impulsive start from 
free stream conditions. 

Figure 1 shows the streamline pattern of 
the result at non-dimensional time 1.2. The flow 
is attached to the surface of the wing. No 
oscillation is observed on the leeside of the 
wing. Figure 2 shows the streamline pattern of 
the result at a non-dimensional time 2. The flow 
observed over the leeside of the wing is 
oscillating in the region from the center of the 
wing to downward. The wavelength of the 
oscillation was calculated by measuring the 
length between each center of the vortex. The 
wavelength was approximately 0.1. This 
oscillation is observed at the beginning of the 
simulation and appears earlier than other types 
of oscillation. Therefore, it is considered that 
this oscillation is excited by the linear instability 
of the flow. Then, the stability analysis of the 
flowfield is carried out. The result of the 

numerical simulation at non-dimensional time 
1.2 is selected as a basic flow. We focused on 
the region from the leading edge to 90% chord 
length of the leeside of the wing (see Fig.3). The 
stability of the flow in this region is calculated. 

Figure 4 shows the frequency and the 
amplification factor of the mode which is 
obtained by the stability analysis. One of the 
characteristics of the approximate eigensystem 
analysis used in this study is that the 
approximation error of a mode is small if the 
amplification factor is large. Then, we focus on 
those modes whose amplification factors are 
large, and discuss those results. 

 The mode whose amplification factor is 
the largest is a non-oscillatory mode. The 
velocity disturbances of the mode at every grid 
points are plotted by arrow and shown in Fig.5.  

 At the boundary of the computational 
domain, the magnitude of the velocity 
disturbances is not small and that oscillates for 
the radial direction. From the result of the 
numerical simulation of flow (see Fig.2), no 
oscillation was observed in this position. 
Therefore, this mode is considered to be caused 
by some numerical reason. At the boundary of 
the computational domain, zero-order 
extrapolation is posed for the disturbance of the 
velocity and pressure. The boundary of the 
perturbation equations exists inside the 
computational domain which is used for the 
calculation of the basic flow. However, no 
oscillation is observed in the result of the 
numerical simulation of flow which was shown 
in Fig.2. Therefore, this mode is regarded as a 
non-physical mode. This kind of mode will be 
obtained when we analyze the stability of flow 
by calculating only the domain which is 
contained in the domain for the basic flow.   

 Figure 6 shows the mode whose 
amplification factor is the largest among the 
oscillatory mode. Since the amplification factor 
of this mode is positive, this mode will be 
amplified over time. The flow begins to 
oscillate according to the growth of this mode. 
Considering the superposition of this mode on 
the basic flow, it is anticipated that the 
configuration of the flow resembles to the 
oscillatory flow shown in Fig.2. The transition 
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from the flow shown in Fig.1 to the flow shown 
in Fig.2 is caused by the growth of the most 
unstable oscillatory mode which is shown in 
Fig.6.  

3.2 52.0 10Re = ×  Case 

 To investigate the influence of the 
Reynolds number to the result of the stability 
analysis, the same procedure is carried out in the 
case that the Reynolds number is 52.0 10× . The 
initial condition was given by an impulsive start. 
Figure 7 shows the streamline pattern of the 
result at non-dimensional time 1.2. The flow is 
attached to the surface of the wing and no 
oscillation is observed over the wing. Figure 8 
shows the streamline pattern of the result at 
non-dimensional time 2. The flow is oscillating 
in the region from the center of the wing to 
downward on the leeside of the wing. The 
wavelength of the oscillation calculated by 
measuring the length between each center of the 
vortex is approximately 0.09. This value is a bit 
smaller than that of  51.0 10Re = × . 

 We focused on the region shown in Fig.3 
and the stability of the flowfield at non-
dimensional time 1.2 (see Fig.7) is calculated. 

Figure 9 presents the frequency and the 
amplification factor of the mode which is 
obtained by the stability analysis. From the 
consideration of the result at 51.0 10Re = × , the 
mode was determined as a non-physical mode.  

 Figure 10 shows the mode whose 
amplification factor is the largest among the 
oscillatory mode. Since the amplification factor 
is positive, the flow begins to oscillate 
according to the advance of time. Considering 
the superposition of this mode on the basic flow, 
it is anticipated that the configuration of the 
flow resembles to the oscillatory flow shown in 
Fig.8. The growth of the mode shown in Fig.10 
causes the transition from Fig.7 to Fig.8.  

3.3 Comparisons with the Kelvin-Helmholtz 
Instability  

 To confirm the validity of the results 
calculated by the stability analysis, local 
stability analysis known as Kelvin-Helmholtz 

instability is applied to the velocity profile of 
the basic flow. The wave length and period of 
the most amplified mode is compared. In the 
previous study[12], the frequency of the 
oscillation observed in the laminar separation 
bubble was compared with the frequency of 
Kelvin-Helmholtz instability[13]. These results 
were in good agreement with each other. For the 
confirmation of this study, the frequency of the 
most amplified oscillatory mode is compared 
with that of Kelvin-Helmholtz instability[13]. 
The frequency was evaluated by Rayleigh 
equation which is a local stability analysis 
method of inviscid parallel flow. The velocity 
profile of the basic flow was approximated as: 

 ( ) 0.5[1 tanh ]U y y= + . 

As the stream function of disturbance ψ  satisfy  

 ( , , ) [ ( )exp{ ( )}]x y t y i x tψ φ α β= ℜ − , 

the frequency of the oscillation is calculated as 
/2β π . The amplification factor of the 

oscillatory mode becomes the largest when 
β =0.206692. 

The center of the region where the velocity 
disturbances exist in Fig.6 and Fig.10 is 
estimated at 60% of chord length. The velocity 
profile of this place is substituted to the result of 
the local stability analysis.  

The velocity profile at 60% of chord length 
is shown in Fig.11. Figure 11(a) and Figure 
11(b) is the result of the case 51.0 10Re = ×  and 

52.0 10Re = × , respectively. The horizontal axis 
shows the components of the velocity that is 
parallel to the surface of the wing. The vertical 
axis shows the distance normal to the surface of 
the wing. This profile is similar to the 
configuration of tanh( )U y= .  tanh( )U y=  is 
modified as tanh( / )U a b y c= +  and the best 
value of variables a , b , and c  are found. The 
profile of tanh( / )U a b y c= +  shown by dash 
line in Fig.11 agrees with the velocity profile. 

The value of the frequency and the wave 
length calculated by our results and reference 
[13] is shown in Table 1. The order of those 
values is same. But those values are not exactly 
consistent. It should be pointed out that there is 
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a difference between local stability analysis of 
parallel inviscid flow and non-local stability 
analysis which treats a certain region of the 
viscid flowfield. If we take account of such 
difference, we can conclude that the value of the 
frequency and the wave length calculated by our 
results and reference[13] is almost the same. 
This result suggests that the method of stability 
analysis used in this study demonstrates 
reasonable results. 

In the flow around a wing, several kinds of 
oscillatory phenomena are observed, for 
example, the oscillation of the wake[14], the 
high frequency oscillation of the laminar 
separation bubble and the low frequency 
oscillation in a stall angle of attack 
condition[15]. Future study will focus on such 
oscillatory phenomena. By applying our method 
and modifying the method furthermore, these 
oscillatory modes of such phenomena may be 
obtained. Those results will explain the 
mechanism of the oscillatory phenomena.  

4. Conclusion 
The method of the global stability analysis 

in a certain domain of the flowfield using the 
linear perturbation equation is applied for the 
flow around a NACA0012 airfoil. 

The non-oscillatory flow observed at the 
beginning of the calculation is used as a basic 
flow for the stability analysis. We focused on 
the upper domain of the wing and the stability 
analysis of the region is numerically solved. 

To investigate the effect of the viscosity, 
two cases of the Reynolds number,  

51.0 10Re= ×  and 52.0 10Re= × , were analyzed. 
In both case, the value of the frequency and the 
wavelength is almost the same. 

Those results are compared with the local 
stability analysis. The order of the frequency 
and the wavelength is consistent with that of 
Kelvin-Helmholtz instability. Our method of the 
stability analysis is considered to calculate 
reasonable results. 
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Fig. 1. Streamline at t =1.2 ( 51.0 10Re= × ) 

Fig. 2. Streamline at t =2 ( 51.0 10Re= × ) 

U∞  

Fig. 5. Most amplified mode ( 51.0 10Re= × ) 

Fig. 4. Amplification factor and angular 
frequency of modes ( 51.0 10Re= × ) 

Fig. 3.  Computational domain used for the 
stability analysis 

Fig. 6. Velocity disturbances of the most amplified oscillatory mode ( 51.0 10Re= × ) 
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Fig. 7. Streamline at t =1.2 ( 52.0 10Re= × ) 

Fig. 8. Streamline at t =2 ( 52.0 10Re= × ) Fig. 9. Amplification factor and angular 
frequency of modes ( 52.0 10Re= × ) 

Fig. 10. Velocity disturbances of the most amplified oscillatory mode ( 52.0 10Re= × ) 
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Fig. 11. Velocity profile at 60% chord length

Table l. Comparison of this result with the Kelvin-Helmholtz instability 
(a) 51.0 10Re= ×  Case  (b) 52.0 10Re= ×  Case 

  wave length period    wave length period 
Present study 0.082 0.25  Present study 0.082 0.25 
Linear stability analysis 0.073 0.22  Linear stability analysis 0.058 0.16 
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