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Abstract

The low Reynolds number aerodynamics of
low-aspect-ratio wings for Micro Air \ehicles
applications was numerically investigated. The
viscous flows around MAVs wings with different
aspect ratio (0.5, 1 and 2) were smulated by
solving incompressible Navier-Sokes equations.
The hyperbolic equations were formulated by
artificial compressibility method with the
convective terms discreted using a third-order
upwind scheme based on Roe's approximate
Riemann solver. The equations were solved using
an implicit linerelaxation method with
Baldwin-Barth one-equation turbulence model.
Numerical results for a thin-flat wing agreed
well with the experiment data. The influence of
aspect ratio and camber was analyzed in detail.
Further results showed the different flow
structures for those wings with different camber.

1 Introduction

Micro aerial vehicles (MAVs) are of great
interests to both military and civilian
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applications. The basic characters of MAVs can
be described as: maximum dimension of 6 inches
or less; flight speed of 10~20m/s; mass of about
10~100 grams; cruising range of severd
kilometers or more with a mission duration of 20
to 60 minutes. Owing to their small scale, low
weight and low cost, MAVs are superior to
conventional aircraft in some specia conditions
where small vehiclesis needed.

According to the type of lift generation,
MAVs can be divided into three kinds:
fixed-wing MAVs; flapping-wing MAVS,
rotary-wing MAVs. In this paper, we
investigated the fixed-wing MAV's aerodynamic
performance to which not many people paid
attention in the past. In fact, the Reynolds
number of fixed-wing MAVs flow is about 10°.
This Reynolds number is unfamiliar for the
aeronautical  scientists  because it  wasn't
encountered in conventional aircraft design. In
addition, the aspect ratio of MAVs wing is as
low as 0.5~2.0 for the scale limit. The low
Reynolds number flow around such low aspect
ratio wings attracted much less attention.

In this paper, the low Reynolds number
aerodynamic property of low-aspect-ratio wings
for MAVs applications was numerically
investigated. This analysis will provide the
aerodynamic design of fixed-wing MAVs with
essential theoretic foundation. By solving the
Reynolds-averaged incompressibleNavier-Stokes



equations using artificial compressibility method
[1,2,3], low Reynolds number flows around
low-aspect-ratio wings was simulated. To get
high viscous resolution, the convective terms
time discretization scheme was implicit, and the
resulting block heptad-diagonal matrix equation
was solved using Gauss-Seidel line relaxation
method which has a good convergence behavior.

The turbulence model used here is
Baldwin-Barth one-equation turbulence
model[4].

2 Governing Equations

To couple the pressure and velocity fields, a
time derivative of pressure is added to the
continuity equation, resulting in
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where S is the pseudo-compressibility constant,
7 is the pseudo-time variable. Also, a
pseudo-time derivative of velocity is added to
the momentum equations to get
hyperbolic-parabolic equations. So the resulting
momentum equations are
A, (Gev)i=—Lvp+uvig 2
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The steady-state solutions of Eq.(1) and (2) with
respect to pseudo-time is steady-state
incompressible physical solutions.

The complete governing equations written in
generalized curvilinear coordinates are given by
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were discreted in space using a third-order
upwind scheme based on Roe€'s approximate
Riemann solver.
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In the above, (u,v,w) are the velocity
components in cartesian coordinates, and o,
represents a sum of the kinematic viscosity and
the turbulent eddy viscosity, that is
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where v, is the kinematic viscosity, v, is the

turbulent eddy viscosity.

3 Implicit scheme
Residual vector isdefined as
N P 0 ,~ = 0 A A
R_%(E_Ev)+%(F_Fv)+%(G_GV)

The pseudo-time derivative is approximated by
an implicit Euler finite-difference formula giving
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where the superscript mdenotes quantities at the
m-th pseudo-time iteration level. The right hand
of the above equation islinearized resulting in
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4 Space discr etization

The derivative of the convective flux in the &
direction is approximated by
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Where EM,Z is a numerica flux and j is the

discrete spatial index for the & direction.

The viscosity term is approximated using
central difference scheme, that is
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The convective term E,,,,, is computed using

an upwind scheme based on Roe's approximate
Riemann solver, that is
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The ¢,.,,, is a dissipation term. A first-order

upwind schemeis given by
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where AEj,, and AE_,, ae the flux

difference across positive or negative traveling
waves. The flux difference is computed as

AEjimz = Ai(B)ADM/z

wherethe A operator isdefined as
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The Roe average D isgiven by
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The plus (minus) Jacobian matrix has only
positive (negative) eigenvalues and is computed
from
A = XA*X
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High order accurate approximation may be
derived using reasonable combination of flux
differences. A third order upwind flux is defined
by[3]
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5 Evaluation of discrete equations

For simplicity, the residual vector R on left
hand side of EQ.(4) is approximated with first
order accuracy, namely, the dissipation term is
expressed by Eq.(5); while the residual vector
R on right hand side is approximated with
higher order accuracy, namely, the dissipation
term is expressed by Eq.(6). The residual vector
inimplicit part is given by
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The left hand side of the resulting equations will
be constructed as following
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To express the resulting equations in the form of
matrix, we should convert the three-dimensional

index (j,k,l) into a one-dimensional index n.
The two index definitions are related by
n=j+(k_1)*jmax+(|_1)*jmax*k
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then EQ.(4) can be written by
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where B[*] is a block heptad-diagonal matrix,
and

AD = [Abl,Aliz ........ AD jmax*kw*.wr

ﬁ{: [ﬁl’ IEQZ, ...... y ﬁjmax*kmax*'max ]T

For simplicity, grid is assumed to be orthogonal
when computing Jacobian matrix of viscosity
term, then
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For example, in & direction, the viscosity term

inimplicit part is given by
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Eq.(9) can be approximately solved using
Gauss-Seidel  line relaxation method by
transforming the block heptad-diagonal matrix
equations into block tri-diagonal matrix
equations.

6 Turbulence model

The turbulance model wused in this
computation is Badwin-Barth one-equation
turbulence model. This turbulence model,
derived from a simplified form of the standard
k-etwo equations model, solves one transport



equation for the turbulent Reynolds number R
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defined as
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respectively, and the production term is given by
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The constants used in the model are given by

C,=12 C,=20 C,=009 A =26

A =10 k=041
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7 Boundary conditions

At a no-dlip surface, the velocity is specified
to be zero, and the pressure at the boundary is
obtained by specifying that the pressure gradient
normal to the wall be zero. The velocity
condition for inflow regions is assumed to be the
velocity of freestream on the far-field boundaries
and the pressure is obtained by extrapolated from

the interior domain. The pressure condition for
outflow regions is assumed to be the pressure of
of freestream on the far-field boundaries and the
velocity is obtained by extrapolated from the
interior domain.

8 Computational model and computational
grid

The birds whose dimension is similar to
fixed-wing MAVs can glide freely in the sky,
which shows that they possess good
aerodynamic performance. By observing their
wings, we can find that they are thin and
cambered. According to these characters, three
class of low-aspect-ratio  thin  wings
(thickness=1.93%) are to be studied for their
aerodynamic performance. The airfoil of the first
kind wing (W1) is thin and flat; the second
airfoil (W2) is thin and semi-cambered, namely,
with camber on the half chord near trailing edge
and without camber on the haf chord near
leading edge; and the third airfoil (W3) is thin
and cambered. The details of W1 and W3 can be
found in Ref.[5]. The shape of the three airfoils
can be seen from Figurel to Figure 3.

Fig.1. Thin Flat Airfoil (W1)
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Fig.2 .Thin Semi-cambered Airfoil (W2)
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Fig.3 .Thin Cambered Airfoil (W3)

The computational grid was generated using
the hyperbolic grid generation method[6], and
the topology structure is C-H type with
121 x40x 31 mesh points, 121 mesh points in the
chord direction (81 mesh points on the wall
surface) and 40 mesh points in the spanwise direction
(26 points on the wall surface).
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Fig.4. Mesh For Thin Flat Wing
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Fig.5. Mesh For Thin Semi-cambered Wing

Fig.6 .Mesh For Thin Cambered Wing

It is assumed that the length of the root chord
is 15 cm, and the velocity is 15m/s, so the typical
value of the cruising Reynolds number is about
140,000. According to the above assumption, the
Reynolds number used hereis 140,000.

9 Validation

The plots of Ilift coefficient and drag
coefficient versus attack angle are shown from
Figure 7 to Figure 10. For the thin flat wing with
aspect ratio 1.0, the computational results agree
well  with the experimental data[5]. A

noteworthy achievement is the computational
accuracy for drag coefficient which shows that
the numerical method is successful. As regard to
the computational results of thin cambered wing
with aspect ratio 1.0, there is a little departure
with the experimental data, the main reason is
that the definition of thin cambered wing in the
original  reference is blurry, and the
computational model used here may be different
fromit.
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Fig.7.Lift Coefficient Of Thin Flat Wing
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Fig.8 .Lift Coefficient Of Thin Cambered Wing
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Fig.9.Drag Coefficient Of Thin Flat Wing
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Fig.10. Drag Coefficient Of Thin Cambered Wing

10 Effects of aspect ratio

Figure 11 to Figure 14 show the lift
coefficient curve and the drag coefficient curve
of two kinds of wings (W1 and W3, camber=4%)
with aspect ratio 0.5, 1 and 2 respectively. It can
be obviously seen from these figures that the lift
coefficient increases with the increase of aspect
ratio and the lift coefficient of thin cambered
wing is obviously higher than that of thin flat
wing. Tip vortices of the low aspect ratio wing
play an important role in the whole flow field.
The vortices, similar to leading edge vortices of
delta wings, can provide non-linear lift force.
From figure 11 and figure 12, we can find that
the slope of lift coefficient curve may decrease
with the increase of attack angle with aspect
ratio 1 and 2, but the slope of lift coefficient
curve may be increasing a little with aspect ratio
0.5. The reason is that tip vortices can provide
obvious non-linear lift force. This effect will
become much more obvious when the attack.
angle increases.
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Fig.11. Lift Coefficient Of Thin Flat Wings With Different
Aspect Ratio
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Fig.12. Lift Coefficient Of Thin Camber Wings With
Different Aspect Ratio
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Fig.13. Drag Coefficient Of Thin Flat Wings With
Different Aspect Ratio
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Fig.14. Drag Coefficient Of Thin Camber Wings With
Different Aspect Ratio

11 Effects of camber

Figure 15 to Figure 17 illustrate the camber effect on
aerodynamic performance. Three wings with the same
aspect ratio 1.0 and various camber of 2%, 4% and 6%
respectively are studied. From figurel5 and figurel6,
we can find that lift coefficient and drag coefficient are
all increasing with the increase of camber. Lift-to-drag
ratio curve is plotted in figurel7. The corresponding
attack angle with maximum lift-to-drag ratio for wings
with 4% and 6% camber is 2°, while that of wing with
2% camber is 4°. Moreover, the maximum lift-to-drag
ratio of the latter is higher than that the former.

When the attack angle is 8°, the aerodynamic
performance of the wing with 4% camber is obviously
superior to the other wings. The reason is that it's
lift-to-drag ratio is close to that of the wing with 2%
camber but it's lift coefficient is much higher than that
of the wing with 2% camber. When the attack angle is
10°, it is the wing with 6% camber. The reason is the
same. When the attack angle is 12°, it is found that the
wing with 6% camber has both higher lift-to-drag ratio
and higher lift than the others. It's worthy to note that
the lift-to-drag ratio of the three kinds of wings are all
decreasing with the increase of angle of attack.

The effects of different kinds of camber are given by
figure 18 and figure 19. Three wings of the same aspect
ration 1.0 with 0% camber (flat), 4% semi-camber and

4% camber are investigated. Although the lift
coefficient of semi-cambered wing is dightly higher
than that of the camber wing when the attack angle at
0°~6°, there is no large difference between the lift
coefficients of them for the attack angle within 0°~10°.
It is worth indicating that there is large difference
between the drag coefficients of them, the drag
coefficient of semi-cambered wing is obviously larger
than that of cambered wing. So, thin semi-cambered
wing should be abnegated in the design of MAVS
because the aerodynamic performance of thin cambered
wing (camber=4%) is superior to that of thin
semi-cambered wing.
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Fig.15. Lift Coefficient Of Thin Wings With Different
Camber
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Fig.16. Drag Coefficient Of Thin Wings With Different
Camber
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12 Surface flow structures
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Fig.21. Surface Streamline (& =4° AR=1.0)
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(e) camber=6% (W3)
Fig.22. Surface Streamline (& =6° AR=1.0) (a) Thinflat airfoil (W1) (b) camber=2% (W23)



(c) camber=4% (W3) (d) camber=4% (W2)

(e) camber=6% (W3)
Fig.24. Surface Streamline (¥ =10° AR=1.0)

The upper surface streamlines of various
kinds of wings (AR=1) are plotted from figure20
to figure 24.

At 2° attack angle, no separation occur on the
upper surface for the flat wing and 2% cambered
wing, but it’s not true for 4% semi-cambered

cambered wing is much larger due to the
higher adverse pressure gradients caused by it's
maximum camber.

At 4° attack angle, there is leading separation
bubbles on the upper surface for flat wing and
semi-cambered wing, but not for the others.
Together with the plots for larger attack angle,
we can find that the appearance of leading
separation bubble can be avoided for a wing
with larger leading camber. Even the leading
separation bubble occurs for this wing, the
separation region is much smaller than that of a
wing with small leading camber. In fact, there is
adverse pressure gradient in the pressure
recovery part along the leading edge. With the
low energy carried by the low Reynolds number
flows, the kinetic energy within boundary layer

is often not strong enough to overcome the
adverse pressure gradient, so it's easy to form
leading separation bubble. But for a wing with
leading camber, the stream tube area decreases
aong the flow direction, consequently, the
average velocity increases and the corresponding
pressure decreases along the flow direction. So
the extrusion caused by the leading camber will
result in the reduction of adverse pressure
gradient in the pressure recovery part, which
makes the separation region smaller and even no
separation. But the extrusion effect will reduce
with the increase of attack angle.

At 6° attack angle, there is leading separation
bubbles for flat wing, 2% cambered wing and
4% semi-cambered wing, but not for wings with
4% or 6% camber. This phenomenon also shows
that the larger leading camber results in small
separation, even no separation.

At 8° attack angle, there is leading separation
bubble for al wings except the wing with 6%
camber. It is observed that no reattachment
occurs for flat wing and semi-cambered wing.

At 10° attack angle, there is leading-edge
separation bubble for all wings. For flat wing,
semi-cambered wing and 2% cambered wing,
there is no reattachment near the wing root, but
it's not true for 4% and 6% cambered wings.
This phenomenon illuminates the extrusion
effect on leading separation region once again.

On the all conditions with the appearance of
separation bubbles, we can find that the range of
separation bubbles becomes larger gradually
from wing tip to wing root. The occurrence of
this phenomenon may be caused by the strong
tip vortex of low-aspect-ratio wings. The tip
vortex strengthens the mix of the flow near the
tip, which enhances the energy of main flows,
and the ability of overcoming the adverse
pressure gradient.



13 Conclusions

(1) By comparing the numerical results of thin
flat wings (W1) with the experimental
results, we can find that the numerical
method developed in this article is
applicable to simulate the low Reynolds
number flows around MAV S wings

(2) The influence of various aspect ratio and
camber on the aerodynamic performance of
wings was posted by the numerical analysis
of low Reynolds number flows around
various kinds of low-aspect-ratio wings. The
aerodynamic performance of wings become
better with the increase of aspect ratio;
within the region studied in this article, the
lift coefficient and drag coefficient increase
with the increase of camber, the numerical
computational result shows that wings with
2% camber have the maximum lift-to-drag
ratio.

(3) The difference of flow structure of wings
with various camber was also posted by
analysis of the flow structure of all kinds of
wings.
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