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Abstract  

ADAS (Aircraft Design and Analysis 
Software) is a FORTRAN package that allows 
designers to optimise design systems consisting 
of numerous often-conflicting design variables, 
subject to given constraints and a merit 
function. While created with the principal aim 
of aircraft design applications, the software can 
be utilised for any scenario of multi-disciplinary 
optimisation. ADAS also executes in a number 
of modes, supplying the user with ranges of 
outputs that can be beneficial during many 
stages in the design process. 

There are many software tools available to 
engineers and designers, which aid in the 
decision-making process by allowing the user to 
analyse the impact of certain design choices. 
These tools include CFD/FEM Analysis 
packages and CAD drawing applications, 
among others. With recent improvements in 
computer technology and parallel computer 
architectures, it is becoming easier and more 
efficient to fully integrate these tools to 
accelerate the design process. 

ADAS has been modified for execution in a 
parallel environment, utilising the MPI 
(Message-Passing Interface) standard to handle 
inter-processor communications and load 
sharing. This allows ADAS to execute on any 
number of processors, and allocate workloads 
in the most efficient manner at runtime, 
dependent on the characteristics of the design 
problem being solved, and the mode of 
execution utilised. 

Excellent results have been obtained using 
ADAS on the VPAC Facilities in Melbourne 

Australia, showing that systems incorporating 
many design variables can be optimised without 
an increase in response time. Tests were 
performed using several simulations of 
increasing design complexity, with speedup 
results being in agreement, showing that 
significant benefits can be gained by using this 
software for very complex designs. 

1  Introduction  
The design process is an iterative process 

and consists of many stages in which the design 
is further refined. In aircraft design, the first 
stage is generally referred to as conceptual 
design, where the basic aircraft configuration 
and layout are determined. Once the aircraft 
configuration is selected, more advanced 
calculations are made in the preliminary design 
stage, where individual components of the 
aircraft are designed and synthesised into a 
complete system. These two phases together are 
generally referred to as configuration 
development, and for the majority of aircraft 
design projects, this is as far as they will go. It 
has been said [8] that the principal aim of 
configuration development is to obtain the 
information required in order to decide whether 
the concept will be technically feasible and have 
satisfactory economic possibilities. 

Conceptual design is the pivotal stage in 
aircraft design, as it determines the 
technological feasibility of the design, its 
applicability to the problem at hand, and what 
can sometimes be of more significance, the 
overall production and operational cost. 
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During configuration development, a team 
of design engineers and specialists will work 
together to optimise the overall design. 
However, there are a large number of design 
requirements that can influence the end product, 
such as transport capacity, aerial refuelling 
capability, take-off and climb performance, 
maximum range, etc. As such, compromises 
need to be made in order to achieve the best 
possible overall design. A graphical method to 
illustrate the need for compromise is called a 
matching chart. 

1.1 Matching Chart 

A matching chart is a graphical 
representation of design constraints as functions 
of two design variables, for example, wing 
loading (W/S) and thrust-to-weight ratio (T/W). 
Design constraints may include range 
performance, take-off distance, and lift 
coefficients for various phases of flight. An 
example of a typical matching chart is given in 
Figure 1. Each constraint line displays hatch-
marks denoting the non-feasible area for that 
constraint. When all constraints are plotted, it 
produces a feasible design region from which a 
design point can be chosen. 
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Figure 1: Example Matching Chart for Aircraft 
Design 

The design point selection will depend on 
the design specification, and in particular the 
importance of each of the variables under 
consideration. For example, given the variables 
in Figure 1, the optimal choice is to minimise 
T/W, while maximising W/S. In more 
complicated scenarios, however, there may be a 

more complex objective Function such as fuel 
weight, maximum takeoff weight or direct 
operating cost. 

When selecting the optimum design point, 
numerical algorithms can be utilised to progress 
from an initial set of values to an optimum 
design. Some of these methods are explained in 
the following sections. 

1.2 ADS – Fortran Software for Automated 
Design Synthesis 

ADS [2] is an open source Fortran program 
for general-purpose numerical optimisation. The 
basic functionality of the program serves to 
minimise an objective function subject to given 
design constraints, using gradient-based hill 
climbing methods to achieve the optimum.  

The ADS software allows for use of a wide 
range of algorithms, incorporating different 
optimisation strategies, numerical methods, and 
search options used to determine the path to an 
optimum value. It is written such that it is called 
from a user-written program, and parameter 
settings determine both the design case being 
studied (variable values and constraint 
definitions), and the methods used to determine 
the solution. 

The generality of the software means that 
its scope of use is not limited to design in any 
one field. As such, it can be used for any 
numerical optimisation process, however in the 
current project it was applied to aerospace 
design. 

1.2.1 Gradient Calculation 

The ADS software allows the option for a 
user-supplied program to supply gradients at 
certain points during execution. This is 
particularly useful if gradients can be 
determined analytically. Alternatively, ADS can 
approximate gradients internally using finite 
difference calculations. However these 
calculations are performed in serial and it was 
the objective of this project to parallelise the 
gradient calculation, allowing such calculations 
to be performed simultaneously and thereby 
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increasing the speedup efficiency of the parallel 
code. 

Newton’s Divided Difference is the 
numerical method used for gradient 
calculations. Due to the non-linear nature of the 
constraints and objective functions, a quadratic 
gradient approximation is applied using a 
central finite difference technique. This requires 
three data points to be determined for each 
function for which gradients are required. Since 
the central point is already known due to 
previous ADS calculations, this requires a 
further two data points for each function (per 
design variable) as shown in Figure 2. 
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Figure 2: Quadratic Approximation of Constraint 
Equation. 

The step size from the central point for that 
gradient is denoted ∆x, which is set at 5% of the 
current value of that DV (Design Variable). 
Note however that this process must be 
performed not only for each of the constraints 
plus the objective, but each gradient must be 
separately calculated with respect to each of the 
design variables in turn, keeping the others 
constant. Thus, if the number of design 
variables increases, the time saving due to 
parallelisation also increases.  

1.3 ADAS – Aircraft Design & Analysis System 

ADAS [1] is a computer-based tool for 
conceptual aircraft design and configuration 
optimisation applications. ADAS is integrated 
with other design tools, such as CAD, and the 
aforementioned ADS numerical optimisation 
software. 

ADAS is designed such that engineers and 
designers can modify the code to suit a 
particular design problem and then compile and 
execute it. The user-supplied code is contained 
in a separate subroutine called DSPROG 
(DeSign PROGram). DSPROG contains the 
necessary design calculations, including the 
constraint and objective functions for 
optimisation. To make the development of the 
DSPROG code more user-friendly, a library of 
pre-programmed routines with standard design 
calculations can be accessed.  

For example, to generate the matching 
chart in Figure 1, DSPROG would contain the 
equations defining the constraint curves, where 
input files would contain names of variables and 
constraints, initial variable values to begin 
optimisation, and definitions of feasible design 
regions (hatch-marks) for each constraint. 

1.3.1 ADAS Modes of Execution 

ADAS has a number of execution modes, 
which can be selected to provide different levels 
of output: 
• Design Analysis Mode, where the program 

simply returns constraint tolerances (how 
close the input design point is to the 
constraints). This mode is executed in a 
single pass, and is typically used for design-
point calculation for a chosen aircraft 
configuration; 

• Parametric Survey, where a separate input 
file lists numerous parameters, each with a 
range of values. This is similar to “Design 
Analysis”; however analysis is performed 
for each of the sets of values in the new 
input file. Parametric survey mode is 
generally used to determine the influence or 
sensitivity of design characteristics 
(dependent variables) with respect to design 
parameters (independent variables); 

• Optimisation Mode, where the program 
makes numerous calls to the ADS software, 
in order to optimise a non-linear objective 
function, subject to non-linear constraints. 
This mode results in a single optimum 
design; and 
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• A combination of parametric survey mode 
and optimisation modes can also be 
selected. 
 
The user defines the design problem using 

three files: 
• Inputfile.txt: Formatted text file containing 

variable and constraint names and 
limits/tolerances; also includes parameters 
that govern the optimiser; 

• Para_input.txt: Formatted text file 
containing names and values for each set of 
parametric data. This file is only used in 
Parametric Survey Mode; and 

• DSPROG.FOR: FORTRAN routine 
containing design calculations. This defines 
the relationships of constraints to design 
variables, which procedures are required for 
calculations, external routines or programs 
to call upon, etc. 
 
No other files in ADAS require 

modification. After these three files are defined, 
the program can be compiled and executed. 

1.4 MPI – The Message-Passing Interface 

MPI is a portable package of routines 
developed for message passing within a parallel 
computer architecture. When a program is run 
in parallel, typically each processor deals with 
variable values that are local to that processor; 
however, MPI can be used if values need to be 
shared across different processors. 

There are many memory architectures in 
modern parallel computers. The Message-
Passing Model defines each process as having 
local memory, but also having the ability to 
communicate through messages with other 
processes. This data transfer from the local 
memory of one process to that of another 
requires actions from both processes. 

MPI has become one of the more widely 
used paradigms for expressing parallel 
algorithms. Although it has its limitations, it has 
several advantages, such as high performance, 
ease of debugging and universality. Although 
MPI contains a large set of commands, about 
125, the majority of those are for special-

purpose algorithms and for simpler parallel 
programs usually six standard MPI calls are 
sufficient. 

A basic framework for a simple MPI 
program could look something like this: 
• Start Program; 
• Initialise MPI (MPI_INIT); 
• Determine how may processors are running 

the program, and find out which process I 
am (MPI_COMM_SIZE, 
MPI_COMM_RANK); 

• Send any messages (MPI_SEND); 
• Receive any messages (MPI_RECV); 
• Finalise MPI (MPI_FINALIZE); and 
• End Program. 

 

However, more advanced procedure calls 
were made during the implementation of MPI 
into ADAS, to perform such tasks as: 

• Collective communication (broadcasting 
data to numerous processors at once); 

• Non-blocking communication (where 
the processor can continue to perform work 
while it waits for communication to complete); 
and 

• Rearrangement of the communicator 
into a 2D Cartesian Topology (used for more 
than one degree of parallelism). 

 
As per the MPI standard, when an MPI 

parallel program is written and run, each 
processor executes identical code, and it is up to 
the programmer to include the relevant MPI 
calls for inter-processor communication and 
program control. 

1.5 Design Case Study 

In order to evaluate the software, a 
relatively simple design program was used to 
demonstrate an aircraft design application. The 
design case was to generate a matching chart, 
comprising two design variables (W/S and 
T/W), three constraints (take-off distance, 
landing distance and cruise speed), and an 
objective function (T/W). The aircraft design 
specification was based on the work of 
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Bittugieg et al [6], in the design of a Cruise 
Missile Carrier with multi-role capabilities. 
Given a specific mission profile and payload 
requirements, initial estimates can be made for 
the various operational aircraft weights, through 
largely statistical/empirical methods. 
Relationships are also included for various 
performance parameters, as functions of the 
given design variables (W/S, T/W). This 
resulted in the following matching chart: 
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Figure 3: Matching Chart for Cruise Missile Carrier. 

 
Further modifications were made to 

increase the complexity of the design case, 
however they will not be mentioned here in 
detail. The design case was expanded to include 
five design variables and six constraints. This 
allowed ADAS to operate on a larger number of 
processors, allowing a more thorough 
performance analysis to be performed. 

2  ADAS – Incorporating Parallel Algorithms 
A parallel program runs simultaneously on 

a number of processors, as opposed to a 
conventional single processor architecture. 
Parallel programs have many advantages over 
serial (single processor) programs, due to the 
possibility of performing several operations 
simultaneously. Parallel programs can share 
information and allocate tasks, so that all 
processors are kept busy. Different parallel 
software layouts (or paradigms) are available 
that define the relationships between processors, 
how and when tasks are performed, and how 
information is shared and collected between 
processors. Serial programs, however, are 

limited by the requirement to perform 
operations once at a time, and in a set order. 

When incorporating parallel modifications 
into an originally serial algorithm (a process 
known as parallelisation), problems may occur 
during implementation, and the end product 
may not be as efficient as one that was written 
specifically for a parallel environment. This is 
due to portions of the code still requiring 
execution in serial; therefore not all the code is 
strictly parallel. This is the case with the ADAS 
software when running in optimisation mode. 

When ADAS runs in Design analysis or 
parameter survey mode (without optimisation), 
calls are made to the user-supplied DSPROG for 
design-point calculation (only one processor is 
required for design analysis), and parameter 
survey calculations are done in parallel. When 
the optimiser is included, however, ADS is 
executed. As ADS was originally written for 
serial execution, this limits the extent of 
speedup achievable through parallelisation. As 
the complexity of the design case contained in 
DSPROG increases, proportionally less time is 
spent in ADS, and hence the speedup increases; 
however, for optimal speedup of the ADAS 
software, the modification of the ADS software, 
or finding a suitable parallel version, may be 
required. 
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Figure 4: Original ADAS program flowchart. 
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Figure 4 shows the original ADAS flow 
chart. Note that the tasks performed by 
DSPROG vary with the ‘icall’ parameter. The 
value of this parameter can be set to allow 
DSPROG to perform input/output calls, 
calculate the required constraint and parameter 
values, etc. There are additional values (icall = 
2,4) that are currently blank, allowing the user 
to insert code at those points if required. 

2.1 Optimisation Mode 
The first stage taken in the implementation 

of MPI into the ADAS software, included 
adding simple MPI commands to perform 
“Optimisation” mode execution in parallel 
(Parametric survey mode was not included). The 
“Task Farming” method was utilised, where a 
single process acts as Master, with other 
processes acting as Slaves, sending their results 
to the master after completion. The general 
execution flowchart is shown below in Figure 5. 

 

 

 
Figure 5: Initial Parallel ADAS Execution Flowchart. 

(a) Overall program execution                                                
(b) Specific Slave Code 

As can be seen from Figure 5, unless the 
content of DSPROG is complex, only a small 
amount of time is spent in the parallel portion of 
ADAS. The rest is spent in either serial ADS 
calculations or communications delays, which 
occur during sending/receiving of messages, etc. 
These are an inevitable part of using MPI, and 
even though these delays are relatively small, 
care must be taken in the organisation of the 
program to ensure that these delays do not 
become significant. In the case of ADAS, 
because such a large amount of time may be 
spent in serial execution, with slaves idling, 
special attention was given to maximising 
program runtime efficiency, both in MPI calls 
and in improving general software execution. 

At runtime, one processor is defined as 
being the “Master”, governing the roles of all 
other processors running the program. This 
processor reads and writes input and output files 
at the start and end of the program respectively, 
and also manages workload allocation to the 
slaves, and general communication issues. The 
code was written such that it can run on any 
number of processors (of course, user discretion 
is required to limit processor idling). 

2.2 Parametric Survey Mode  
The next phase was that of integrating the 

Parametric Survey Mode into the parallel code. 
This required the use of more specialised MPI 
calls, and was in general more complicated than 
the first phase, as ADAS can be run both modes 
at once. 

Although ADAS was able to organise its 
allocation of processors to calculate gradients to 
optimise a single set of values, incorporating 
parametric survey became more complicated, as 
multiple such groups need to handle more than 
one set of values to optimise. In order to achieve 
this, MPI contains a series of procedures that 
can be used to re-organise the communications 
network into a grid structure in any number of 
dimensions (in this case only 2 are required). 

The primary grid length is dimensioned 
according to the number of parameter sets being 
studied. The primary grid length is defined to be 
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equal to the number of parameter sets being 
studied, or the next lowest equal fraction (e.g. 
1/2, 1/3, 1/4, …). The secondary grid length is 
then determined to utilise all the allocated 
processors in a rectangular grid. An example of 
this is shown below, where there are eight sets 
of parametric values to optimise, and twenty 
processors free to run the software: 

 

Masters 

Slaves 

Eight surveys to complete, 
therefore two for each column. 

 
Figure 6: Definition of MPI Communicator Grid 

Topology. 
As can be seen in Figure 6, the grid has 

been arranged such that no processor is 
constantly idle, and also the layout is optimised 
to give the best load balancing between 
parameter sets, as this is likely to give the best 
overall efficiency. 

Now that the grid is defined, MPI calls are 
made to define each column in the 
communicator (as communications networks are 
defined in MPI) as a separate communicator, 
such that communication calls can be specified 
either to communicate internally within each 
column, or globally, as would be the case when 
final results are sent from the “Local Master” of 
each column to the “Global Master”, which 
controls the execution of the program as a 
whole. The definition of these masters is of no 
real importance; in effect any processor is 
suitable to act in these roles, however for 
simplicity and ease-of use, the ‘top’ processor in 
each column acts as a “local Master” to that 
column, and the local master of the first column 
acts as the “global master”, and has roles similar 
to the master processor mentioned in the 
previous section. 

This scenario has again been written such 
that it may be executed on any number of 

processors (including one), even if it only acts 
with a single column in the grid. 

3  Results – Speedup Achieved 
Excellent results have been achieved using 

the ADAS system. A number of runs were 
performed, and the complexity of the design 
case was increased to allow it to benefit from 
the use of more processors by adding more 
design variables. Parametric survey analysis 
was later incorporated into the design case, 
allowing another dimension of parallelisation to 
be utilised. 

To measure ADAS’ performance, three 
different versions of the program were compiled 
and run over a range of processors. Each had 
different lengths of time spent within the 
parallel code DSPROG, in order to depict 
designs of increasing complexity. To do this, a 
simple command was added to the DSPROG 
code to cause the process to pause execution for 
1, 2, 3 or 4 seconds. As DSPROG is called 
many times during execution, this was sufficient 
to give an indication of the expected 
performance. These results were obtained using 
a design case consisting of 5 design variables, 4 
constraints, 3 parametric equations and 20 
parametric studies. The parametric studies and 
equations were only integrated for the results in 
section 3.2. 

3.1 Optimisation Mode 

This section shows the results of a single 
optimisation performed by a varying number of 
processors. As mentioned previously, several 
different versions of the software were 
compiled, to integrate differing levels of 
complexity. The results for this optimisation 
case are shown below: 

Table 1: Summarised ADAS Optimiser Execution 
Times. 

 Execution Times [seconds] 
#procs ADAS1 ADAS2 ADAS3 ADAS4 

1 67.7833 134.8433 201.8600 268.9167
2 43.9000 86.9000 129.9233 173.0567
3 31.9367 63.0767 93.9800 124.9633
5 20.1833 39.1133 58.0933 77.1233
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Figure 7: ADAS Optimiser Execution Times. 
 
The method used by the ADAS software to 

distribute tasks to the slave processors greatly 
affects the time performance of the software. 
When distributing tasks for gradient 
calculations, the master processor allocates 
them much like a card dealer distributing 
playing cards, starting with itself, and 
progressing through all available processors, 
looping if required. As a result, there may be 
cases where the allocation of tasks is 
imbalanced and where processors will have 
more than one optimisation task to complete. 
For example, in a 5-Variable design case such 
as that used to obtain these results, using two 
processors will result in one being allocated 
three tasks, and the other only two; hence the 
second processor will be idle while it waits for 
the first to complete its extra task. User 
discretion is advised to choose the appropriate 
number of processors to use to minimise this 
imbalance. Especially when solving complex 
design systems, where execution times are long, 
even a small load distribution could mean a 
noticeable waste of precious computer 
resources. 

 A common measure of performance of 
parallel programs is called Speedup, and is a 
measure of the time taken to execute a program 
on n processors, compared to the time taken to 
execute the same program on a single processor. 
For example, if a program takes 1/3 of the time 
to execute on four processors compared to a 
single processor, then the speedup on four 
processors is 3. The speedup values obtained for 
the ADAS optimiser are shown below: 

 

Table 2: Summarised ADAS Optimiser Speedup 
Results. 

 Speedup Obtained [-] 
# procs ADAS1 ADAS2 ADAS3 ADAS4 

1 1.0000 1.0000 1.0000 1.0000
2 1.5440 1.5517 1.5537 1.5539
3 2.1224 2.1378 2.1479 2.1520
5 3.3584 3.4475 3.4748 3.4868
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Figure 8: ADAS Speedup Results. 

3.2 Parametric Survey Mode  
In Parametric Survey mode, a number of 

optimisation calls, such as those shown in the 
previous section, were completed 
simultaneously. The communicator is organised 
into a grid structure, with each column being 
responsible for one or more optimisation tasks. 
A summary of the results obtained is contained 
in Table 3 below: 

Table 3: Summarised ADAS Parametric 
Execution Times 

 Execution Times [seconds] 

#procs 1 2 4 5 10 20 40 
ADAS 
1SEC 

299.8
3 

178.3
2 

118.8
3 

107.1
6 80.70 68.91 57.10 

ADAS 
2SEC 

593.0
8 

353.3
4 

232.3
9 

211.7
2 

159.6
1 

135.6
2 

112.0
4 

ADAS 
3SEC 

891.6
2 

529.5
5 

348.4
7 

315.3
2 

239.2
9 

203.0
5 

167.5
2 
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Figure 9: ADAS Parametric Execution Times. 
 
The numbers of processors chosen were 

such that the MPI communicator in each run 
had a single row of processors, but increasing 
numbers of columns, as described previously. If 
other data points were chosen, there would be 
irregularities in the chart of Figure 9, due to 
irregular distribution of tasks. 

 The speedup of ADAS in Parametric 
Survey mode is shown below: 

 
Table 4: Summarised ADAS Speedup 

Performance. 
 Speedup Obtained [-] 

#procs 1 2 4 5 10 20 40 
ADAS 
1SEC 1.000 1.681 2.523 2.798 3.715 4.351 5.251 
ADAS 
2SEC 1.000 1.679 2.552 2.801 3.716 4.373 5.293 
ADAS 
3SEC 1.000 1.684 2.559 2.828 3.726 4.391 5.322 
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Figure 10: ADAS Parametric Speedup Performance. 

 
It should be noted that the speedups 

obtained even using different versions of the 
software (depicting differing design 
complexities) achieve essentially identical 
levels of speedup performance (actually 

increasing slightly with design complexity), 
which is an excellent measure of efficiency; that 
even with a higher workload, the speedup 
performance achieved is still the same. This is 
important, as design cases become more and 
more complex, that the speedup performance 
does not decrease. 

Ideally, the speedup achieved by using n 
processors would be n; however, this is rarely 
possible due to portions of the code running 
inherently sequential. The fraction of sequential 
code is termed f, and according to Amdahl’s 
Law [8], the speedup obtainable can never 
exceed 1/f, no matter how many processors are 
used. Thus, as an example, a program with f = 
0.1 would never achieve a speedup greater than 
10. Factors affecting f include the time spent in 
parallel execution as compared to serial 
execution, which in this case would 
theoretically decrease with increasing design 
complexity; further study should be performed 
to analyse the performance of ADAS on large 
numbers of processors to investigate this. 
Methods of optimising the ADAS code will be 
incorporated in order to remove sequential 
overhead and maximise speedup. 

4  Results – AutoCAD Output 
A final outcome of the modification of the 

ADAS software was to integrate the existing 
AutoCAD Integration into the Parallel version. 
This integration allows for results to be shown 
graphically in 3 dimensions within the 
AutoCAD software. Routines were included in 
ADAS to create AutoCAD ‘DXF’ graphics files 
after analysis had been completed. This allowed 
for creation of 2D or 3D carpet plots of the data, 
allowing for independent studies of each design 
variable in the system. Some examples of the 
plots created for the above case study are shown 
below. 
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Figure 11: AutoCAD Carpet Plot of Aircraft 

Endurance as a function of 
Fuel Weight and Cruise Speed 

 

 
Figure 12: AutoCAD Carpet Plot of Optimum 

Thickness/Chord Ratio 
versus Wing Sweep and Mach Number 

 

 
Figure 13: AutoCAD Plot of Required Fuel Weight 

versus Aircraft Cruise Range and Speed. 
 

 
Figure 14: AutoCAD Plot of Optimal Wing Sweep 

versus Thickness-to-Chord Ratio and Mach Number. 

5  Conclusions 
This paper documents the method and 

results of modifying an existing Fortran 
software package for use on Parallel 
architectures, using the MPI standard. These 
modifications allow complex designs 
incorporating numerous design variables to be 
optimised without an increase in execution time, 
as workload is distributed between processors. 
Results show excellent decreases in execution 
time as workload is distributed amongst 
numerous processors, however user discretion is 
advised to maximise load balancing and 
minimise processor idling. 

The ADAS software provides great 
advantages to engineers and designers in 
allowing complex design systems to be solved 
quickly and easily, and the adaptability of the 
software allows it to be used in any field of 
design optimisation. This coupled with the 
numerous tasks that the software can perform, 
shows that ADAS will be an invaluable tool for 
designers in the future. 

6  Recommendations & Further Work 
The ADAS software system includes many 

different tools and functions, including 
incorporation of AutoCAD Computer Drafting 
software, FEM meshing, etc. While the basic 
AutoCAD integration has been completed, there 
are other aspects of the ADAS system that have 
not yet been incorporated into the parallel 
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version. The interfacing of ADAS with 
AutoCAD is achieved through the use of ‘DXF’ 
geometry files; plans are currently underway 
aimed at achieving this same goal with the more 
modern and widespread CATIA software, in 
cooperation with Dassault Systems Inc. 

Also, while the software may not yet be at 
a suitable stage in terms of general user-
friendliness, an end goal is to make it available 
as a Teaching and Research tool in a university 
environment. 
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