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Abstract

In this research a trajectory optimisation was
being undertaken using Genetic Algorithm to
search for optimal landing manoeuvres for a
forced landing of an airplane after engine
failure using a simplified analytical model for
the Beech Bonanza model E33A retractable-
undercarriage aircraft.  Vertical atmospheric
disturbances were simulated using an
approximated von Karman low altitude model
for the atmospheric disturbance model based on
the MIL-F-8785C specifications.  A forced
landing manoeuvre analysis was carried out for
an engine failure at 650 ft AGL for bank angle
varying from banking left at 45° to banking
right at 45° and with an aircraft’s speed varying
from 75.6 mph to 208 mph corresponding to 5%
above airplane’s stall speed and airplane’s
maximum speed respectively.  The results show
the effects vertical disturbances have on the
general flight paths for three pre-selected
landing locations.

1  Introduction
The study of safe landing of aeroplanes is a very
important issue in the aviation field and is
considered by pilots as the most demanding task
in every flight.  Many accidents have occurred
during the landing phase of flights, some of
which were beyond the pilot’s control, some
were due to human error, while some could
have been successful if only a more optimal
landing manoeuvre was carried out.
Unfortunately, it is the disastrous failed landings
that became a statistics with the National
Transportation Safety Board (NTSB) and those

who landed safely or with minor damage
generally are not reported to Federal Aviation
Authority (FAA) or NTSB.  Hence, the statistics
gathered are skewed or biased towards failed
attempts.

The research problem in this study has its
interest in the search for the best landing
trajectory for a forced landing manoeuvre of an
aircraft after an engine failure.  Such situation
could occur after take-off [1] or during a level
flight at any altitude above ground level (AGL)
[2].  When an engine failure occurs in an aircraft
and no additional power is available, the pilot
must select a suitable location to land safely
with the limited amount of energy available
from the engine failure position.  The general
recommendation is to land straight ahead and
Rogers’ studies [1] confirmed the high rates of
using this ingrained technique. However, he
suggests that, for forced landings from a higher
altitude, a turnback manoeuvre may be flown
because higher altitude allows for more time in
the air.  This research is also an extension of
Rogers’ forced landing manoeuvre where the
search for optimal landing paths begins after the
pilot has selected a practical landing location on
the ground that is within range after an engine
failure.  A study on the effects vertical
atmospheric disturbances have on a forced
landing manoeuvre was also carried out.

2 Problem Description – Forced
Landings

Landing an aircraft that has suffered an engine
failure during take-off is one of the
classifications of a forced landing and is the
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focus of this study.  The general
recommendation in the aviation literature for
such a situation is to land straight ahead [3, 4].
For example, FAA regulations recommend that
pilots land straight ahead and should never
attempt track reversals in an effort to land on the
departure runway.  The present research
problem is an extension of a forced landing
manoeuvre on the Beech E33A Bonanza single
engine aircraft considered by Tong, Galanis and
Bil[5] based on Rogers[1].  The problem
considered in this forced landing assumed an
engine failure at 650 ft AGL after take-off.  It
used the engine failure point as the reference
point for all distances calculated.  It was
assumed that the transition in speed occurred
instantaneously and the effects of landing gear
retraction/extension were not considered.

A graphical interpretation of the forced landing
after an engine failure at an arbitrary altitude is
shown in Fig. 1.  This research took the
approach of an ensemble of probability of
landing within a specified tolerance from a pre-
selected location and not as an optimal control
problem of the deviation from the flight
trajectory during a forced landing manoeuvre.
In other words, what are the chances of the pilot
performing the landing task with maximum
probability of landing on a pre-selected landing
site?  The calculations performed in this study
used the general flight dynamics equations [6]
and data based on the Beech Bonanza E33A
retractable aircraft characteristics obtained from
Rogers as shown in Table 1.  The data for initial
takeoff ground roll and distance to clear 50 ft
obstacle are obtained from Rising Up Aviation
Resources1.

                                                
1 Data available online at
http://www.risingup.com/planespecs/info/airplane117.sht
ml. 2003.

Table 1. Beech Bonanza Model 33A characteristics [1]
Parameter Value

Gross Weight, lb 3300
Wing Area, ft2 181
L/Dmax 10.56
Power, brake horsepower 285
Propeller Constant speed 3-blade
Vmax, mph 208
Vcruise at 65%, mph 190
Vstall(clean)

a power off, mph 72
Vstall(dirty) power off, mph 61
VL/Dmax

 b
, mph 122

Vγmax
 c at sea level, mph 91

VR/Cmax
 d at sea level, mph 112.5

R/C at sea level and 3300 lb, ft/min 1200
Parabolic drag polar CD = 0.019 + 0.0917CL

2

Takeoff: Ground roll, ft 880
Takeoff: Over 50 ft obstacle, ft 1225
Landing: Ground roll, ft 625
Landing: Over 50 ft obstacle, ft 1150
a Gear and flaps retracted.
b L/Dmax = maximum lift to drag ratio.
c γ = glide angle.
d R/Cmax = maximum rate of climb.

3 Atmospheric Model
The simulation of atmospheric turbulence is of
considerable importance and is a critical
component in any aircraft simulation and in
trajectory optimisation development.
Atmospheric disturbances are very random by
nature and so are its magnitudes and the
frequencies of occurrence.  They are affected,
for example, by the geographical location, the
weather and the time of the year.

For this study, the von Karman low altitude
model and the medium altitude model for
atmospheric disturbance model based on the
MIL-F-8785C specifications were used to
simulate the atmospheric turbulence model [7].
The atmospheric turbulence velocity for this
research was calculated using [8]’s
approximated transfer function from the von
Karman spectrum.

The vertical turbulence velocity terms were
vectorially added to the aircraft’s velocity and
were assumed to have an instantaneous change
to the aircraft’s vertical velocity.  The aircraft
was also assumed to be flying through a one-
dimensional gust field where only the vertical
velocity changed and it was assumed that the

Engine failure point

Pre-selected
landing locationLanding area

within range

Fig. 1. Forced Landing Area
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turbulence encountered was independent of
time.  In other words, the turbulence profile was
frozen or fixed in space and time.

The influence of wind velocities have on an
aircraft could be roughly separated into 2 parts.
The flight performance description of an aircraft
depends on the low frequency part of the wind
vector, the wind shear component.  It is only the
low frequency part of the wind that influences
the energy relation of the aircraft.  The high
frequency wind components in the atmospheric
turbulence and gust are considered high
frequency and have no effect on the aircraft
trajectory.  Their effects are on the aircraft's
loading, the structural fatigue, the pilot's
workload, passenger comfort, and on the flying
qualities of the aircraft.  The eigenmotions of
the aircraft, the phugoid and the short period
motion are important frequencies for the
separation effects.  If the frequency of the wind
perturbation is less than the phugoid frequency,
the change of aircraft trajectory is directly
proportional to the wind angle of attack,
meaning the low frequency directly changes the
aircraft trajectory.  If the range of frequency is
above the short period motion, the inertia of the
aircraft avoids large change of trajectory.  In
other words the flight path is only affected in
phugoid mode where the pitch angle follows the
flight path angle [9-11].  Using the airplane’s
stall speed (Vs = 72 mph) and the well-known
phugoid period equation, the phugoid period

was found to be .sec152
≈=

g
VTPhugoid

π

100 atmospheric turbulence profiles were
generated for reference speed of 15 kts at 650 ft
AGL using the von Karman atmospheric
turbulence model.  An improvisation to the
atmospheric turbulence model was made by
time averaging the von Karman atmospheric
turbulence model to coincide with the airplane’s
approximated phugoid mode of 15 secs.  This in
effect is one method of obtaining the low
frequency velocity representations.  The
maximum time averaged atmospheric

turbulence updraft is 1.48 ft/sec and the
maximum downdraft is –1.67 ft/sec.

4 Genetic Algorithms
Drawing parallels from natural selection,
Holland[12] proposed the theory of  GA in the
early 1970’s which imitates the evolutionary
processes in nature.  Evolution can be
considered as a form of an optimisation problem
where only the fittest individuals will survive
and reproduce, also known as the “survival of
the fittest”.  GAs use crossovers – a
probabilistic mechanism for randomising
chromosomes, and mutations – a perturbation
mechanism, as search mechanisms to generate a
sequence of populations.  The most rudimentary
unit, the genes, which can take the form of
different alleles, are combined to form
chromosomes that control the “keys” to the
survival of the individual in a competitive
environment.  Evolution occurs when the
chromosomes from two parents are combined
during reproduction and a new gene pool is
formed from combinations generated through
either crossover or mutation.

GAs perform parallel, non-comprehensive
search in the hope of finding the global
maximum, if not a very near optimal solution, to
optimisation problems.  The procedure to solve
a complex problem using GAs is to define the
search space and to custom design a coding
scheme for the solutions in the search space
tailored to the problem.  This process is known
as genetic representation[13].  A fitness function
is then designed to evaluate the potential
solutions, and the “better” ones are kept for
subsequent regenerations and the “inferior”
solutions are discarded.  The next generation of
solutions are created by applying the crossovers
and mutations genetic operators to evolve
solutions for further fitness evaluations.  The
optimisation process terminates when either an
acceptable tolerance in results is obtained, or
when it has processed a specific number of
generations, or when no improvement in fitness
value is encountered after a number of



Peter Tong*, Cees Bil** George Galanis‡

4

consecutive generations.  The GA cycle is
shown in Fig. 2.  The three most important
features are fitness function, the genetic
encoding and the genetic operators.

GA is a relatively new optimisation method
compared to the traditional gradient search
method, which has difficulties for discontinuous
or non-smooth functions.  In solving
optimisation problems, GAs have the advantage
that no derivatives have to be found but they
have only to utilize the governing equations in
the problem considered.  The trade off in not
using gradient information is that it does not
guarantee a minimum point but will locate
results that are very close to the optimal
solution.  Other optimisation methods such as
gradient method may be able to locate better
optimal solutions but may suffer computational
time.  GA is not an alternative nor is it a
replacement method to other traditional
optimisation methods but it is a valid
complementary optimisation technique.  In
simulation, obtaining acceptable results rapidly
is more valuable than spending an enormous
time searching for the optimal point and GA is
capable of doing so.

4.1 Real-Value GA Operators
A real-value representation was used since it
helped to exploit the numerical properties of a
candidate solution by exploiting the solution
gradients and information from the function’s
landscape.  The GA real-value chromosomes are
represented by a vector xv  = (x1, … xn), where n is
the chromosome length.  The chromosome
length is equivalent to the number of variables
used to represent the domain.  Each gene, (xk),

in the chromosome is bounded by an upper limit
(xmax)  and a lower limit (xmin)  specific to the
gene.

A brief description from Michalewicz[14] is
presented here for the different operators used
for a real value encoding.  The genetic operators
used for real value encoding in this analysis
consist of three types of mutation operators and
three types of crossover operators:

i) Uniform mutation randomly mutates a
gene in the chromosome with uniform
probability distribution to any value
within the real-valued domain range.
This operator is important in the early
phases of the evolution process, as the
solutions are free to move within the
search space.

ii) Boundary mutation mutates a gene to
either the lower boundary value or the
upper boundary value for the real-valued
range.  This operator is very useful for
GAs with constraints.

iii) Non-uniform mutation mutates a gene
by a factor that is a function of the
difference in value between that
particular gene and either of its
boundary value, and the generation
number.  This mutation probability will
decrease to 0 as the generation number
increases.  This type of mutation is used
for local fine-tuning of genes where the
operator will initially search the space
uniformly and very locally at later
generations.

iv) Arithmetic crossover linearly combines
the genes from two parents to produce
two children.

v) Simple crossover randomly selects a
point in a chromosome as a crossover
point which is very similar to the
traditional one-point crossover.

vi) Heuristic crossover uses the values of
the objective function to determine the
direction of the search and it may or may
not produce an offspring.  It is
responsible for local fine-tuning and
search in the promising direction.

Elitism

Population
(chromosomes)

Genetic
operation

Selection
(mating pool)

Evaluation
(fitness)

Decoded
stringsParents

Reproduction
Manipulation

Mates

Offspring
New

generation

Fig. 2. Genetic Algorithm Cycle
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All of the six genetic operators described were
required to explore the search space adequately
and were used equally to prevent premature
convergent without regard to fitness.  For
example, arithmetical crossover would tend to
drive the population to the numerical center of
the search space very quickly, regardless if it
yields good fitness values, and boundary
mutation would set the gene to either of its
boundary value.  However, the use of other
operators will prevent such problem.  It is
through the combination of these powerful
crossover and mutation operators developed by
Michalewicz that the search space can be
explored and good genetic material exploited.
In order to randomise the use of the three types
of crossovers and mutations uniformly, the
populations were randomly chosen for the
different types of crossovers and mutations.
The three types of crossovers and mutations
were applied equally to all the randomised
populations in every generation to allow equal
distribution of genetic operators.

The GA in this analysis used tournament
selection, whereby two chromosomes were
selected from the population and compared at
any one time to select the fitter chromosome for
crossover and mutation.  This selection method
prevented fitness scaling where a few highly fit
chromosomes may dominate the parent
population.  It also used elitism where a certain
number of the best chromosomes from the
previous generation are cloned to the present
generation.

4.2 Real-Value Control Parameters Selection
A common issue that arises in using GA is the
proper selection of parameter settings [15-18].
Using a large population of chromosomes will
increase computational time but it will prevent
premature convergence to a local optimum
while using a small population of chromosomes
will reduce computational time but it may
converge prematurely to a sub optimal solution.
In general, a high crossover rate increases the
recombination of building structures but an
excessive crossover rate may lead to high-

performance structures being discarded faster
than the selection process is able produce
improvement while a low crossover rate may
stagnate the optimisation process.  The selection
of the crossover rate also depends on the
population sizes where higher crossover rate for
smaller populations can prevent premature
convergence while lower crossover rate be used
for larger populations since they have larger
search space.  A high mutation rate, which is
more important in later generations, resembles a
random search but it may help to reintroduce
lost structure while a low mutation rate may
lead to a convergence to a local optimum.

Since the GAs method relies on stochastic
processes and is optimisation objective
dependent, a control parameter test was carried
out to determine the best selection of population
size, the number of generations, the crossover
rate and the mutation rate for the optimisation
problem considered in this study.  A
chromosome length (l) of 26 bits, corresponding
to two variables, speed and bank angle, for each
of the 13 discrete altitude steps to ground level
for an engine failure at 650 ft AGL was used.  A
genetic control parameter selection process as
shown in Table 2 was carried out for three sets
of pre-selected touchdown locations.  They were
located at 0 ft laterally and –3100 ft
longitudinally, at 3000 ft laterally and 3000 ft
longitudinally, and at 500 ft longitudinally and
200 ft laterally from the engine failure point
with reference to the airplane’s heading
direction at that instance.  The code for
implementation of the GA was developed in
Matlab 5.3.  The fitness value in this GA
trajectory optimisation was defined as the
distance between the touchdown location and
the pre-selected touchdown location.

Table 2. Real-Valued Control Parameters Selection
GA Control Parameters Range Step Size Cumulative runs

Coef. for non-uniform
mutation (b)

2 – 8 2 4

Crossover rate 30% – 40% 10% 8
Population size (N) 52 – 260 52 40
Mutation rate 1% – 9% 2% 200
Repetition for each test 100 1 20000
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The GA control parameter selection was carried
out for an elitism of 10% of the population size
for subsequent generations.  A larger percentage
of elitism used may stagnate the evolution
process while a smaller percentage of elitism
used may slow down the convergence.  A
stopping criterion of 100 generations and a
repetition of 100 GA runs were carried out for
each of the 200 combinations of parameters for
each test location to reduce the effect of
probabilistic “noise”.  For each run, the best
fitness value was recorded as measure for the
GA’s performance.  These values were averaged
over 100 runs for every combination of
population sizes (N), crossover rates,
coefficients for non-uniform mutation (b) and
mutation rates to provide a representative
performance of a general GA run.  The
computation cost is defined as a product of the
population size and the minimum number of
generations it takes to obtain the minimum
fitness value for each trial limited to the
stopping criterion of 100 generations used.  The
average performance values for each set were
normalised with respect to those values from
runs with population size of 52 (2l) and
mutation rate of 1%.

Calculations were carried out using altitude
steps of 50 ft for convenience instead of
constant time interval steps.  The reason for not
using constant time interval was the requirement
to terminate the GA search at exactly 0 ft AGL.
In this forced landing simulation, at every 50 ft
drop in altitude, the pilot continuously decides
on the flying speed and bank angle.  At each
altitude step, the pilot may elect to turn by
banking continuously at ±45 deg flying with
speed varying continuously from 5% above stall
speed (75.6 mph) to maximum speed (208
mph).

4.3 Results for Real-value Control
Parameters Selection
Since similar trends in results were observed for
all the three pre-selected touchdown locations,
remarks will be made for the pre-selected
location of touching down at 0 ft laterally and –

3100 ft longitudinally.  Larger population sizes
usually provide a more accurate solution.
However, for mutation rates of less than 5%,
there is relatively little improvement in the
fitness value for population size above 4l (N =
104) as shown in Fig. 3 and fitter values were
obtained using a crossover rate of 30% as
shown in Fig. 4 This minimal improvement in
fitness value is at the expense of greater
computational cost, which in general is a linear
increase of computational effort for an increase
in population size.  While there is minimal
improvement in the best fitness for populations
greater than 4l, the computational effort
continues to increase as shown in Fig. 5.
Hence, increasing the population size beyond 4l
did not appear to be worth the related
computational cost.  The results suggest that a
population size of 4l (N = 104) is an appropriate
compromise for a best fitness value and a
reasonable computational effort which agrees
well with Williams and Crossley[18].  A
coefficient for non-uniform mutation of 4
provided a fitter and more consistent best fitness
value for the different control parameter
combinations tested.  Very similar results for
computational cost were observed for mutation
rates ranging from 3% to 9%.  Nevertheless, the
fitness values for these mutation rates are not as
fit as the fitness value for a mutation rate of 1%.
The deterioration in fitness value may be due to
excessive increase of mutation in the
chromosomes.  Mutation rates have a significant
effect on the fitness performance but its effect is
reduced as the population size increase beyond
4l.
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Based on the GA parameter analysis carried out,
a set of parameters were found suitable for
further work on this particular trajectory
optimisation for a forced landing manoeuvre
upon engine failure.  These are a population size
of 104, a crossover rate of 30%, a mutation rate
of 1%, a coefficient for non-uniform mutation
of 4, using tournament selection and an elitism
of 10% based on population.

GA convergence history is important to the
understanding of its behaviour to ensure
sufficient number of generations was run to
obtain satisfactory results.  Fig. 6 illustrates a
typical convergence history for 100 generations
for each of the 100 trials obtained from the
control parameter selection analysis.  No
premature convergence was observed and the
selected generation of 100 has allowed a
satisfactory development of the population.
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Fig. 6.  Evolution History for 100 Trials

5 Results for GA in Forced Landings with
Continuous Speed and Continuous Bank
Angle
A GA for forced landing with continuous speed
and continuous bank angle was carried out for
three test locations; (0 ft, -3100 ft), (3000 ft,
3000 ft) and at (500 ft, 200 ft), where the 1st

component represents the lateral distance and
the 2nd component represents the longitudinal
distance from the failure point.  It used real-
value representation and the control parameters
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determined in the previous section.  In order to
test the validity and the reliability of the real-
value representation GA search procedure
developed, the results were compared to the
results obtained using the exhaustive search
method and similar results were obtained.

5.1 Results with Still Air Conditions
The results for GA with continuous speed and
continuous bank angle for touchdown distances
from the respective pre-selected landing
locations are shown in Table 3.

Table 3. Results for GA with Continuous Speed and
Continuous Bank Angle

Pre-selected
Location

Global
Minimum
Distance

Average Minimum
Distance from 100

trials

Probability of Landing ≤
Average Minimum

Distance from 100 trials
(0 ft, -3100 ft) 0.0064 ft 0.4252 ft 91 %

(3000 ft, 3000 ft) 0.0005 ft 0.0312 ft 59 %
(500 ft, 200 ft) 0.0022 ft 0.0426 ft 73 %

Based on the results obtained, the GA with
continuous speed and continuous bank angle
search method has successfully found suitable
combinations of aircraft speed and bank angle to
land extremely close to the pre-selected
locations with high probability for landing
within the average minimum distance except for
the (3000 ft, 3000 ft) location.  The lower
probability in obtaining paths within the average
minimum distance for location (3000 ft, 3000 ft)
is due to the nature of the solution landscape.
For minimum global values with neighbourhood
values of very small differences, as illustrated
by this particular test location, GA will have a
lower probability (59%) in locating paths that
are within the average minimum distance since
GA concentrates in that solution space and
nearby adjacent values maybe found instead.  A
slightly higher mutation rate may assist in
locating the global minimum value better in
such a solution landscape but it is not necessary
since the average minimum distance from the
pre-selected location is very small (0.0312 ft)
for this particular location.  The quality in the
results obtained for all the three pre-selected
locations can be observed from the probability
ranging from 59% to 91% in landing less than
or equal to the average minimum distance from
the 100 trials.

Two general flight paths for the pre-selected
location (0 ft, -3100 ft) exist since this location
is located along the airplane’s line of symmetry
at failure point. The best flight paths found from
each of the 100 runs and their average motion
variables for turning right are shown in Fig.7.
The results show that in order to land at the pre-
selected location with high probability, the pilot
flies the following manoeuvre.  Upon engine
failure point at 650 ft AGL, the pilot begins a
tight turn either by banking steeply right or left
at approximately 40° while flying at 76 mph.
This is followed by increasing the airplane’s
speed towards 107 mph and widening of the
turn radius by gradually reducing the bank angle
to 23° as it descends to approximately 200 ft
AGL.  The pilot then continues flying at
approximately 106 mph while further reducing
the bank angle towards 0° until touchdown.
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Fig. 7. Optimal Forced Landing (0 ft, -3100 ft)
Continuous Speed and Continuous Bank Angle at 650 ft
AGL

The best flight paths found from each of the 100
runs and their average motion variables for the
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pre-selected location (3000 ft, 3000 ft) are
shown in Fig. 8.  The general flying manoeuvre
to land at the pre-selected location of (3000 ft,
3000 ft) is, upon engine failure at 650 ft AGL,
to begin with a left bank of approximately 9° at
96 mph.  This is followed by a right bank until
approximately 15° at 500 ft AGL and a further
right bank towards 22° while gradually
decreasing the airplane’s speed until
approximately 87 mph at 250 ft AGL.  The pilot
then increases the airplane’s speed to
approximately 91 mph along with a gradual
decrease in right bank angle towards 7° until
touchdown.  The landing manoeuvre for this
pre-selected location resembles the 90° landing
approach in general aviation for flying from the
base leg to the final leg where the pilot begins to
turn towards the pre-selected location when it is
at 45° from the current position.  The results
also show the double base leg flight paths where
at engine failure point the aeroplane turns right
and then followed by a left turn to touchdown.
Although these are feasible flight paths, they are
generally not recommended since they are
harder to fly and will cause an increase in the
pilot’s workload.
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Fig. 8. Optimal Forced Landing (3000 ft, 3000 ft)
Continuous Speed and Continuous Bank Angle at 650 ft
AGL

The majority of the initial flight paths for the
pre-selected location (500 ft, 200 ft) show that
95% of the flight paths turn toward the pre-
selected location while counter intuitive flight
paths of 5% turn away from the pre-selected
location.  The counter intuitive manoeuvre is
also possible since the pre-selected location is
located near the airplane’s line of symmetry at
engine failure point.  The best flight paths found
from each of the 100 runs and their average
motion variables for both right and left turns for
the pre-selected location (500 ft, 200 ft) are
shown in Fig. 9-a.  The general flying
manoeuvre to land at the pre-selected location
of (500 ft, 200 ft) for the turn towards the pre-
selected location (see Fig. 9-b) is, upon engine
failure, to fly at 100 mph, banking left at
approximately 7%, then gradually decreasing
the airplane’s speed to approximately 79 mph
while increasing the right bank angle towards
37° until 350 ft AGL.  The pilot then maintains
the flying speed at 79 mph while maintaining
the bank angle at 37° until 250 ft AGL.  This is
followed by gradually increasing the airplane’s
speed towards 96 mph and decreasing the bank
angle towards 12° until touchdown.  The
general flying manoeuvre for the counter
intuitive manoeuvre (see Fig. 9-c) is to fly at 96
mph, banking left at approximately 5.5%,
gradually decreasing the airplane’s speed to
approximately 77 mph while increasing the left
bank angle towards 37° until 550 ft AGL.  The
pilot then maintains the flying speed at 75 mph
while maintaining the left bank angle at 40°
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until 250 ft AGL.  This is followed by gradually
increasing the airplane’s speed towards 100
mph and decreasing the left bank angle towards
21° until touchdown.  The landing manoeuvre
for both manoeuvres for this pre-selected
location resemble the 180° and 270° landing
approach in general aviation in flying from the
base leg to the final leg where the pilot begins to
turn towards the pre-selected location when the
pilot is abreast with the pre-selected landing
location.
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Fig. 9. Optimal Forced Landing (500 ft, 200 ft)
Continuous Speed and Continuous Bank Angle at 650 ft
AGL

5.2 Results with Time Averaged Vertical
Atmospheric Turbulence

The results for the GA with continuous speed
and continuous bank angle, and with vertical
atmospheric turbulence for touchdown distance
from the respective pre-selected landing
locations are shown in Table 4.

The best landing flight paths from each of the
100 atmospheric turbulence profiles as shown in
Fig. 10 – 12 trace a slightly wider landing flight
path envelope than in still air condition.  The
average flying parameters with vertical
atmospheric turbulence for all the three pre-
selected locations are very similar to the still air
condition since the disturbance is mild.

The results show that the GA with continuous
speed and continuous bank angle method, and
with vertical atmospheric turbulence has
successfully found suitable combinations of the
aeroplane’s speed and bank angle to land very
close to the pre-selected locations.  The GA
with vertical atmospheric turbulence found very
minute global minimum distance from each of
the three pre-selected locations.  Comparatively,
the average touchdown distances from all the
pre-selected locations with vertical atmospheric
turbulence are farther than in still air condition.
This is as expected since vertical atmospheric
turbulence is a form of disturbances and
uncertainties to the flying manoeuvre.  A very
high probability (93%) of landing within the
average minimum distance from the 10,000
trials was obtained for the pre-selected location
(0 ft, -3100 ft) but a relatively low probability
(61%) was obtained for the pre-selected location
(3000 ft, 3000 ft) because GA concentrated in
that solution space nearby where adjacent
values were found instead.

Fig. 10-a shows the best forced landing flight
paths with vertical atmospheric turbulence from
each of the 100 turbulence profiles runs for the
pre-selected location (0 ft, -3100 ft).  Two
general forced landing paths exist since the pre-
selected location is located along the airplane’s
line of symmetry at engine failure point.  The
aeroplane’s average flying speed and bank angle
at each 50 ft decrement in altitude, and the
airplane’s final heading statistics to land at the
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Table 4. Results for GA with Continuous Speed and Continuous Bank Angle, and Vertical Atmospheric Turbulence
Pre-selected

Location
Global

Minimum
Distance

Average of the Minimum
Distance from each
Turbulence Profile

Average Minimum
Distance from
10,000 trials

Probability of Landing ≤
Average Minimum Distance

from 10,000 trials
(0 ft, -3100 ft) 1.4847x10-4 ft 0.0123 ft 0.7244 ft 93 %

(3000 ft, 3000 ft) 9.2037x10-4 ft 0.0045 ft 0.0625 ft 61 %
(500 ft, 200 ft) 1.4374x10-4 ft 0.0044 ft 0.0718 ft 70 %

pre-selected location are shown in Fig. 10-b.
The results show that strong continuous
downdrafts during both the turn glide
manoeuvre and the straight glide manoeuvre
will have the most effect in an attempt to land
close to this pre-selected location.  Downdrafts
affect the straight glide manoeuvre more than
the turn glide manoeuvre in an attempt to land
close to the pre-selected location while updrafts
will increase the probability of landing closer to
the pre-selected location.
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Fig. 10. Optimal Forced Landing (0 ft, -3100 ft)
Continuous Speed and Continuous Bank Angle at 650 ft
AGL with Vertical Atmospheric Turbulence

Fig. 11-a shows the best forced landing flight
paths with vertical atmospheric turbulence from
each of the 100 turbulence profiles for the pre-

selected location (3000 ft, 3000 ft).  The
aeroplane’s average flying speed and bank angle
at each 50 ft decrement in altitude, and the
airplane’s final heading statistics to land at the
pre-selected location are shown in Fig. 11-b.
The effects updrafts have on this landing
manoeuvre is a slightly wider flight path or
longer flight path since updrafts decrease the
descend rate and longer paths are required to
bleed off the excess energy (altitude).  Flying
longer flight paths also have the effect of
touching down at the pre-selected location with
final headings near the 180º heading relative to
the initial engine failure heading.
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Fig. 11. Optimal Forced Landing (3000 ft, 3000 ft)
Continuous Speed and Continuous Bank Angle at 650 ft
AGL with Vertical Atmospheric Turbulence

Fig. 12-a shows the best forced landing flight
paths with vertical atmospheric turbulence from
each of the 100 turbulence profiles runs and the
airplane’s final heading statistics for the pre-
selected location (500 ft, 200 ft).  The
aeroplane’s average flying speed and bank angle
manoeuvres at each 50 ft decrement in altitude
to land at the pre-selected location are shown in
Fig. 12-b,c.  The random vertical disturbances
do not seem to affect its performance in landing
close to this pre-selected location since vertical
disturbances do not affect the turn manoeuvres
as much as the straight glide manoeuvres.
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Fig. 12. Optimal Forced Landing (500 ft, 200 ft)
Continuous Speed and Continuous Bank Angle at 650 ft
AGL with Vertical Atmospheric Turbulence

6 Discussions
For the test location at (0 ft, -3100 ft), it is
intuitive that that are 2 general paths since the
pre-selected location lies along the airplane’s
line of symmetry at engine failure.  A double
base leg landing can also be clearly seen for the
(3000 ft, 3000 ft) location but this flying
manoeuvre is not recommended because it is
more complicated to fly than the typical base
leg to final leg landing manoeuvre and it will
also increase the pilot’s workload.  Statically,
GA also found more flying paths for the typical
base leg to final leg manoeuvre than for the
double base leg landing manoeuvre.  Lastly, for
the location (500 ft, 200 ft), it is possible to land
at the pre-selected location by turning in the
opposite direction instead of towards the
intended location.  This is possible because the
pre-selected location is located at close
proximity to the airplane’s initial line of
symmetry at engine failure.  It is not
recommended to fly this manoeuvre to land at
this particular landing location because
statistically, GA found more paths in flying the
manoeuvre that continuously turn towards the
pre-selected location.  The lack of gradient
information in GA is responsible for its inability
to mathematically prove whether the results
found are optimum.  The trade off in its ability
to search a large solution space is the
performance sacrifice as a true optimisation
procedure.

One of GA’s limitations is not being able to
locate all the possible trajectories and neither
can it guarantee a single best solution since it is
a stochastic process based on randomness.  In
fact, different GA runs may produce different
optimal results, possibly more than one unique
landing path, perhaps causing uncertainty as to
which is the best landing path as can be seen for
the pre-selected landing locations tested.  GA
may also generate results that are intuitive,
those may provide more information that would
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not have been thought of otherwise or results
that are counter intuitive as illustrated by the
three test locations.

7 Conclusions
The results from various GA search have
confirmed GA’s effectiveness to explore the
solution domain as well as its capability to
successfully identify the most promising
trajectory paths to a forced landing manoeuvre.
The results obtained trace a flight path envelope
for the most probable landing flight paths for
each of the pre-selected landing location
considered, touching down very close to the
intended touchdown point on ground.  The
vertical atmospheric turbulence has the effect of
widening the landing path envelope for each of
the three locations considered.  This is expected
since vertical turbulence velocity components
effectively changes the vertical descend rate
forcing a change in the forced landing
manoeuvre to land at the pre-selected landing
locations.  The vertical disturbances have the
most effect on straight glide manoeuvres and are
less sensitive to the turning manoeuvres.
Overall, the GA procedure developed clearly
identified an ensemble of the most promising
landing paths within the search domain.
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