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Abstract

In this work, a robust and efficient approach to
the multiobjective constrained design, previously
developed by the authors, is extended to opti-
mization of 3D aerodynamic wings. The ob-
jective is to minimize the total drag at fixed
lift subject to various geometrical and aero-
dynamical constraints. The approach employs
Genetic Algorithms (GAs) as an optimization
tool in combination with a Reduced-Order Mod-
els (ROM) method, based on linked local data
bases obtained by full Navier-Stokes computa-
tions. The work focuses on the following issues:
geometrical representation of three-dimensional
shapes, handling of sensitive non-linear con-
straints such as pitching moment, and the influ-
ence of flight conditions on the results of opti-
mization. The method, implemented in the com-
puter code OPTIMAS (OPTIMization of Aero-
dynamic Shapes), was applied to the problem of
multipoint transonic three-dimensional wing op-
timization with nonlinear constraints. The re-
sults include a variety of optimization cases for
two wings: a classical test case of ONERA M6
wing and a generic cranked transport-type wing.
For the investigated class of problems, significant
aerodynamic gains have been obtained. It was
demonstrated that the method retains high robust-
ness of conventional GAs while keeping CFD
computational volume to an acceptable level,
which allowed the algorithm to be used in a de-
manding engineering environment.

1 Introduction

The pivotal role of advanced aerodynamic design
in the process of reducing costs of aircraft manu-
facturing prompts a demand for efficient and ro-
bust aerodynamic optimization.

A traditional process of aerodynamic design
has been carried out by trial and error which rely
on the intuition and experience of designers. It
is not at all likely that such interective analysis
procedures will lead to a truly optimal design. In
order to efficiently examine a large design space,
the numerical simulations are to be combined
with automatic search tools. This can lead to
computer-aided design methods which will ex-
ploit a remarkable gain in simulation capabili-
ties achieved by CFD and thus will fully realize
the potential improvements in aerodynamic effi-
ciency.

In [1]-[2] an efficient and robust algorithm
for optimization of 2D aerodynamic shapes was
suggested. The important features of the method
included a new strategy for efficient handling of
nonlinear constraints in the framework of GAs,
scanning of the optimization search space by a
combination of full Navier-Stokes computations
with the ROM method, and a multilevel par-
allelization of the whole computational frame-
work which efficiently makes use of computa-
tional power supplied by massively parallel pro-
cessors (MPP).

The main objective of the present research is
to extend the method to optimization of three-
dimensional configurations and to create an effi-
cient tool of industrial aerodynamic design which
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will allow to reduce overall cost of the aircraft de-
sign and analysis.

The work focuses on the following issues:
geometrical representation of three-dimensional
shapes, handling of sensitive non-linear con-
straints such as pitching moment and the influ-
ence of flight conditions on the results of opti-
mization.

It must be underlined that compared to 2D
optimization, the requirements for the three-
dimensional computational tools involved in the
optimization process are much higher.

First, the problem of global geometrical rep-
resentation of 3D aerodynamic shapes is much
more tricky (even for 3D wings) and, in gen-
eral, still remains open. Second, the con-
struction of a reliable 3D CFD solver, suitable
for optimization in terms of accuracy and ro-
bustness, is much more complicated. Third,
the three-dimensional optimization necessitates
high-dimensional search spaces which makes the
optimal search essentially more difficult, espe-
cially in the presence of non-linear constraints.
Finally, in view of the huge overall computa-
tional volume needed for optimization, stringent
requirements should be placed upon the compu-
tational efficiency of the whole method.

The developed 3D tool (code OPTIMAS) in-
corporates the state-of-the-art CFD software and
innovative optimization algorithms into the core
of the aerodynamic design and can be used for
practical design of aerodynamic shapes.

A CFD solver which drives the optimiza-
tion process must possess high accuracy of the
Navier-Stokes computations on relatively coarse
grids, high robustness for a wide range of flows
and geometrical configurations and fast compu-
tational feedback.

The full Navier-Stokes code NES [3]-[4] sat-
isfies the first two requirements. This was re-
cently confirmed by computations performed in
the framework of the 2nd Drag Prediction Work-
shop [5]. In these computations two complex
3D geometries were tested: DLR F6 wing-body
configuration and DLR F6 wing-body-nacelle-
pylon configuration. The results by the code NES
demonstrated high accuracy of drag prediction

(within 4-5 counts) in the whole range of flight
conditions. Note, that the prediction accuracy of
component drag increments (with nacelle on and
off) was even higher. This is indicative of the
code suitability as a CFD driver of optimization
process.

In order to satisfy the requirement of fast
computational feedback, the optimization search
space is scanned by using the Reduced-Order
Models (ROM) approach in the form of Local
Approximation Method (LAM), based on local
data bases obtained by full Navier-Stokes com-
putations (which dramatically reduces the overall
volume of computational work).

Optimization problems in aeronautics neces-
saraly include constraints in their formulation.
Unfortunately the presence of constraints signifi-
cantly decreases the performance and the compu-
tational efficiency of classical optimization meth-
ods. The reason for this lies in the fact that the
calculation of derivatives of the objective func-
tion in the vicinity of the constraints boundary is
an ill-posed problem which can not be resolved
by conventional methods.

The situation is especially troublesome in
the case of constraints imposed on aerodynamic
characteristics (such as pitching moment). The
point is that the feasibility of the current geom-
etry (in the context of the above constraints) can
be tested only “a posteriori”, that is, only through
the full CFD run. This means that, in the case
of a negative answer (infeasible geometry), the
corresponding CFD run is wasted, and the over-
all computational efficiency of the optimization
algorithm is essentially decreased.

In order to create a robust and computation-
ally efficient method for solution of the consid-
ered optimization problem, Genetic Algorithms
(optimization methods based on coupling deter-
ministic and probabilistic strategies in search of
optimum) were employed. A specific feature
of the new approach consists of the change in
the conventional search strategy by employing
search paths which pass via both feasible and
infeasible points (contrary to the traditional ap-
proach, where only feasible points may be in-
cluded in a path).
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The problem of optimization of aerodynamic
shapes is very time-consuming as it requires a
huge amount of computational work. Each op-
timization step requires a number of heavy CFD
runs, and a large number of such steps is needed
to reach the optimum. Thus the construction of
a computationally efficient algorithm is vital for
the success of the method in engineering environ-
ment.

To achieve this goal a multilevel paralleliza-
tion strategy was used. It includes parallelization
of the multiblock full Navier-Stokes solver, par-
allel evaluation of an objective function and, fi-
nally, parallelization of the optimization frame-
work.

The method was applied to the problem of
multipoint transonic three-dimensional wing op-
timization with nonlinear constraints. The results
include a variety of optimization cases for two
wings: a classical test case of ONERA M6 wing
and a cranked transport-type wing. For the in-
vestigated class of problems, significant aerody-
namic gains have been obtained. It was demon-
strated that the method retains high robustness of
conventional GAs while keeping CFD computa-
tional volume to an acceptable level. A signif-
icant computational time-saving (in comparison
with optimization tools fully based on Navier-
Stokes computations) allowed the algorithm to be
used in a demanding engineering environment.

The paper has the following structure. The
problem statement is given in Section 2. In Sec-
tion 3 a general description of the optmization al-
gorithm is outlined. A method of improving the
overall computational efficiency of the optimiza-
tion algorithm through the multilevel paralleliza-
tion is presented in Section 4. Results of opti-
mization are given and analyzed in Section 5.

2 Statement of the Problem

In this section the transonic flow multipoint drag
minimization problem is considered. In the case
of the single-point optimization problem, the ob-
jective is to minimize the cost function Q (total
drag coefficient CD) of a 3D wing subject to the
following classes of constraints:

1) Aerodynamic constraints such as pre-
scribed constant total lift coefficient C

�
L and max-

imum allowed pithching moment C
�
M.

CL
� C

�
L � CM

�
C

�
M (1)

2) Geometrical constraints on the shape of the
wing surface in terms of properties of sectional
airfoils - relative thickness � t � c � i, relative radius
of leading edge � R � c � i, trailing edge angle θi:

� t � c � i
� � t � c � �

i � � R � c � i
� � R � c � �

i � θi
� θ

�
i
(2)

where i � 1 � ... � Nws (Nws - the number of sectional
airfolis) and values � t � c � �

i , θ
�
i , � R � c � �

i , C
�
L and C

�
M

are prescribed parameters of the problem.
The single-point design must be analyzed

over a range of Mach numbers and lift coeffi-
cients. In order to ensure the adequacy of the
off-design performance, the multipoint optimiza-
tion is needed where the objective function is a
weighted combination of single-point cost func-
tions:

Q � j � Np

∑
j � 1

w jC
j
D �

j � Np

∑
j � 1

w j
� 1 (3)

where w j are non-negative weight coefficients,
Np is the number of design points.

The aerodynamic coefficients CD, CL and CM

are estimated through full Navier-Stokes solu-
tions by means of a multiblock code NES [3]-[4].

The code which employs structured point-to-
point matched grids, is based on the Essentially
Non-Oscillatory (ENO) concept [6] with a flux
interpolation technique [7]. The algorithm is im-
plemented in the physical space by the finite vol-
ume method on grids which are defined as a set of
vertices, and it is applicable to reasonably smooth
computational meshes which are not necessarily
defined by mapping functions.

Non-linear stability is maintained via approx-
imation of inviscid fluxes on a variable template
according to local characteristics and smoothness
of the fluxes; viscous fluxes are approximated
in a straightforward way. An ENO interpolation
template (typically consisting of 3 points on the
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finest multigrid level) is determined separately
for each characteristic field, primarily according
to the sign of the corresponding eigenvalue, and
then according to the smoothness of fluxes.

The code allows to attain high accuracy
Navier-Stokes solutions on relatively coarse
grids, and it is highly robust for a wide range
of flows and geometrical configurations. The
high performance of NES was systematically
demonstrated by testing it in a wide range of
aerodynamic configurations of different com-
plexity: from one-element 2D airfoils (such as
NACA0012, RAE2822) through ONERA M6
wing, transport-type supercritical wings, ARA
M100 wing-body up to DLR F6 wing-body-
nacelle-pylon configuration [3],[5].

The optimization technique employed Ge-
netic Algorithms (GAs) in combination with a
Reduced-Order Models (ROM) method based on
local data bases obtained by full Navier-Stokes
computations. The novel features of the present
multipoint optimization method include a new
strategy for efficient handling of nonlinear con-
straints in the framework of GAs, a method of
scanning of the optimization search space by a
combination of full Navier-Stokes computations
with the ROM method and multilevel paralleliza-
tion of the whole computational framework.

3 Description of the Optimization Algorithm

3.1 Genetic Algorithms for Constrained Op-
timization Problems

The Genetic Algorithms (GAs) are semi-
stochastic semi-deterministic optimization meth-
ods based on an analogy to the theory of evolu-
tion. The problem to be optimized is parameter-
ized into a set of decision variables (or genes).
Each set of variables (a point in the search space)
that fully defines one design is called an individ-
ual. A set of individuals is called a population (or
a generation). Each individual is evaluated using
a fitness (objective) function that determines sur-
vivability of that individual. In aerospace appli-
cations the variables may be a series of geomet-
rical parameters associated with an aerodynamic

configuration.
During solution advance (or evolution of gen-

erations) each individual is ranked according to
its fitness. The population is treated with genetic
operators: selection, crossover and mutation. All
these operations include randomness. The prob-
ability of survival of new individuals depends on
their fitness: the best are kept with a high proba-
bility, the worst are rapidly discarded.

As a basic algorithm, a variant of the floating-
point GA is used [1]. The optimization method
resulted in the following pseudo-code:

t � 0
initpopulation P � t �
while not converged do
P

� � t � : = selectparents P � t �
recombine P

� � t �
mutate P

� � t �
evaluate P

� � t � : P � t � 1 � : � P
� � t ��� best � P �

t : � t � 1
enddo
Unfortunately, in their basic form, Genetic

Algorithms are not capable of handling constraint
functions limiting the set of feasible solutions. To
resolve this, a new approach was proposed in [1].
For the sake of completeness, it is briefly outlined
below. More details may be found in [1].

Basically the new approach can be outlined
as follows:

1. Change of the conventional search strategy
by employing search paths which pass through
both feasible and infeasible points (instead of the
traditional approach where only feasible points
may be included in a path).

2. To implement the new strategy, it is pro-
posed to extend the search space. This requires
the evaluation (in terms of fitness) of the points,
which do not satisfy the constraints imposed by
the optimization problem. A needed extension of
an objective function may be easily implemented
in the framework of GAs due to their basic prop-
erty: contrary to classical optimization methods,
GAs are not confined to only smooth extensions.

3. The extension should comply with two ba-
sic requirements: a) each feasible point is certain
to be better (in terms of fitness) than any infea-
sible point and b) the objective function in in-
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feasible regions should be defined in such a way
that it keeps in the current population a sufficient
number of infeasible individuals, located close
to the constraints boundary. In such a case we
can expect, with a rather high probability, that
the crossover between feasible and infeasible in-
dividuals will produce high-fitness children.

3.2 Global Geometrical Representation of
3D Wing

An optimization process can be described as a
path in the search space, the points of which rep-
resent different geometries. Thus the choice of an
appropriate search space is of crucial importance.

The main difficulty of such a choice is that the
requirements for the search space are completely
contradictory.

On the one hand the search space should in-
clude a wide spectrum of shapes in order to be
sufficiently representative. This means that any
geometrical shape feasible from the engineering
viewpoint, must be represented (with sufficient
accuracy) by a point in the above search space.

On the other hand, the complexity of optimal
search grows exponentially concurrently with the
search space dimensions. Thus, in order to ensure
a successful and efficient search, a total number
of parameters should not be too high.

In engineering practice, an aerodynamic sur-
face is described in a local way by a set of dis-
crete points. A total amount of the points varies
from tens of thousand (for a simple wing) to mil-
lions (for a wing-body-nacelle configuration). As
just explained, the search space of such dimen-
sions is totally unacceptable.

Hence, a global representation of aerody-
namic surfaces (which is based on a limited num-
ber of parameters and ensures sufficient represen-
tativeness) is needed. Note, that in the general
case the above problem remains open.

Nevertheless, for a specific class of aerody-
namic surfaces such as 3D wings, the global ge-
ometrical representation of the wing shape from
the root section up to the tip region, is available.

In this work it is assumed that:
1) The geometry is described by the absolute

Cartesian coordinate system � x � y � z � , where the
axes x, y and z are directed along the streamwise,
normal to wing surface and span directions, re-
spectively.

2) Wing planform is fixed.
3) Wing surface is generated by a linear inter-

polation (in the span direction) between sectional
2D airfoils.

4) The number of sectional airfoils Nws is
fixed.

5) Shape of sectional airfoils is determined
by Bezier Splines. In the absolute coordinate
system, the location of the above profiles is de-
fined by the corresponding span positions of the
trailing edge on the wing planform, twist angles
{αtw

i } and dihedral values {γdh
i } (relatively to the

root section).
The wing planform is defined by the follow-

ing parameters: the chord length at the root sec-
tion c1, span location of the wing sections {zi

�
and the corresponding leading and trailing edge
sweep angles ({λle

i } and {λtr
i }).

For each wing section, the non-dimensional
shape of the airfoil (scaled by the correspond-
ing chord) is defined in a local Cartesian coor-
dinate system � x̄ � ȳ � in the following way. The
coordinates of the leading edge and trailing edge
of the profile were respectively � 0 � 0 � and � 1 � 0 � .
For approximation of the upper and lower airfoil
surface, Bezier Spline representation was used.
A Bezier curve of order N is defined by the
Bernstein polynomials BN � i (Ci

N - binomial coef-
ficients)

�
Gk � t � � N

∑
i � 0

BN � i
�
Pk

i � BN � i � Ci
Nt i � 1 � t � N � i �

(4)

Ci
N

� N!
i! � N � i � !

where t denotes the curve parameter taking val-
ues in � 0 � 1 � ,

�
Pk

i are the control points and su-
perscript k � u � l corresponds to upper and lower
surfaces of profile. So, as it is seen from (4),
the Bezier curve is completely determined by the
Cartesian coordinates of the control points.

For the considered optimization problem the
first

�
Pk

0
� � 0 � 0 � and the last

�
Pk

N
� � 1 � 0 � (k � u � l)
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points are set just fixing the position of leading
and trailing edges. We also fix all the abscisses xk

i
of the control points

�
Pk

1 , ...,
�
Pk

N � 1. We set xk
1

� 0
in order to ensure that the upper and lower sur-
faces of the profile to be tangent to the y axes at
the leading edge. Finally, assuming the continu-
ity of the airfoil curvature at the leading edge we
obtain the additional relation yu

1
� � yl

1.
Thus, the shape of a sectional profile is com-

pletely determined by a total of 2N � 5 parame-
ters � a1 � a2 ������� � aN � 1 � aN ������� � a2N � 5 � :

a j
� yu

j � 1
�

j
� � N � 1 �

a j
� yl

j � N � 2 � N
�

j
� � 2N � 5 �

In order to fully specify the wing shape it is
necessary to set locations of the 2D sectional air-
foils, in addition to their shapes. Assuming that
the chord value and trailing edge location are de-
fined by the wing planform, the sectional loca-
tions are specified by means of two additional pa-
rameters per section: twist angle {αtw

i } and dihe-
dral value {γdh

i }. Note that for the root section
these values are set to zero.

Thus, the dimensions ND of the search space
are equal to:

ND
� Nws � � 2N � 5 � � 2 � � Nws � 1 �

and a search string S contains ND floating point
variables a j ( j � 1 ������� � ND). The string com-
ponents are varied within the search domain D.
The domain D is determined by values Min j and
Max j, which are the lower and upper bounds of
the variable a j.

Based on the above described approach to the
constraints handling, the modified objective func-
tion Q for the solution of drag minimization prob-
lem was defined as follows:

Q �

�						
 						�

0 � 1 � � � t � c � �
i � � t � c � i � if � t � c � i � � t � c � �

i
0 � 15 � � C �

M � CM � if CM � C
�
M

0 � 2 � � R �
i � Ri � if Ri � R

�
i

0 � 3 � � θ �
i � θi � if θi � θ

�
i

0 � 5 if yu
i � t � � yl

i � t �
CD otherwise

(5)
where each condition is tested independently for
all sectional airfoils (i � 1 ������� � Nws). In the case

of multipoint optimization the value of CD repre-
sents a weighted combination of total drag values
at the flight points participating in optimization.

One of key difficulties in the implementation
of optimization algorithms is due to the fact that,
roughly speaking, each CFD run requires a differ-
ent geometry and, therefore, the construction of a
new computational grid. For novel complex ge-
ometries, meshes are generally constructed man-
ually which is very time-consuming.

In order to overcome this obstacle and to
maintain the continuity of optimization stream,
we suggest to make use of topological similar-
ity of geometrical configurations (involved in the
optimization process), and to build the grids by
means of a fast automatic transformation of the
initial grid which corresponds to the starting ba-
sic geometry.

The above fast transformation of grids was
implemented in the following way. First of all,
the wing surface was divided into two parts: the
wing proper (zroot

�
z

�
ztip) and the tip region

(z  ztip), where zroot and ztip are the span loca-
tions of the root and tip wing sections, respec-
tively.

The transformation of the wing surface in-
cludes three stages. Assume that the grid pos-
sesses i � j � k structure with the coordinate plane
j � 0 representing the grid points lying on the
wing surface. Denote ∆ri � 0 � k the change in the
geometry of the wing surface at a grid point with
indices � i � 0 � k � . For the inner part of the wing
(the first part), ∆ri � 0 � k represent the differences
between the current geometry and the basic grid.
For the tip region (the second part), ∆ri � 0 � k are de-
termined in a way which ensures a smooth con-
jugation of both parts.

At the first stage, the coordinates rnew
i � j � k of the

new grid are obtained by propagation of the shift
∆ri � 0 � k along the grid line i � const, k � const:

rnew
i � j � k � rinitial

i � j � k � ∆ri � 0 � k

At the second stage, the twist transformation
is performed. For each grid point, z coordinate is
fixed, while x and y coordinates are modified in
accordance with the value of twist angle obtained
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by the linear interpolation from the near-by wing
sections.

Finally, the dihedral transformation is ap-
plied. Here x and z coordinates are fixed, while
y coordinate is shifted in accordance with the in-
terpolated value of dihedral.

3.3 Approximation of Objective Function
by ROM-LAM method

One of the main weaknesses of GAs lies in their
poor computational efficiency. This prevents
their practical use in the case where the evalua-
tion of the cost function is computationally ex-
pensive as is the case for the full Navier-Stokes
model.

For example, an algorithm with the popula-
tion size M � 100 requires (for the case of 200
generations) at least 20000 evaluations of the cost
function (CFD solutions). A fast full Navier-
Stokes evaluation over a 3D wing takes at least
a 10-15 minutes of CPU time. That means that
one step of such an algorithm takes about 3500-
4000 hours, which is practically unacceptable.

In order to overcome this, we introduce an
intermediate “computational agent” - a compu-
tational tool which, on the one hand is based on
a very limited number of exact evaluations of ob-
jective function and, on the other hand provides a
fast and reasonably accurate computational feed-
back in the framework of GAs search.

We construct the computational agent by
means of a Reduced-Order Models (ROM) ap-
proach. Among others, this approach includes
the use of simpler gas-dynamic models [14], rep-
resentation of the solution of gas-dynamic prob-
lem in terms of its eigenmodes [15] and aerody-
namic analysis based on the Volterra theory of
nonlinear systems [16].

In this work we use Reduced-Order Models
approach in the form of Local Approximation
Method (LAM). With the ROM-LAM method,
the solution functionals which determine a cost
function and aerodynamic constraints (such as
pitching moment, lift and drag coefficients), are
approximated by a local data base. The data
base is obtained by solving the full Navier-Stokes

equations in a discrete neighbourhood of a basic
point positioned in the search space.

So on the one hand, the number of exact es-
timations of the objective function (full Navier-
Stokes solutions) is proportional to the dimen-
sions of the search space. On the other hand,
the computational volume required to provide ap-
proximate estimates of the objective function in
the framework of GAs optimum search, is negli-
gible.

Thus the above mentioned requirements to
the computational agent, related to its computa-
tional efficiency, are fulfilled. However, due to
the approximate nature of the approach, an addi-
tional effort should be made in order to ensure the
accuracy and robustness of the method.

To reach this goal a multidomain prediction-
verification principle is employed. That is, on
the prediction stage the genetic optimum search
is concurrently performed on a number of search
domains. Each domain produces an optimal
point, and the whole set of these points is ver-
ified (through full Navier-Stokes computations)
on the verification stage of the method, and thus
the final optimal point is determined.

Besides, in order to ensure the global charac-
ter of the search, it is necessary to overcome the
local nature of the above approximation. For this
purpose, iterations are performed in such a way
that, in each iteration, the result of the optimiza-
tion serves as an initial point for the next iteration
step (further referred to as optimization step).

The specific algorithm is described below.
Denote x � � an

1 � an
2 ������� � an

ND � αn � a point in the
search space, where an

j specify an initial wing

shape at nth optimization step, and αn is the an-
gle of attack, corresponding to the prescribed C

�
L,

respectively. Then each wing shape can be deter-
mined by deviations δn

j from the coefficients of
the initial wing. At fixed values of other flow pa-
rameters, the solution functionals depend on the
values of δn

j and δn
α (the deviation from the ini-

tial angle of attack). In the optimization process
the following local approximation of a functional
Fn is used (subscript n is omitted and F � CL � CD
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and CM):

F � a1 � δ1 ������� � aND � δND � α � δα � �

� F � �
ND

∑
j � 1

∆Fj � ∆Fα (6)

Here F � is the functional value at the ba-
sic point, and the values ∆Fj ( j � 1 ������� � ND) and
∆Fα are determined by means of a mixed linear-
quadratic approximation which employs the lo-
cal data-base. One-dimensionally, we use either
the one-sided linear approximation (in the case of
monotonic behaviour of the solution functionals)
or the quadratic approximation (otherwise).

The needed local data base values are ob-
tained by solving the full Navier-Stokes equa-
tions at the corresponding neighbouring points of
the basic point in the search space. These neigh-
bouring points are determined by variations

�
∆ j

�
corresponding to the coefficients

�
a j

�
and by the

variation ∆α of the angle of attack α.

3.4 General Sketch of the Algorithm

Finally, the optimization algorithm can be pre-
sented by the following pseudo-code:

opt_step � 0
Determine_Initial_Basic_Point
while not converged do
Calc_Local_Data_Base
Search_Optim_Candidates
Verification_Optim_Cand
Choose_New_Basic_Point
opt_step : � opt_step � 1
enddo
At the step Determine_Initial_Basic_Point,

geometrical parameters which specify an initial
wing shape (the initial basic point in the search
space) are determined.

At the step Calc_Local_Data_Base, the CFD
local data base for CL, CM and CD is obtained
by solving the full Navier-Stokes equations at
the neighbouring points of the basic point in the
search space. The local CFD data base is in-
cluded in the global CFD data base.

Genetic Algorithm is applied to var-
ious search domains Dk (corresponding

to different search scales) at the step
Search_Optim_Candidates. Thus, the opti-
mal points Ok for each domain are obtained
(k � 1 ������� � NS, NS is the number of the search
domains).

The full Navier-Stokes solver is applied to
each optimal point Ok at the step Verifica-
tion_Optim_Cand, and the corresponding data
are added to the global CFD data base.

At the final step of the loop
(Choose_New_Basic_Point), a new basic
point is determined as the best point in the global
CFD data base.

As it is seen from the above pseudo-code,
the optimization algorithm includes a number of
markedly different sub-algorithms. In particular,
the sub-algorithms dealing with CFD computa-
tions and with genetic optimization search, may
be mentioned. As it usually happens in prac-
tice, such sub-algorithms are not created from
scratch, but, instead, are based on already exist-
ing computational core software (which is much
less expensive). Moreover, the basic core codes
may be written in different programming lan-
guages. For example, in our case, the CFD
sub-algorithms (employing the core code NES
[4],[8]) were written in the C language, while the
GAs sub-algorithms employ FORTRAN-77.

In order to resolve the difficulties due to this
heterogeneity and to ensure the correct interac-
tion between different parts of the pseudo-code,
we drive the overall optimization algorithm by
means of a control code, which monitors the al-
gorithmic flow stream. The control code was
written in the C language which facilitates the in-
terconnection of computational and system soft-
ware and thus increases the ability of manag-
ing different executable codes and system calls.
Note, that the modular approach also ensures a
flexible upgrade of the objects included into the
algorithm.

An additional important issue is the fault-
tolerance of the whole computational procedure.
It is mainly related to the fact that the opti-
mization process neccessitates massive CFD runs
(numbered in hundreds) which statistically in-
creases the probability that one of the CFD pro-
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cesses fails. The failure probability is addition-
ally increased if the computations are performed
on massively parallel processors (also numbered
in hundreds).

To overcome this, the control code monitors
all the CFD runs and, in the case of a system fail,
excludes the corresponding point from the global
data base and restores the continuity of the op-
timization stream. On the whole, due to the ro-
bustness of the algorithm, this happens extremely
seldom.

4 Computational Efficiency of the Algorithm

Aerodynamic optimization of 3D shapes is an ex-
ample of a highly challenging integral problem.
To solve it we need to resolve a number of non-
trivial partial problems: 1) to create a robust, ac-
curate and efficient full Navier-Stokes solver, 2)
to find an appropriate global geometrical repre-
sentation of the optimized shape and 3) to de-
velop an efficient optimal search able to handle
various non-linear constraints.

Nevertheless, even a successful solution of
all three partial problems is not sufficient for the
success of the method as a whole. The reason
is that the overall computational time needed for
optimization is prohibitively high due to a sig-
nificant computational cost of full Navier-Stokes
CFD runs and the huge number of the runs.

This means that in order to make the op-
timization practically feasible, it was necessary
to significantly improve the computational effi-
ciency of the algorithm. In fact, this is vital for
the success of the method in engineering environ-
ment.

This was partially done by decreasing the to-
tal number of heavy CFD runs in the framework
of the ROM-LAM approach which allowed to re-
duce the computational volume by at least 1-2 or-
ders of magnitude. However, the total number of
CFD runs remained high, which is hardly accept-
able even at the research level.

4.1 Multilevel Embedded Parallelization

Extensive parallelization is particularly advan-
tageous for achieving a further decrease of the
computational volume, since a highly scalable
parallel implementation allows to dramatically
reduce the overall computation time.

To reach this goal it was proposed to employ
an embedded multilevel parallelization strategy
which includes:

� Level 1 - Parallelization of full Navier-
Stokes solver

� Level 2 - Parallel CFD scanning of the
search space

� Level 3 - Parallelization of the GAs opti-
mization process

� Level 4 - Parallel optimal search on multi-
ple search domains

� Level 5 - Parallel grid generation

The first two levels are intended to improve
the computational efficiency of the CFD part of
the algorithm, while the next two levels handle
the optimization part of the method.

The first parallelization level (for a detailed
decription see [8]) is based on the geometrical
decomposition principle. All processors are di-
vided into two groups: one master-processor and
Ns slave-processors. A large body of computa-
tional data demonstrated that the above approach
for parallel implementation of the multiblock full
Navier-Stokes solver, enables one to achieve high
level of parallel efficiency while retaining high
accuracy of calculations, and thus to significantly
reduce the execution time for large-scale CFD
computations.

The first level of parallelization is embed-
ded with the second level, which performs par-
allel scanning of the search space and thus pro-
vides parallel CFD estimation of fitness func-
tion on multiple geometries. It is applied
when executing steps Calc_Local_Data_Base
and Verification_Optim_Cand of the optimiza-
tion pseudo-code. It must be emphasized, that

9
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the above two steps can not be executed con-
currently, since the input data needed for step
Calc_Local_Data_Base may be assessed only
upon the full completion of the preceeding step
Verification_Optim_Cand.

At this level of parallelization all the proces-
sors are divided into three groups: one main-
processor, Nm master-processors and Nm � Ns

of slave-processors (where Nm is equal to the
number of geometries). Since the volume of
data transfer between the main-processor and
master-processors is negligible, and the master-
processors execute their own jobs independently,
the parallel efficiency of the second level paral-
lelization is very close to 100%.

The third level parallelizes the GAs optimiza-
tion work unit. At this level of parallelization,
all the processors are divided into one master-
processor and Ps slave-processors. The goal of
the master-processor is to distribute the initial
random populations among the slaves and to get
back the results of optimal search (Ps is the num-
ber of initial random populations).

The third level of parallelization is em-
bedded with the fourth level, which performs
parallel optimal search on multiple search do-
mains. It is applied when executing step
Search_Optim_Candidates of the pseudo-code.
At this level of parallelization all the proces-
sors are divided into three groups: one main-
processor, Pm master-processors and Pm � Ps of
slave-processors (where Pm is equal to the num-
ber of domains).

The fifth parallelization level handles the grid
generation process. At this level, one master-
processor and Gs slave-processors are employed
(Gs is the number of evaluated geometries). The
goal of the master processor is to distribute
geometries among the slave-processors, while
each slave-processor creates a grid, correspond-
ing to its own geometry. This is performed
prior to steps Calc_Local_Data_Base and Veri-
fication_Optim_Cand of the pseudo-code. It is
clear that the parallel efficiency at this level is
also almost 100%.

Finally we can conclude that the five-level
parallelization approach allowed us to sustain a

high level of parallel efficiency on massively par-
allel machines, and thus to dramatically improve
the computational efficiency of the optimization
algorithm.

5 Analysis of Results

The method was applied to the problem of
the multipoint transonic three-dimensional wing
drag minimization with nonlinear constraints.
The results include a variety of optimization
cases for two wings: a classical test case of ON-
ERA M6 wing and a generic cranked transport-
type wing.

Multilevel parallelization strategy based on
the PVM software package was implemented on
a cluster of MIMD multiprocessors consisting of
108 (72 HP NetServer LP1000R and 36 IBM
Blade Server) nodes. Each node has 2 processors,
2GB RAM memory, 512KB Level 2 Cache mem-
ory and full duplex 100Mbps ETHERNET inter-
face. Totally this cluster contained 216 proces-
sors with 216GB RAM and 54MB Level 2 Cache
memory.

5.1 Verification studies

The CFD solver NES (used as a driver of the op-
timization process) ensures high accuracy of the
Navier-Stokes computations on relatively coarse
grids as well as high robustness, for a wide range
of flows and geometrical configurations. High
performance of NES was systematically demon-
strated by testing it a wide range of aerodynamic
configurations of different complexity: from
one-element 2D airfoils (such as NACA0012,
RAE2822) through ONERA M6 wing, transport-
type supercritical wings up to ARA M100 wing-
body [3],[4].

This was also recently confirmed by the com-
putations performed in the framework of the 2nd
Drag Prediction Workshop [5]. In these compu-
tations two complex 3D cases were tested: DLR
F6 wing-body configuration and DLR F6 wing-
body-nacelle-pylon configuration. The results by
the code NES demonstrated a high accuracy of
drag prediction (within 4-5 counts) in the whole
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range of flight conditions. Note, that the pre-
diction accuracy of component drag increments
(with nacelle on and off) was even higher. This is
indicative of the NES suitability as a CFD driver
of optimization process.

Below are given the results of verification of
the NES code for a popular ONERA-M6-Wing
test case. The set of computational grids con-
tained three multigrid levels. Each level included
8 blocks. The total number of points in the fine
level was close to 200 000.

Fig. 1 presents computed surface pressure
distribution compared with experiment [9] at
high transonic Mach number M � 0 � 84, α �
3 � 06 � , Re � 11 � 72 � 106 at a midsection of the
wing. The agreement is reasonably close which
indicates that the computational grid is suffi-
ciently resolved. It is important to emphasize that
the NES computation not only favourably com-
pares with experiment but also indicates a good
grid convergence.

For transonic 3D wings, NES provides accu-
rate asymptotically converged estimates of aero-
dynamic coefficients with grids containing about
193 � 33 � 33 computational points on the fine
level. Unfortunately, such computations, though
feasible for a single optimization, are too heavy
to be used in the industrial framework.

To overcome this limitation, we used the in-
variance of the hierarchy of objective function
values on the medium and fine grids [1]. It also
appeared that the two times coarser in each direc-
tion (97 � 17 � 17 ) grids satisfy the invariance
conditions. This allowed us to use meshes with
such a resolution for optimization purposes.

To further verify the optimization method, the
following multipoint optimization of RAE2822
airfoil was performed. The main design point
was M � 0 � 734, CL

� 0 � 8, Re � 6 � 5 � 106 while
the secondary design points were: M � 0 � 754,
CL

� 0 � 74, Re � 6 � 2 � 106 and M � 0 � 680, CL
�

0 � 56, Re � 5 � 7 � 106. The target was to mini-
mize a weighted combination of total drag val-
ues at these points with the following weight co-
efficients: w1

� 0 � 5 � w2
� 0 � 25 � w3

� 0 � 25. The
constraints were imposed on airfoil thickness and
leading edge radius which can not decr ease. The

Design Point OPTIMAS Ref.[17]
M � 0 � 734, CL

� 0 � 80 -59.0 -40.0
M � 0 � 754, CL

� 0 � 74 -103.0 -34.0
M � 0 � 680, CL

� 0 � 56 +2.0 +3.0

Table 1 Drag reduction (counts) for multipoint
transonic test case. Comparison between cur-
rent optimization (OPTIMAS) and the results by
Quagliarella [17]. 1 aerodynamic count = 0.0001.

case served for verification purposes in a number
of studies, most recently performed within the
European AEROSHAPE project and presented in
[17].

First, the applicability of the hierarchy prin-
ciple was verified. With this end in view, an opti-
mization based on three CFD drivers with differ-
ent grid resolution (one, two and three multigrid
levels, respectively), was performed. The study
was done for a one-point and three-point opti-
mization problems. In the former case the de-
sign point was one of the secondary points of the
AEROSHAPE test case (M � 0 � 754, CL

� 0 � 74,
Re � 6 � 2 � 106), while the latter case was that of
the full AEROSHAPE test-case. The shapes due
to the one-point optimization are given in fig. 2.
The optimal solutions are very close one to an-
other both in terms of shape and aerodynamic
performance of optimized airfoils.

Finally, the comparison of drag reduction
achieved by the current optimization tool OPTI-
MAS with the corresponding AEROSHAPE re-
sults is summarized in Table 1.

It can be observed that OPTIMAS achieves
an essentially higher drag reduction, especially
at the high transonic flight conditions. A detailed
analysis shows that this is attributed to a success-
ful shock destruction which allowed to eliminate
most of the wave drag.

5.2 Optimization of ONERA M6 Wing

In this section, we present the results of one- and
multi-point drag minimization of ONERA M6
wing at Re � 11 � 72 � 106 and different values of
design CL and Mach numbers representing a wide
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Case C
�
L Design Wi C

�
M Nws

No. M
1 0.265 0.84 1.0 � ∞ 2
2 0.500 0.84 1.0 � ∞ 2
3 0.500 0.86 1.0 � ∞ 2
4 0.500 0.87 1.0 � ∞ 2
5 0.500 0.87 1.0 � 0 � 100 2
6 0.500 0.87 1.0 � 0 � 075 2
7 0.500 0.87 0.6 � ∞ 2

0.400 0.85 0.4 � ∞ 2
8 0.500 0.87 1.0 � ∞ 3
9 0.500 0.87 1.0 � 0 � 100 3
10 0.500 0.87 1.0 � 0 � 100 4

Table 2 ONERA M6 wing. Optimization condi-
tions and constraints for different test cases.

range of flight conditions. A total of 10 test cases
was studied. Design conditions and constraints
are summarized in Table 2. The corresponding
optimal wing shapes are designated by Case_1 to
Case_10.

Geometrical constraints on relative thickness,
relative leading edge radius and trailing edge an-
gle were kept on a constant level in all the opti-
mization cases:

� t � c � �
i

� 0 � 097 � � R � c � �
i

� 0 � 0029 �
θ

�
i

� 3 � 6 � � i � 1 ������� � Nws

Note, that the value of the relative thickness was
not allowed to be lower than that of the original
ONERA M6 wing, while the value of the relative
leading edge radius was allowed to be lower than
the original one.

The considered design points lie in the high
transonic Mach range with lift coefficient values
varying from moderate to high. At the above
flight conditions, the flow over the original ON-
ERA M6 wing developes a strong lambda-shock
with intensive shock-boundary layer interaction.

Now let us analyze the results of optimization
at a demanding design point characterized by the
combination of a high target lift coefficient and a
high free-stream Mach number (CL

� 0 � 5, M �
0 � 87 - Case_4–Case_10).

At these flight conditions, the original ON-
ERA M6 geometry generates a very strong shock
which results in a high total drag value (CD=544
counts). The optimization allowed to essentially
decrease the total drag down to CD=300 counts
(Case_4). At this point, the theoretical induced
drag for the ONERA M6 at CL

� 0 � 5 is equal
to 209 counts, while the minimum drag value is
equal to about 87 counts for the original wing,
which indicates a very low level of wave drag for
the optimized wing.

The corresponding results are presented in
fig.3-6 where the pressure distribution on the up-
per surface of the original wing and the chord-
wise pressure distributions at a midsection of the
wing are compared with those of the optimized
one.

The off-design behaviour of the optimized
wing (Case_4) is shown in fig.7-8. In fig.7
drag polars are presented at different free-stream
Mach numbers close to that of the design. Drag
rise curves of the wings optimized at CL

� 0 � 5
for different design free-stream Mach numbers
are compared to that of the ONERA M6 wing in
fig.8. The optimization allowed to significantly
shift the drag divergence point in the direction of
higher Mach numbers and to radically extend the
low drag zone. The shift is greater for greater
design Mach numbers with a small pay-off for
0 � 77

�
M

�
0 � 85.

As mentioned above, in the case of 3D op-
timization there exists an additional class of con-
straints to be taken into account: the aerodynamic
constraints such as the constraint on the pitching
moment CM. This class of constraints is difficult
to handle. The point is that the position of testing
point (testing aerodynamic shape) in the search
space with respect to the constraints boundary is
not known in advance (contrary to the geomet-
rical constraints) and requires a computationally
heavy CFD run.

The results of optimization indicate that the
present approach is also able to efficiently han-
dle this class of constraints. Several optimization
cases, with different values of C

�
M (maximum al-

lowed value of the pitching moment) were con-
sidered.
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The unconstrained optimum wing (Case_4)
possesses CM

� � 0 � 15 and CD
� 300 � 0 counts.

A constrained optimization with C
�
M

� � 0 � 10
(Case_5) achieved a similar drag reduction at the
design point M � 0 � 87, CL

� 0 � 5 (CD
� 300 � 5

counts) while for C
�
M

� � 0 � 075 (Case_6) the op-
timized wing possesses a slightly higher CD

�
305 � 0 counts at the same design point. It is im-
portant to underline, that up to C

�
M

� � 0 � 10 the
total drag of optimized wings is weakly influ-
enced by C

�
M not only at the design point but also

in the off-design zone CL  0 � 3.
Thus the following two conclusions may

be drawn. First, the performance of uncon-
strained pitching moment optimization can be
also achieved by a constrained optimization even
with a rather significant increase in the maxi-
mum allowed value of the pitching moment. Sec-
ond, the same optimal total drag value CD may
be obtained by markedly different aerodynamic
shapes. In other words, the considered optimiza-
tion problem is ill-posed.

In this connection, it may be also assessed
that the incorporation of constraints into the op-
timization problem is twofold. On the one hand,
the presence of constraints (as it was explained
above) makes the solution of the optimization
problem much more complicated. But at the
same time, the constrained problem is more well-
posed , which facilitates its solution.

Another important issue is the influence of
the parameter Nws (number of sectional airfoils)
on the optimal solution. Increasing the value of
this parameter leads to a more detailed geometri-
cal representation of the wing surface and thus
improves the design flexibility. However, this
also increases the search space dimensions which
augments the complexity of the problem.

The comparison of the original ONERA M6
root and tip shapes with those of wings optimized
for different Nws, is given in fig. 9-10. The anal-
ysis of results shows that, in the middle part of
the wing, the optimal shapes tend to possess low
curvature immediately outside the leading edge
region. Note, that in order to support this trend,
the optimal design with Nws

� 2 produced the tip
section with a concave lower surface in the above

region.
For all the considered cases the chordwise

pressure distributions are very close one to an-
other exhibiting a virtually shockless behaviour.
At the same time the increase in the number of
sectional airfoils Nws leads to a more uniform
chordwise wing loading.

It is also aerodynamically interesting to anal-
yse the influence of the pitching moment con-
straint on the wing loading. Comparing the
chordwise pressure distribution of the optimized
wings it can be concluded that a more severe con-
straint on the pitching moment value leads to a
visible shift of the loading to the leading edge
area.

In order to implement the above phenomenon
of reloading, an essential change in the shape of
optimized wings may be needed. This is illus-
trated in fig. 11 where airfoil shapes at the mid-
section of the optimized wings for Nws

� 3 and
different values of constraint on the wing pitch-
ing moment are shown.

It is important to note that the proposed op-
timization algorithm was able to discover the ba-
sic optimization tools widely accepted in engi-
neering practice: supercritical trailing edge and
drooped leading edge. The unconstrained (with
respect to C

�
M) optimization makes the most of

supercritical resources which results in a highly
rear-loaded airfoil shape with a strongly nega-
tive pitching moment. It is aerodynamically ex-
pectable that the imposition of constraint on C

�
M

should lead to the pressure redistribution by in-
creasing the loading in the leading edge area.
This means that a constrained optimal profile
must be less supercritical than the unconstrained
one, and this is to be compensated by a stronger
leading edge droop. This is exactly what may be
assessed by observing the corresponding shapes
depicted in fig. 11.

Finally, the comparison of lift/drag polars
corresponding to a one-point (Case_4) and a two-
point (Case_7) optimization, is presented in fig.
12. It is interesting to note that the multipoint
optimization allows to improve the wing perfor-
mance at low CL with no penalty at the design CL

value.
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As it was underlined above the present op-
timization tool is driven by full Navier-Stokes
computations. At the same time, many well
known applications are based on the use of sim-
pler gasdynamic models, such as Euler equations.
In this connection it was interesting to compare
the results of optimization achieved by a Navier-
Stokes driver vs. an Euler one. Such a compar-
ison was also performed by OPTIMAS, since its
CFD driver also allows for Euler computations.

The results of comparison at the design point
M � 0 � 87, CL

� 0 � 5 are given in fig. 13, where
drag polars at the design Mach value are shown.
Note that the both polars are computed by means
of the full Navier-Stokes computations. It is
clearly seen that the Navier-Stokes optimization
enabled to achieve better optimization results.
At the design point the optimization driven by
Navier-Stokes computations yielded a total drag
value of 300 counts compared to 312 counts
in the case of the Euler CFD driver (about 4%
more). This advantage is preserved in the whole
range of CL  0 � 45 which indicates its non-
pointwise nature.

Note, that, in aircraft industry, an additional
4% drag reduction is highly significant, since
even a 1% increase in aircraft drag value may
lead (at a fixed flight range) to the 7.6% reduc-
tion in the aircraft payload [18].

5.3 Optimization of a transport-type wing

The goal of this study is to estimate the perfor-
mance of the proposed method by applying it
to optimization of a transport-type cranked wing
with twisted and cusped profiles. At the tran-
sonic flight conditions (including those close to
the cruise flight regime), the case is represen-
tative of a flow which is highly influenced by
shock-boundary layer interaction.

The geometry of the initial wing which has
a glove-like planform is given in [19], [13]. In
the following, we present the results of one-point
drag minimization of the wing at Re � 12 � 0 � 106

at a fixed design CL
� 0 � 4 and different values

of Mach numbers. A total of 5 test cases was
studied. Design conditions and constraints are

Case C
�
L Design C

�
M Nws

No. M
1_TW 0.40 0.80 � ∞ 3
2_TW 0.40 0.80 � 0 � 08 3
3_TW 0.40 0.83 � 0 � 08 3
4_TW 0.40 0.85 � ∞ 3
5_TW 0.40 0.85 � 0 � 08 3

Table 3 Transport-type wing. Optimization con-
ditions and constraints for different test cases.

summarized in Table 3. The corresponding opti-
mal wing shapes are designated by Case_1_TW
to Case_5_TW . In all the optimization cases the
geometrical constraints on the relative thickness
were those of the initial wing, while the relative
leading edge radii and trailing edge angles were
allowed to be lower than the original ones.

At the above flight conditions, the flow over
the original transport-type wing developes a
strong shock characterized by intensive shock-
boundary layer interaction.

At M � 0 � 80 the original wing yielded the to-
tal drag CD

� 135 � 4 counts. Note that already
the original wing possesses good aerodynamic
characteristics at the considered flight conditions
since its drag value is very close to the sum of CD �

and the theoretical induced drag. Nevertheless,
the optimization for Case_1_TW resulted in a
drag reduction of about 5% (CD

� 128 � 5 counts).
At M � 0 � 83 and M � 0 � 85 the total drag

of the original wing was equal to CD
� 142 � 9

and CD
� 170 � 5 counts, respectively. The total

drag of the optimized wings (Case_3_TW and
Case_4_TW ) amounts to 133.4 and 143.3 counts
(a reduction of 7% and 16%, respectively). Thus
the increase in Mach number leads to a higher
drag reduction due to optimization, both in abso-
lute and relative values.

The analysis demonstrated that a significant
reduction in drag values was achieved by the de-
struction of a strong shock, present in the orig-
inal pressure distribution. This is illustrated by
fig.14-16 where the pressure distribution on the
upper surface of the original wing at M � 0 � 85,
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CL
� 0 � 40 is compared with these of the opti-

mized ones (Case_4_TW and Case_5_TW ). The
corresponding chordwise pressure distributions
at three different wing sections are shown in
fig.17-19.

The influence of the design Mach number
on the shape of optimized wings can be as-
sessed from fig. 20-22, where the root, crank
and tip sectional airfoils are respectively shown.
For the corresponding test cases (Case_2_TW ,
Case_3_TW and Case_5_TW ), the target lift co-
efficient was fixed at a level of CL

� 0 � 4, while the
pitching moment was kept at a level very close to
this of the original wing.

It is seen that the shock destruction (needed
for drag minimization while maintaining constant
values of CL and CM) is achieved in different
ways at different wing sections. At the root sec-
tion, the increase in target Mach number leads to
both the increase in the value of the leading edge
radius and the decrease in thickness of the rear
part of the airfoil. By contrast, at the crank and
tip sections, both the leading edge radius and the
upper surface curvature of airfoil are diminished.

For practical purposes, a solution of the drag
minimization problem must possess a reasonable
value of the pitching moment. Thus it is aero-
dynamically important to estimate the pay-off
due to imposition of the constraint on pitching
moment in terms of total drag. The compari-
son between unconstrained and constrained op-
timizations at CL

� 0 � 4, M � 0 � 80 and M � 0 � 85
(Case_1_TW vs. Case_2_TW and Case_4_TW
vs. Case_5_TW , respectively) shows that, in the
both cases, the pay-off for keeping the pitching
moment value at the original level does not ex-
ceed 1.0 count.

The shapes of root, crank and tip sections
corresponding to these optimizations are respec-
tively depicted in fig. 23-25. In both cases the
imposition of the constraint on the pitching mo-
ment resulted in significantly less cusped wings,
which, in general, leads to the shift of the wing
loading in the leading edge direction. Note, that
though the values of total drag corresponding to
the constrained and unconstrained optimizations
are very close, the optimal shapes are markedly

different.
The off-design behaviour of the optimized

wings is presented in fig. 26-28 by means of lift-
drag polars and Mach drag divergence curves.

Analyzing the lift-drag curves (fig. 26), it can
be concluded that the optimized wings possess
better aerodynamic characteristics not only at the
design point (CL

� 0 � 4) but in the whole consid-
ered range of lift coefficients. It may be also ob-
served that a pay-off for keeping CM at a level of
the original wing, is almost negligible.

Comparing the optimization driven by full
Navier-Stokes computations with that driven by
Euler computations (fig. 27) we see that at a high
target Mach number of 0.85 the Euler optimiza-
tion yields the shape with inferior aerodynamic
properties. At the design point the drag reduction
achieved by the Navier-Stokes optimization was
equal to 27.2 counts while the Euler optimization
reduced the drag by only 13.6 counts. The anal-
ysis of off-design behaviour of the shapes shows
that the above advantage of the Navier-Stokes op-
timization increases for higher lift coefficients.

Also, in terms of Mach, the optimality of so-
lutions is not pointwise (see fig. 28). Neverthe-
less, contrary to the off-design behaviour with re-
spect to lift coefficient, the aerodynamic advan-
tage of the optimized wings in terms of Mach
drag rise at fixed CL may be confined to the neigh-
bourhood of a target Mach number.

At the design Mach M � 0 � 80 (Case_1_TW
and Case_2_TW ), the zone of drag reduction ex-
tends from subsonic Mach numbers (M � 0 � 6) up
to M � 0 � 825. The optimization for a higher tar-
get Mach number (Case_5_TW , M � 0 � 85 ) al-
lowed to shift the point of drag divergence from
M � 0 � 825 (the original wing) to M � 0 � 855 (the
optimized shape).

6 Conclusions

A robust approach to the multiobjective con-
strained optimization of 3D aerodynamic wings
is proposed. The method features an efficient
treatment of nonlinear constraints in the frame-
work of GAs optimal search, a combination of
full Navier-Stokes computations with the Re-
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duced Order Models method, and an efficient
multilevel parallelization strategy.

The method (implemented in the computer
code OPTIMAS) was applied to the solution of
drag minimization problem at fixed lift subject
to various geometrical and aerodynamical con-
straints. The results include a variety of optimiza-
tion cases for two wings: a classical test case of
ONERA M6 wing and a cranked transport-type
wing. Significant aerodynamic gains have been
obtained and it was demonstrated that the accu-
racy and efficiency of the method allow for its
application in engineering environment.
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Fig. 1 ONERA-M6-Wing. Chordwise pres-
sure distribution for wing span station Y � 0 � 78,
α � 3 � 06 � , M=0.84, Re � 11 � 72 � 106. Solid and
dashed lines - present computation; crosses - ex-
perimental data [9].
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Fig. 2 Influence of the CFD grid resolution on
the shape of optimized airfoils. One-point opti-
mization.

Fig. 3 Original ONERA-M6-Wing. Pressure
distribution on the upper surface of the wing at
M=0.87, CL

� 0 � 5.

Fig. 4 One-point optimization - Case_4. Pres-
sure distribution on the upper surface of the wing
at M=0.87, CL

� 0 � 5.
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Fig. 5 Original ONERA-M6-Wing. Chord-
wise pressure distribution at the midsection of the
wing at M=0.87, CL

� 0 � 5.

Fig. 6 One-point optimization - Case_4. Chord-
wise pressure distribution at the midsection of the
wing at M=0.87, CL

� 0 � 5.
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Fig. 7 Mach off-design behaviour of the opti-
mized wing (Case_4). Drag polars at different
Mach numbers.
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Fig. 8 Mach drag divergence of the optimized
wings versus the original ONERA M6 wing.
Case_2, Case_3 and Case_4 correspond to de-
sign M=0.84, 0.86 and 0.87 respectively.
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Fig. 9 Shape of optimized wings at root section
for different Nws.
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Fig. 10 Shape of optimized wings at tip section
for different Nws.
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Fig. 11 Shape of the optimized wings at mid-
section for different values of constraint on pitch
moment. Case_8 - no constraint on CM; Case_9
- CM  � 0 � 1.
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Fig. 12 Drag polars at M � 0 � 87. One-point op-
timization vs. two-point optimization.
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Fig. 13 Drag polars at M � 0 � 87. Navier-Stokes
driven optimization vs. Euler driven optimiza-
tion.

Fig. 14 Original transport-type wing. Pressure
distribution on the upper surface of the wing at
M=0.85, CL

� 0 � 40.

Fig. 15 Optimized transport-type wing -
Case_4_TW . Pressure distribution on the upper
surface of the wing at M=0.85, CL

� 0 � 40.

Fig. 16 Optimized transport-type wing -
Case_5_TW . Pressure distribution on the upper
surface of the wing at M=0.85, CL

� 0 � 40.
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Fig. 17 Original transport-type wing at M=0.85,
CL

� 0 � 40. Chordwise pressure distribution at
2y/b=0.48.

Fig. 18 Optimized transport-type wing
(Case_4_TW ) at M=0.85, CL

� 0 � 40. Chordwise
pressure distribution at 2y/b=0.48.

Fig. 19 Optimized transport-type wing
(Case_5_TW ) at M=0.85, CL

� 0 � 40. Chordwise
pressure distribution at 2y/b=0.48.

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

y/
c

x/c

1-point wing optimization. Root shape.

Case_2_TW
Case_3_TW
Case_5_TW

Fig. 20 Transport-type wing. Optimized shape
of the root section for different target free-stream
Mach numbers.
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Fig. 21 Transport-type wing. Optimized shape of
the crank section for different target free-stream
Mach numbers.
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Fig. 22 Transport-type wing. Optimized shape
of the tip section for different target free-stream
Mach numbers.
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Fig. 23 Transport-type wing. Constrained vs.
unconstrained pitch optimization. Optimized
shape of the root section.

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

y/
c

x/c

1-point wing optimization. Crank shape.

Case_4_TW
Case_5_TW

Fig. 24 Transport-type wing. Constrained vs.
unconstrained pitch optimization. Optimized
shape of the crank section.
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Fig. 25 Transport-type wing. Constrained vs.
unconstrained pitch optimization. Optimized
shape of the tip section.
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Fig. 26 Transport-type wing. Constrained vs.
unconstrained pitch optimization. Drag polar at
M � 0 � 85.
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Fig. 27 Transport-type wing. Optimization
driven by full Navier-Stokes CFD model vs. opti-
mization driven by Euler CFD model. Drag polar
at M � 0 � 85.
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Fig. 28 Transport-type wing. Drag vs. Mach at
CL

� 0 � 4. Optimized shapes vs. the original one.
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