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Abstract  

An airfoil shape design method that couples 
viscous flow analysis and a complex optimum 
method is described in this paper. The method is 
applied to search an airfoil geometry with 
improved aerodynamic performance at single or 
multiple design-point while the specified design 
constraints being satisfied. A compressible 
viscous flow model based on the Reynolds-
averaged Navier-Stokes equation is used in the 
viscous flow analysis in order to gain reliable 
design results. Based on present complex 
optimum method, the single-point and 
multipoint optimization algorithm run efficiently 
and robustly demonstrated by several cases. 
This method described in this paper can be 
found its application in aircraft industry when it 
is employed to improve the aerodynamic 
performance characteristics of an existing 
baseline airfoil to meet specified engineering 
requirement. 

1 Introduction  
Nowdays, methods for solving airfoil design 

problem can be distinguished into two classes 
[1,2]: (a) inverse method, (b) direct numerical 
optimization method. The distinction is based 
on how the design problem is formulated. 

In this paper, the problem is solved by using 
the second method. The design problem is 
posed as a minimization problem of an 
aerodynamic objective function subjected to 
constraints on the geometric and aerodynamic 
performance. The aerodynamic objective 
function is described as some aerodynamic 
parameter such as: the lift lC , the drag dC , the 

ratio of lift to drag dl CC /  or the pitching 
moment mC , etc. Then the objective function is 
improved by the complex optimum method. A 
series of shape functions are defined as design 
variables. The new airfoil shape is obtained by 
the new shape functions plus the baseline of the 
initial airfoil. Multi-objective optimization 
problem of this paper is transformed into a 
single-objective problem by weighting the 
objective functions of different design points. 

2 The Complex Optimum Method 
Mathematically, the optimization problem 

can be defined as: 
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where )(xf denotes objective 
function,   0)( =xci  and 0)( ≥xci  are the 
constraints. m  is the number of the constraints. 
The objective function ( )(xf ) depends on the 
design variables: x , for the airfoil optimization 
problem, x  is related to the airfoil geometry. 

There are two classes of optimization 
methods, global methods and local methods. 
Global methods, such as the genetic algorithm 
[3,4,5] and the simulated annealing algorithm 
[5,6,7], are aimed at obtaining the global 
optimum, however they incur large 
computational effort. Local methods, mostly the 
gradient-based optimization algorithm, although 
limited to reduce only one of the minima, 
requiring much less computation cost compared 
to global methods, and are very widely and 
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efficiently employed in engineering 
development.  
     The complex method described in this paper 
belongs to the local methods. The gradient is 
difficult to solve accurately for the gradient-
based optimization, but the complex method 
doesn’t need to calculate gradient and hence 
avoids the difficulties mentioned above. The 
method is outlined as follows: Assume the 
number of the design variables is n , then 

n×2 complexes, at least 1+n , must be found to 
form the initial complexes and the constraints 
must be satisfied for the n×2  complexes. By 
using viscous flow analysis, we can judge 
whether the constraints are satisfied. In every 
iteration, the complex with the biggest value, 
that is the complex with the worst value, in the 

n×2 complexes is eliminated and is substituted 
with the mapping of the eliminated complex. 
The mapping is computed as follows: the center 
of the complexes except for the eliminated 
complex is solved and is defined as the mapping 
of the eliminated complex. Hence the new 
complex that describes a new airfoil has been 
built. In the process of optimization, the 
optimized airfoil will be gained by constantly 
changing to the better solution. 
     There are four steps in the iteration of the 
complex optimum method as follows: 
     (1). A series of numbers can be used to 
create )21( nknk ×<≤+  vertexes (the initial 
complexes) and calculated randomly by 
computer as: 
      T
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where R  are a set of  random numbers which be 
distributed in the space: [0,1], ix  is the 

Maximum value of the design variables and ix  
is the minimal value respectively, the values of 
the ix  and ix  can be gained experiential in 
engineering, the first vertex must satisfy the 
constraints. 
      (2). k  vertexes created in the first step are 
checked one by one in order to make the k  
vertexes satisfy the constraints. 

      Assume that there are )1( kSS ≤≤  vertexes 
which satisfy the constraints, the center of the 
vertexes can be calculated by: 
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If the vertex )1( +Sx  doesn’t satisfy the constraints, 
)1( +Sx  is reduced in the direction of )(

)()1( SS xx −+  
by the formulation as: 
               )(5.0

)()1()()1( SSSS xxxx −+= ++        (4) 
then the new vertex )1( +Sx  is also checked by the 
constraints, if the constraints are satisfied, go to 
the next step, if not, )1( +Sx  is reduced according 
to the formulation (4) until the constraints are 
satisfied. 
     (3). After all the initial complexes satisfy the 
constraints, the objective function corresponded 
with every initial complex is calculated, we 
define the complex corresponding to the 
objective function with the biggest value as )(hx , 
that with the smallest value as )(ex , and the 
center of the vertexes except for the complex 

)(hx  can be calculated by the following 
formulation: 
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then the complex x  is checked by the 
constraints, if not, ix  is substituted with )(ex  
and ix  is substituted with x , go to the first step; 
if the constraints are satisfied and the objective 
function )(xf  satisfy the condition: 
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the optimum result has been obtained;  where 
01 →ε , if the condition (6) isn’t satisfied, we 

can gain the reflection of the )(hx  as follow: 
            )( )()( hxxxx −+= αα                      (7) 
the parameter α  is the reflection coefficient, in 
general, 3.1=α ; if the constraints are satisfied 
for the complex )(αx , go to the next step, but if 
the constraints are not satisfied, the value of α  
should be reduced to half of α and )(αx can be 
substituted with the new )(αx  until the 
constraints are satisfied. 
      (4). Compare the value of )( )(αxf  with the 
value of )( )(hxf , if )()( )()( hxfxf <α , the 
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complex )(hx  is substituted with the complex 
)(αx , go to the third step; if )()( )()( hxfxf ≥α , 

the progress employed in the third step will be 
repeated to compute )( )(αxf  until 

)()( )()( hxfxf <α . 

3 The Objective Function 
    The design of an optimal airfoil shape is a 
constrained optimization problem, the objective 
is to find an optimal airfoil that has a minimal 
value of the objective function subject to N-S 
equation and certain boundary constraints. 

Generally, aerodynamic shape optimization 
of airfoils is concerned with obtaining the most 
aerodynamically favorable geometry that be 
provided with the better aerodynamic 
performance. In the approach, the aerodynamic 
objective function is described as an 
aerodynamic parameter for single-point design. 
For multi-point design, the aerodynamic 
objective function is gained by weighting the 
aerodynamic parameters of different design 
points. At the same time, except for the 
objective parameter, constraints will be imposed 
on some aerodynamic parameters and airfoil 
geometry according to sufficient strength and 
stiffness requirements. 

In effect, multi-point optimization is more 
difficult than single-point optimization since 
that the parameters aren’t minimized at the same 
time [5,8]. Mathematically, multi-point 
optimization problem can be described as the 
form: 
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A straightforward approach to simplify the 
multi-point optimization problem is to 
generalize the objective in Eq.(8) to a 
combination of different parameters written as: 
        )}(,),(),({)( 21 xfxfxffxf q⋅⋅⋅=         (9) 

We can estimate the range of the value of 
every objective parameter according to practical 
engineering experience given as: 

iii xf βα ≤≤ )( ,    qi ,,2,1 ⋅⋅⋅=            (10) 
where ii βα ,  are known numbers corresponding 
to )(xfi . The objective functions in Eq.(8) are 
made to be standard as Eq.(11):   
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where the new objective function )(' xfi  is 
limited in the range:  
                        1)(0 ' ≤≤ xfi  
thus, the simplified objective function is written 
as: 
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where 1
1
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q

i
iω , parameters ),,2,1( qii L=ω  are 

the powers given by us according to their 
weightiness in the progress of the optimization. 
These parameters are very significant to the 
optimization result.  
     Multi-point optimization problem (8) can be 
transformed into a single-objective problem (12) 
as: 
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4 The Design Variables 
      The airfoil geometry is modified adding a 
linear combination of Hicks and Henne function 
[9] )(xfi  as follows: 
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where the powers iδ  are the amplitudes of the 
shape functions )(xfi  on the upper or lower 
surface of the airfoil and defined as design 
variables, lu nn +  the number of the design 
variables ,  lu, represent the upper and lower 
surface respectively. The design variables must 
be determined to obtain the optimal shape of the 
airfoil described as follows: 
            )()()( xyxyxy uubu ∆+=          (16) 
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)()()( xyxyxy llbl ∆+=          (17) 
where x , y  are non-dimension coordinate of 
airfoil surface, uby 、 lby  non-dimension 
coordinate of base airfoil surface. Many 
computational results have shown that iδ  should 
be satisfied the following condition: 

    3
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3
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where maxt  is the Maximum thickness of the 
base airfoil. 
     10 Hicks and Henne functions and 16 Hicks 
and Henne functions are employed respectively 
in this paper on the basis of different 
requirements. 10 Hicks and Henne functions 
used for upper and lower surface perturbation 
are described as: 

xexxxf 2025.0
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[ ])(3sin)(
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)ln(
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)()(5 xfxf ii −=+          5,4,3,2,1=i  
8.0,6.0,4.0,2.0=ix      5,4,3,2=i  

where the former five functions are distributed 
in upper surface and the other are distributed in 
lower surface. 16 Hicks and Henne functions 
are described as: 
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i xxf −= π     2,1=i  
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94.0,87.0,80.0,60.0,40.0,20.0,13.0,06.0=ix   8,,2,1 ⋅⋅⋅=i  
where the former eight functions are distributed 
in upper surface and the other are distributed in 
lower surface. 

5 Applications: Airfoil Optimization Design   
about RAE2822 
    The present method using the complex 
optimum method and N-S solver is applied to 

two cases. One is a single-point optimization 
and the other is a two-point optimization about 
RAE2822. 

5.1 Single-Point Optimization about 
RAE2822 

     Case 1 can be described as follows: 
     Base airfoil:     RAE2822 
     Design point:     

°=×== 36.2,105.6Re,730.0 6 αMa  
     Objective:   minimize the drag dC  
     Subject to:  (1) 01/ 0 ≥−AA  
                        (2) 01/ 0 ≥−ll CC  
     Governing equation: N-S equations 
     Number of design variables: 10 
 

Table.1 The result on single-point optimization 

Parameter Base airfoil Optimization ∆  %∆

lC  0.8023 0.7952 -0.0071 -0.88%

dC  2105165.1 −×  2101545.1 −×  210362.0 −×−  -24% 

mC  2106508.9 −×−
 

2104809.9 −×−  210169.0 −×  1.7% 
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Fig.1 The comparison of pressure distributions  
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Fig.2 The comparison of geometries 
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The optimization results are described in 
Table.1. The minimization of the drag dC  is 
defined as objective. There are two constraints 
as follows: (1) the section area of base airfoil 
doesn’t decrease, (2) the lift lC  doesn’t decrease. 
The results are shown in Table.1. A better 
objective drag reduction is achieved by the 
present single-point optimization: the drag 
reduction at the design point is 24% whereas the 
lift reduction is only 0.88%. The comparisons of 
the pressure distribution and the airfoil 
geometries are plotted in Fig.1, Fig.2, 
respectively. In the overall optimum steps, this 
example costs 4 hours and 39 minutes on the 
Pentium IV personal computer. 

5.2 Two-Point Optimization about RAE2822 
 

Case 2 can be described as follows: 
     Base airfoil:     RAE2822 

Design points:    
1)  °=×== 842.1,105.6Re,730.0 6 αMa  
2)  °=×== 342.1,105.6Re,73.0 6 αMa  

     Objectives:  
(1) minimize the drag dC  at design point 1) 
(2) minimize the drag dC  at design point 2) 

     Subject to:   
(1) 01/ 0 ≥−AA  

    (2) 01/ 0 ≥−ll CC  at design point 1) 
    (3) 0mm CC ≤      at design point 1) 
     Governing equation: N-S equations 
     Number of design variables: 16 
 

Table.2 The result on two-point optimization 
Design 

point Parameter Base airfoil Optimum 
airfoil %∆

lC  0.7023 0.6902 -1.7% 

dC  210174.1 −×  210029.1 −×  -12.4%
°=
×=

=

842.1
105.6Re

730.0
6

α

Ma

 
mC  210651.9 −×−  210574.9 −×−  0.8% 

lC  0.6025 0.5892 -2% 

dC  210005.1 −×  310684.9 −×  -4% 
°=
×=

=

342.1
105.6Re

730.0
6

α

Ma

 
mC  210412.9 −×−  210597.9 −×−  1.9% 
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Fig.3 The comparison of pressure distributions on 

point 1) 
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Fig.4 The comparison of pressure distributions on 

point 2) 
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Fig.5 The comparison of geometries 

The two design points described in the 
Table.2 have two weighting factors: 0.65 and 
0.35. The minimizations of the drag dC  at the 
two design points are defined as objectives.  
Assume that the drag on point 1) is 01dC  and the 
drag on point 2) is 02dC , respectively. Let: 

022011 8.0,8.0 dd CC == αα  

022011 2.1,2.1 dd CC == ββ  
the new aerodynamic objective function are 
obtained according to Eq.(11) and Eq.(12) as 
follows:  
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There are three constraints as follows: (1) the 
section area of airfoil doesn’t decrease, (2) the 
lift lC  of the first design point doesn’t decrease, 
(3) the absolute value of the pitching moment 

mC  at the first-point doesn’t increase. 16 design 
variables are employed in this example. The 
results are shown in Table.2. The results show 
that a better objective drag reduction is achieved 
by the present two-objective optimizations: the 
drag reduction at the design point 1) is 12.4% 
and at the design point 2) is 4%. The pressure 
distributions of two design points and the airfoil 
geometries are plotted in Fig.3, Fig.4 and Fig.5, 
respectively. In the overall optimum steps, this 
example costs 8 hours and 6 minutes on the 
Pentium IV computer. 
 

6 Conclusions 
A complex optimum method based on direct 

numerical optimization method has been 
presented in this paper, and two applications to 
airfoil optimization are described and analyzed. 
The results show that the robustness of an 
optimal solution can be achieved and the 
aerodynamic performances such as the lift, the 
drag, the pitching moment or the ratio of lift to 
drag are improved in the different design points. 
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