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Abstract

The investigation of flutter and aeroservoelastic sta-
bility through flight testing is an essential part of air-
craft certification. The stability boundary prediction
is especially difficult when the instability is associ-
ated with nonlinearity in the dynamics. This pa-
per presents an approach for the characterization of
the nonlinear dynamics by non-iterative identification
algorithms. Two different block-oriented nonlinear
models are considered in this work to augment exist-
ing linear models with nonlinear operators derived by
analyzing flight data. Central in the identification of
block-oriented nonlinear models is the use of the a-
priori set of orthonormal bases tuned with the dynam-
ics of the aeroelastic/aeroservoelastic plant. In both
cases, we propose a method to generate the orthonor-
mal bases that is based on the cascade of input-normal
balanced state-space realizations of all-pass filters.
Case studies using a simulated structurally nonlinear
prototypical two-dimensional wing section and actual
F/A-18 AAW Ground Vibration Test (GVT) data are
presented.

1 Introduction

Recently there has been intense research activ-
ity in nonlinear modeling and analysis for aeroe-
lastic/aeroservoelastic (AE/ASE) systems within
the flight test community, [3], [11]. Some of the
current generation fighter aircraft carrying exter-
nal stores are sensitive to develop a sort of non-
linear oscillation in the high subsonic to low su-
personic speed regime, [4], [10]. Linear flutter
engineering tools only are able to predict diver-
gent oscillations while the observed in flight dy-
namic behavior is of limited amplitude. Hence,

some kind of nonlinear AE/ASE modeling capa-
bility must be developed in order to explain in-
flight observed nonlinear dynamic behavior.

This work proposes the estimation of the ob-
served nonlinear dynamics within an intercon-
nected feedback framework, where the unknown
dynamics turn out to be a function of the mea-
sured state vector,x(t), and/or the measured input
vector,u(t), of the AE/ASE model. To this end a
class of nonlinear models calledblock-oriented,
which consists of the interconnection of Linear
Time Invariant (LTI) systems and memoryless
nonlinearities, are used. In particular, this pa-
per focuses on the identification of Hammerstein
and Wiener models from aN-point data record
of observed input-output measurements from an
AE/ASE system.

The approach adopted here is motivated by
Gómez,et al., [6], and the implemented iden-
tification algorithms are non-iterative. Specific
identification strategies are formulated in accor-
dance with the nature of the available data set.
A Hammerstein model identification approach is
applied when measurements at the input of the
unknown nonlinear map are accessible, other-
wise a Wiener method is suggested, (sensor non-
linearity). The identification algorithms are com-
posed of Least Square Estimation (LSE) and Sin-
gular Value Decomposition (SVD) stages. The
SVD technique is used to compute the solution
of the associated 2-norm minimization problem.

The focus of this work seeks to augment ex-
isting linear models with nonlinear operators de-
rived by analyzing flight-test data. Thus, these
models would be suitable for analyzing aeroe-
lasticity/aeroservoelasticity if the unknown non-
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linearities could be included. Promising results
were obtained when this data-based modeling ap-
proach was applied to a structurally nonlinear
two-dimensional wing section as well as a set
of F-18/AAW GVT data. The outcomes indicate
that this setup reproduces, with a high degree of
fidelity, the nonlinear dynamic behavior present
in the observed measurement set.

2 Nonlinear Aeroelastic Feedback System

In reference [7] a general AE/ASE nonlinear
feedback setup for identification purposes is es-
tablished. In particular, the proposed intercon-
nected nonlinear feedback framework allows an
expedient and efficient estimation of the un-
known dynamics, or errors from flight data mea-
surements. In the devised setup, the unknown
dynamics are denoted by the operatorX(z), be-
ing z(t) a function of the measured state vector
x(t) and/or the measured input vectoru(t) of the
AE/ASE model.

Specific formulation were derived for two
different unmodeled dynamic identification sce-
narios. One scenario assumes that the unknown
dynamics is purely a function of the measured
states,X(z) = X(x), while the other assumes that
the unknown dynamics is purely a function of the
measurement inputs,X(z) = X(u). In this paper
the former scenario is discussed whereas the lat-
ter was presented in [1]. Lets consider the gener-
alized AE/ASE equation of motion,

M ẍ+Cẋ+K x−F u = X(z) (1)

where x(t) ∈ Rnx and u(t) ∈ Rnu. The addi-
tional signalz(t) ∈ Rnz is dimensioned such that
X : Rnz → Rnx, is in general a nonlinear mapping
of appropriate dimension. As shown in Figure
1, this model is now represented as a nonlinear
data-sampled feedback LFT,

yk = Fl [P,X(zk)]uk (2)

P =

[

P11 P12

P21 P22

]

(3)

whereP is the nominal plant andPi j , i, j = 1,2
are the transfer functions related to the input
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Fig. 1 Generic Nonlinear Feedback Framework.
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Fig. 2 LFT with Unmodeled DynamicX(x).

and output signals, respectively. These transfer
function matrices are functions of theM, C, K
andF matrices of the AE/ASE model described
by equation (1). Finally, the known and un-
known elements of the model are related through
a feedback interconnection by the discrete-time
signal wk = X(zk). In this setup the identifi-
cation procedure focuses on the case where the
signal zk is measured and can be inferred only
from the knowledge of the measured outputyk.
This means that measurements at the input of the
possible nonlinear dynamicX(xk) are accessible.
Lets consider that the complete state vector,xk, is
available from the measured output, i.e,xk ≡ yk,
then

xk = Fl (P,X(xk)) uk (4)

Consequently, we can express the relationship as,

xk = P11uk +X(xk) (5)

whereP11uk characterizes the linear component
of the measured output signalxk, and in what fol-
lows it is assumed thatP12 = I as shown in Fig-
ure 2. The key point is to visualize that the un-
modeled dynamic,X(xk), will give rise to a non-
linear operator which can be replaced with the
Hammerstein modelX(xk) = GN(xk) or a Wiener
Model X(vk), with the signalvk = Gxk, respec-
tively. This model presents a clearly visible block
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structure of a memoryless nonlinear gain and a
LTI system in cascade connection.

2.1 Nonlinear Aeroelastic Feedback System
Using Block-Oriented Models

The proposed interconnected nonlinear feedback
model shown in Figure 1 results in an exten-
sion of LFT models and it can be used to model
systems which exhibit hysteresis, limit cycles,
sub-harmonics, jump resonances and nonlinear
damping.

In this section we employedblock-oriented
models to augment existing linear models with
nonlinear operators derived by analyzing flight
data. They consist of the interconnection of a LTI
system with a memoryless nonlinearity. Several
combinations of these two elements are possible,
hence giving rise to a set of different models. A
model with a static nonlinearity at the input is
called a Hammerstein model and it can be associ-
ated with nonlinear actuators in the AE/ASE sys-
tem. A Wiener model is defined if the static non-
linearity is located at the output and this can be
the case if the AE/ASE system has sensors with
nonlinear behavior.

G

L

N(·)- - - -e

6
+

-

ūk wkzk ȳkek

yk

Fig. 3 Nonlinear LFT Modeling of ¯yk using a
Hammerstein Model.

Figures 3 and 4 show the nonlinear measured
response, ¯yk, as a result of adding the output,
yk, from the linearized discrete-time model,L(z),
with the error signal,ek, coming from a Hammer-
stein, or Wiener nonlinear models, respectively.
In addition, these figures show the input and out-
put signals related with the nominal plant,P, and
the nonlinearity,X(·), in the LFT representation
depicted in Figure 2. Specifically, the standard

G

L

N(·)- - - -e+
6

-

ūk wk = ekzk
ȳk

yk

Fig. 4 Nonlinear LFT Modeling of ¯yk using a
Wiener Model.

plantP, associated with the two nonlinear mod-
els introduced earlier is,

• Hammerstein Model,PH :

PH =

[

L G
I 0

]

(6)

• Wiener Model,PW:

PW =

[

L I
G 0

]

(7)

where the linear and nonlinear blocks are,

G(q) =
p−1

∑
l=0

blBl (q) (8)

N(·) =
r

∑
i=1

αig1(·) (9)

In the last set of equations,αi ∈ Rn×n, (i =
1, · · · , r), andbl ∈ Rm×n, (l = 0, · · · , p− 1) are
the unknown parameters for both blocks. The
signalszk andwk are incorporated in order to re-
late the nonlinearity to the nominal linear plant in
a feedback interconnection. By closing the lower
loop in Figure 2, the input-output behavior using
the previous nonlinear models –shown in Figures
3 and 4– are,

• LFT using a Hammerstein ModelPH :

ȳk = Fl [PH ,N(zk)] = (L+GN(zk)) ūk (10)

• LFT using a Wiener ModelPW:

ȳk = Fl [PW,N(zk)] = (L+N(zk)G) ūk (11)
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Central in the identification of block-oriented
nonlinear models is the use of thea-priori set
of orthonormal bases,{Bl(q)}

p−1
l=0 , in equation

(8) tuned with main dynamics of the plant. This
could be extracted from thea-priori linear model
P11 = L or from thea-posterioriexperimental ev-
idence, such as wind-tunnel, GVT or flight-test
data of the AE/ASE system.

3 Block-Oriented Nonlinear Identification

Nonlinearities in actuators and sensors can be
represented by the interconnection of static non-
linearities and LTI systems. For such plants, a
nonlinear system identification approach using a
set of tuned orthonormal basis functions is pro-
posed in this section.

3.1 Hammerstein Model Identification

Consider the multivariable Hammerstein nonlin-
ear model shown in Figure 5. The model consist
of a static nonlinearity,N(.),

N(·) =
r

∑
i=1

αigi(·) (12)

in series connection with a LTI system described
by its transfer function matrix,

G(q) =
p−1

∑
l=0

blBl (q) (13)

whereG(q) ∈ Hm×n
2 (T), andT denotes the unit

circle, T = {z ∈ C : ‖z‖ = 1}. In this case,
yk ∈ Rm, uk ∈ Rn, andηk ∈ Rm represent the sys-
tem output, input and measurement noise vectors
at timek, respectively. The input-output relation-
ship, shown in Figure 5, is then given by

yk = G(q)N(uk)+ηk (14)

Substituting Eqs (13) and (12) in (14), the input-
output relationship is written as,

yk =
p−1

∑
l=0

r

∑
i=1

blαiBl (q)gi(yk)+ηk (15)

G(q)N(·)- - - -e?

Static Map LTI System

uk vk yk

ηk

Fig. 5 MIMO Hammerstein Model.

As noted in reference [6] a unique parameter-
ization is obtained if the parameter matricesαi is
normalized, that is‖αi‖2 = 1. Lets now define,

θ △
= [b0α1, · · · ,b0αr , · · · ,bp−1α1, · · · ,bp−1αr ]

T (16)

φk
△
=

[

B0(q)gT
1 (yk), · · · ,B0(q)gT

r (yk), · · · ,

Bp−1(q)gT
1 (yk), · · · ,Bp−1(q)gT

r (yk)
]T

(17)

substituting Eqs (16) and (17) in (15), the latter
results in the regression form,

yk = θTφk +ηk (18)

Now, with the data set{uk,yk}
N
k=1 and defining

YN
△
=

[

yT
1 , · · · ,yT

N

]

, ΓN
△
=

[

ηT
1 , · · · ,ηT

N

]

andΦN
△
=

[φ1, · · · ,φN], we obtain,

YN = ΦT
Nθ+ΓN (19)

Using the least squares criterion, an estimate
θ̂ of θ is obtained as

θ̂ =
(

ΦNΦT
N

)−1 ΦNYN = Φ†
NYN (20)

if the inverse exists. DefiningΘab as

Θαb







αT
1 bT

0 · · · αT
1 bT

p−1
... · · ·

...
αT

r bT
0 · · · αT

r bT
p−1






= αbT (21)

with α △
= [α1, · · · ,αr ]

T , andb
△
=

[

bT
0 , · · · ,bT

p−1

]

,

the parameter matrix can be expressed as,θ =
blockvec(Θab). Then, an estimate of̂α andb̂ can
be obtained from the estimate ofΘ̂ab. The solu-
tion is given by solving the 2-norm minimization
problem,

(

α̂, b̂
)

= argmin
α,b

{

‖Θab−αbT‖2
2

}

(22)
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The following result provides the solution to this
optimization problem through the SVD of̂Θab,
[5]. Let Θ̂ab ∈ Rnr×mp have rankk > n, and let
its economy size SVD be partitioned as

Θ̂ab = UkΣkV
T
k =

s

∑
i=1

σiuiv
T
i

=
[

U1 U2
]

[

Σ1 0
0 Σ2

][

VT
1

VT
2

]

(23)

with U1 ∈ Rnr×n, V1 ∈ Rmp×n, and Σ1 =
diag(σ1,σ2, · · · ,σn). Then,

(

α̂, b̂
)

= argmin
α,b

‖Θ̂ab−αTb‖2
2 = (U1,V1Σ1)

(24)

3.2 Wiener Model Identification

A block scheme of a process with output nonlin-
earity in input-outputrepresentation is shown in
Figure 6, and it can be considered as a special
case of the Volterra series. In this figureyk ∈ Rm,
uk ∈ R

n, andηk ∈ R
m represent the system out-

put, input and process noise vectors at timek, re-
spectively. Lets now consider the multi-variable

G(z) N(·)- - -g+ -?

Static MapLTI System

uk vk yk

ηk

Fig. 6 Wiener Model Structure.

feedback nonlinear model which consist of a LTI
system described by equation (13). The nonlin-
ear functionN(·) : Rm → Rm is assumed to be
invertible and given by

N−1(yk) =
r

∑
i=1

αigi(yk) (25)

wheregi(·) : Rm → Rm, (i = 1, . . . , r), is the as-
sumed basis functions which typically turn out to
be a polynomial andαi ∈ Rm×m, (i = 1, . . . , r), is
the unknown matrix parameters. In what follows
it will be assumed thata1 = Im.

The Wiener model identification problem is
then to estimate the unknown parameter matri-
cesαi , (i = 1, . . . , r), andbl , (l = 0, . . . , p− 1)
characterizing the nonlinear and linear parts from
theN-point data record{uk, yk}

N
k=1 of observed

input-output measurements, [6].
In Figure 6 the intermediate variablevk can

be written as,

vk = G(q)uk +ηk (26)

in addition it can be expressed as,

vk = N−1(yk) (27)

By equating the RHS of both equations, and con-
sidering the parameterizations given by (13) and
(12),

g1(yk) = −
r

∑
i=2

αigi (yk)+
p−1

∑
l=0

bl Bl (q)uk +ηk

(28)
Now, lets define

θ △
= [α2,α3, · · · ,αr ,b0,b1, · · · ,bp−1]

T (29)

φk
△
=

[

−gT
2 (yk),−gT

3 (yk) · · · ,−gT
r (yk),

B0(q)uT
k , · · · ,Bp−1(q)uT

k

]T
(30)

and consequently (28) can be written in a linear
regression form as,

g1(yk) = θTφk +ηk (31)

By considering the data set{uk,yk}
N
k=1, and

defining

YN =
[

g1(y1)
T
, · · · ,g1(yN)T

]T

ΓN =
[

ηT
1 , · · · ,ηT

N

]T

ΦN =
[

φT
1 , · · · ,φT

N

]T

we obtain
YN = ΦT

Nθ+ΓN (32)

Using the least squares criterion, it is well known
that an estimatêθ of θ is obtained as

θ̂ =
(

ΦNΦT
N

)−1 ΦNYN = Φ†
NYN (33)
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Finally, the estimates parameterŝαi , (i =
2, · · · , r), andb̂l , (l = 0, · · · , p−1), results from
the proper partition of̂θ in equation (33), in ac-
cordance to its own definition in (29).

Finally, it must be noted that in equation
(13) we assume that the transfer function matrix
can be represented parametrically by a set of or-
thonormal basis functions{Bk (q)}

p−1
k=0 and this

set of functions are now obtained from a cascade
connection of two-parametersKautzfilters.

3.3 Orthonormal Function Set Generation
and Modal Parameter Estimation

In this section we propose a technique to tune the
LTI part in the Block-Oriented model setup with
the dynamic coming from elastic modes of the
linearized modelP11, using a high-fidelity soft-
ware package such asZAERO [13], or from some
identified linear dynamics using theN-point data
{uk,yk}

N
k=1.

A two-parameterKautzmodel is proposed to
generate the set of basis functions, [2]. Its min-
imal realization is defined asH j(z) = Cj(zI −
A j)

−1B j + D j , with the eigenvalues ofA j ly-
ing inside the unit circle. A filter isall-pass if
Hi(z)Hi(z−1) = 1 and it is said to be orthonormal
if its state-space realization(Ai,Bi ,Ci,Di) is input
normal. LetHKautz(b,c) be

HKautz(b,c) =
−cz2 +b(c−1)z+1

z2+b(c−1)z−c
(34)

with |b|< 1 and|c|< 1, respectively. In reference
[9] it was formalized that the series connection of
orthonormalall-passfilters transfer both proper-
ties to the resulting filter. Then, it is possible to
build a set of orthonormal basis functions from a
family of stableall-passfilters with input normal
realizations, that is

H(z) =
s

∏
j=1

H j(z) (35)

whose state space input normal realization results

H(z) = Cn(zI−A)−1Bn+Dn (36)

with p = ∑s
j=1n j .

Now, let x(t) =
(

xT
0 (t), · · · ,xT

s (t)
)T

, be the
state of the filterH(z), where each component,
x j adopts the formx j(t) =

(

x1, · · · ,xn j

)T
, for

j = 1, · · · ,s. Then the set of orthonormal basis
are defined by the transfer functions,Bk(q), from
the filter inputu(t), to each of the filter state com-
ponentsxk(t)k = 0, · · · , p−1,

xk(t) = Bk(q)u(t)

Bk(q) = ck(zI−An)
−1Bn (37)

with q being the forward shift:qu(t) = u(t + 1)
andck is thek-th Euclidean basis vector inRn.

Additionally, the set ofa-priori basis func-
tions used to describe the linear partG(q) in Eq.
(13) are tuned with the linear modal parameters
contained in the theN-data record of experimen-
tal evidence{uk,yk}

N
k=1. Hence, a multistage

eXogenous AutoRegressive Moving Average –
ARMAX– procedure is applied, [8]. This tech-
nique is based on the coefficients of the ARMAX
model that satisfy the maximum of the likelihood
function corresponding to the experimental evi-
dence. The first stage of the numerical algorithm
involves the estimation of a long eXogenous Au-
toRegressive model, ARX. In the second stage,
the coefficients of the ARMAX model are com-
puted iteratively from their ARX ones.

4 Case Study 1: Nonlinear Pitch-Plunge
Aeroelastic System

The selected case is a structurally nonlinear pro-
totypical two-dimensional wing section. The
nonlinearity included in the model is a memory-
less quadratic gain affecting the stiffness of the
pitch motion through the pitch rotation of the air-
foil, (kα2α2). The system parameters to be used
in this numerical simulations as well as the gen-
eral geometry of the aeroelastic model are given
in reference [7].

The aeroelastic system matricesM, K, C and
F are identical to those presented in reference [7].
In all considered cases the simulated measured
system output is the pitch angle,αk, – which is
corrupted with a zero-mean Gaussian distributed
white noise with standard deviationσ = 0.01 –
and the system input is the flap deflection,βk.
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HAMMERSTEIN MODEL X(.)

NONLINEAR DYNAMICS
(Noisy Measured Output)

η

y

Linear Model
(ka = 2.26 or 2.82)

Identified N(.) Identified G

Accurate Lineal
Model, (ka = 2.82)

Quadratic 
Nonlinearity

Flap 
Amplitude

Chirp Signal
0 to 2.5 Hz
 in 32sec

y
k

_

k ek

uk
k

êk

−K−

standard
deviation

Linear_Dynamics

Nonlinear_Model

Error_Signal

Input_Signal Nonlinear_Dynamics

ka2*u^2

f(u) x’ = Ax+Bu
 y = Cx+Du

−10 x’ = Ax+Bu
 y = Cx+Du

x’ = Ax+Bu
 y = Cx+Du

Fig. 7 Flowchart for theX(·) Estimation.

In what follows a noisy error signal,ek, is
defined as the difference between the measured
signal, yk, (nonlinear dynamics), and the simu-
lated linear part of the model,yk = P11uk. The
proposed nonlinear identification algorithm was
employed to identify the unmodeled dynamics,
from aN-point data of the noisy error signal,ek,
using a sampling frequency of 1000Hz. In con-
nection with the linear portion of the model,P11,
an explicit modeling error is incorporated by an
inaccurate value of the pitch stiffness,kα. Hence,
an accurate linear model results when the nom-
inal pitch stiffness equal tokα = 2.82 is used,
while the inaccurate lineal model is defined by
kα = 2.26.

Figure 7 shows the flowchart model used to
generate the simulated pitch deflection signal,
yk ≡ αk, (nonlinear dynamics) as well as the re-
sponse from the nonlinear model. It is clearly
visible that the signal used to drive the Hammer-
stein modelX(·) is the measured pitch,αk, and
that the output of this system is the error estima-
tion êk of ek . The lineal model used in this case is
an inaccurate one, (i.e,kα = 2.26) and its output
is denoted byyk. The nonlinear model response
is finally obtained when the estimation error ˆek

is added toyk. Additionally, all simulation data
needed in the nonlinear identification algorithm
is saved through the denoted variables within the
yellow boxes. Figure 8(a) shows in blue the non-
linear dynamic signal,yk, altogether with the re-
sponse of the inaccurate linear model,yk, in red.

The difference between both signals,ek =
yk − yk, is plotted in blue in Figure 8(b). From
the dynamic ofP11, two all-passKautz filters are

0 5 10 15 20 25 30
−6
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4

6

 Time (s)
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itc

h 
(d
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 Nonlinear Dynamic + Noise
Linear Model 

(a) Response of Noisy Nonlinear Dynamicsyk and Inac-
curate Linear Systemyk.
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(b) Difference in Measurements from Noisy Nonlinear
Dynamics and Inaccurate Lineal model, blue:ek = yk−
yk, red: êk.
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0
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(c) Identified Quadratic Nonlinearity, N(uk) =
−0.9155uk−0.4022u2

k.

Fig. 8 Pitch-Plunge Aeroelastic System

7



DARIO H. BALDELLI †, RICK LIND ‡ , MARTY BRENNER §

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

 Time (s)

 P
itc

h 
(d

eg
)

 Nonlinear Dynamic + Noise
Linear Model + Identified Hammerstein Model

Fig. 9 Response of Noisy Nonlinear Dynamics
yk and Nonlinear Modelyk + êk.

used to generate the required four basis function
set{Bk(q)}3

k=0. These are,

Bk(q) =











0.9998 0.0166 0 0 0
−0.0166 0.9964 0 0 0.0831

0 0 0.9999 0.0067 0
0.0001 0.0065 −0.0067 0.9969 0.0781

ck 0











(38)

whereck = [0 1 0 0] with 1 in positionk (k-
th Eucledian basis vector inR4). The nonlinear
identification algorithm is now used to compute
the parameter vectorŝα andb̂ defined in equation
(21). The estimated̂bk coefficients for this case
are: b̂0 = 3.048× 10−3, b̂1 = −2.6553× 10−3,
b̂2 = 1.7607×10−3 andb̂3 = 2.9988×10−3, re-
spectively.

Figure 8(b) shows in red the time trace of the
output signal coming from the identified Ham-
merstein model̂X(·). A good agreement between
ek andêk is obtained and it is almost impossible
to distinguish one from the other. The identified
quadratic map̂N(·) is depicted in Figure 8(c) and
its identified coefficients arêα1 = −0.9155 and
α̂2 = −0.4022. The inaccuracy of the known lin-
ear model,P11, results in a noticeable displace-
ment of the nonlinear map’s origin from zero to-
wards the left hand plane. This can be easily ex-
plained in terms of the magnitude of the estimate

coefficientα̂1. The large magnitude of it clearly
indicates that the assumed linear model,P11, is a
poor representation of the true linear dynamics.
In other words, the estimated memoryless gain is
trying to cover the undermodeling linear dynam-
ics with a strong linear term coefficient,α̂1.

Finally, Figure 9 presents in blue the time
trace of the noisy simulated pitch response,yk,
and in red the output from the identified Hammer-
stein model,yk. Note that, besides the inaccurate
lineal model used to generate the basis function
set {Bk(q)}3

k=0, the nonlinear identification ap-
proach is able to reproduce with good fidelity the
nonlinear behavior embedded in the output data,
yk.

5 Case Study 2: F/A-18 AAW GVT Data
Analysis

Ground vibration tests (GVT) were performed
on the F/A-18 AAW aircraft to assess the struc-
tural characteristics of the modified airframe dur-
ing the Phase I Flight Research, [12]. This sub-
section deals with the case of the F/A-18 AAW–
ASE LTI model update by incorporating the un-
modeled dynamics using a Wiener model com-
puted from the acceleration error signal. This
signal is defined as the difference between the
measured GVT data –nz100– and the predicted re-
sponse coming from the ASE LTI model,Nz. As
shown in Figure 2, this update process is repre-
sented as a nonlinear feedback Linear Fractional
Transformation LFT between the ASE model de-
noted byP and the unmodeled dynamic,X(·).
The latter is replaced by the estimated Wiener
model. Figure 10 shows in blue the measured
acceleration response,nz100, altogether with the
ASE model response,Nz, in red. The unmod-
eled dynamic used to estimate the Wiener model
is computed from these time traces.

Six natural frequencies and damping ratios
computed from the vertical GVT data using an
ARMAX(22,21,22) model in the multistage pro-
cess – with an initial ARX model of order 60 –
are presented in Table 1. These modal parame-
ters are used to tune the poles of thea-priori set
of orthonormal basis functions,{Bl(q)}5

l=0, built
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Fig. 10 F-18 AAW / GVT Measured and Analyt-
ical Linear Vertical Acceleration

through a series connection of two-parameter
Kautzfilters.

Table 1 F/A-18 AAW – Modal Parameters Iden-
tified from Unmodeled Vertical Dynamics

Mode
Natural Frequency

fi − [Hz]
Damping Ratio

ζi

# 1 6.3079 1.4143×10−2

# 2 9.6777 3.6278×10−2

# 3 13.7698 3.2878×10−2

# 4 15.8485 4.0317×10−2

# 5 18.3387 1.3807×10−2

# 6 20.6243 2.1379×10−2

The predicted response from the Wiener
model is shown in red in Figure 11(a) and is
shown to compare quite closely with the unmod-
eled vertical signal (blue). The identified Wiener
model is built with a LTI block of order 12,
followed by a polynomial nonlinearity of order
17. The identification error is depicted in Fig-
ure 11(b). Its behavior is assumed to be linked
with the measurement noise present in the GVT
data. Figure 11(c) shows the identified memory-
less nonlinearity from the 17th order polynomial.
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(a) GVT Measured and Identified Vertical Unmodeled
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Fig. 11 F-18 AAW / GVT Measured and Identi-
fied Vertical Unmodeled Acceleration

9



DARIO H. BALDELLI †, RICK LIND ‡ , MARTY BRENNER §

6 Conclusions

In this paper we consider the identification of
block-oriented models of AE/ASE dynamics. In
particular, the approach sought to augment ex-
isting linear models with nonlinear operators de-
rived by analyzing test data. Such an approach
is warranted because commercial packages, such
asZAERO, are currently able to generate linear
models with high levels of accuracy. Thus, these
models would be suitable for analyzing aeroe-
lasticity/aeroservoelasticity if the unknown non-
linearities could be included. Knowledge of the
physics behind these nonlinearities is not yet ma-
ture so using flight data to identify the nonlin-
earities is the best approach. Furthermore, if the
identified nonlinearity can be replaced by its Sin-
gle Input Describing Function (SIDF), the result-
ing models can be used to compute robust sta-
bility margins using theµ-method that would re-
flects both flutter and LCO instabilities regions of
the flight envelope.
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