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Abstract  

The new approach to the analysis of the dynamic 
properties of the rotating airplane is presented in 
this paper. The analysis method is based on the 
rate of rotational energy and full non-linear 
model of airplane dynamics. The method is 
applicable within whole range of the values of 
angle of attack. To provide the relations for the 
stable rotation of the airplane it is needed to know 
only the functional relations of aerodynamic 
moments, inertial properties of airplane and 
mathematical apparatus of algebra.  As the 
corollary, there has been proofed that within the 
area of validity of simplified model there exists 
the full congruency of the results of this method 
and classical approach. 

1  Introduction  

In the design of the dynamic properties of the 
fixed wing aircraft – airplane one of the crucial 
problems is adequate assessing of it behavior 
when performing all aspects of rotational motion. 
The tools available to them in the period when the 
airplane has been constructed have governed 
approach of the designers to this problem. 
Historically, initial approaches to this problem are 
belonging to the “bottom-up” category, the first 
examples being separate analysis of pitching and 
rolling motion of the airplane.  

Basic characteristic of the “bottom-up” 
approach is the application of the approximate 
models with the limited scope of validity. One of 
the most widely used has been the application of 
the models based on the assumption that the 
aerodynamic loads, forces and moments, are 
linear functions. For the airplanes with coplanar 

geometric and inertial plane of symmetry it yields 
models of so-called ‘longitudinal’ and ‘lateral-
directional’ motion. For the brevity, approach 
based upon separated modes of longitudinal and 
lateral directional motion shall be noted as the 
classical one. Alas, these models are unable to 
predict airplane behavior in the stall, deep-stall 
and spin flight regimes.  

Therefore, integral observation and analysis 
of airplane rotation has not been usual. General 
approach has been governed by obtaining desired 
design aim, required airplane dynamics in the 
predefined flight regime. The whole scope of 
airplane flight regimes has been parsed into 
separate parts, and in each airplane dynamics has 
been described with separate approximate and 
usually linear mathematical model. Particular 
model has been constrained by validity scope of 
stream variables, angles and characteristic 
parameters, or kinematical values, i.e. angular 
velocities. Adequate answers could be obtained 
within this and only this scope where 
approximation assumptions in model generation 
has been valid. Number of attempts to find 
answers spreading through more than one flight 
regime have been small, and in itself limited to 
partial aspects of airplane dynamics, for example 
aerodynamic forces or inertial properties of the 
airplane. The most common designer error, often 
with catastrophic results, stemmed from the 
excursions out of the validity scope of particular 
model of airplane dynamics, related to the area of 
either initial assumptions or answer limitations.  

As is often the case in the history of 
engineering practice there has been the 
simultaneous appearance of the requirements for 
the increased scope of the controlled airplane 
maneuvers, on the one side, and the design tool in 
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the shape of adequate mathematical model of it 
dynamics and the means to apply this model in 
corresponding computational environment on the 
other. Airplane maneuvering requirements 
demanded that the evaluation of the dynamics of 
the airplane with the pilot-in-the-loop is 
performed in the design phase. This generated the 
approach in the design practice, which can be 
placed in the “top-down” category, resulting with 
the set of related practical mathematical models of 
airplane dynamics, generally with variations in the 
presentation of the aerodynamic forces and 
moments throughout the operational scope of 
flight regimes. They comprise full range of the 
stream variables, angles and characteristic 
parameters, on the one side and angular velocities 
on the other. Basic advantage of their application 
is that the quality of the answers they provide 
depends only of the quality of input data. 

Furthermore, thus generated model of the 
airplane dynamics serves as the kernel for the 
model of the closed loop aircraft dynamics, with 
power plant and flight control system (FCS) 
models and true or modeled pilot as the main sup-
plementary subsystems. The research in this area 
has been performed in three directions. The first 
has been aimed toward experimental determina-
tion of aerodynamic shapes, which are enabling 
flight control in as wide range of airplane state 
space as possible. In the second, the results have 
been searched by theory of bifurcations and the 
methodology of theory of catastrophes. The third 
has been the flight simulation in the regime of 
deep stall and spin, with input parameters deter-
mined by the first. The last method is the most 
widely spread, as the hardware-in-the-loop simu-
lation for the whole range of flight regimes is 
mandatory during the airplane-FCS integration. 
Property of all three approaches is that the con-
clusion about airplane dynamics characteristics is 
made on the basis of the analysis of the elements 
of the set of the results. 

The main disadvantage of previous methods 
is that the conclusions in the design process are 
made ‘a-posteriori’, when the shape of the airpla-
ne has been already determined, or, they validate 
already obtained aerodynamic parameters. What 
the designer really needs is to know what is the 
aerodynamic shape or what are the values of 

aerodynamic parameters that are providing the 
required quality of airplane rotational motion. 

The designer of the desired airplane motion 
needs the method that can provide integral ana-
lysis of airplane rotation within the whole range 
of stream angles and angular velocities, where 
separated models are presenting only it special 
cases. Therefore, it must belong to the ‘top-down’ 
category of design procedures. The analysis 
method presented in this paper fulfills these 
requirements, with the aim to provide answers 
about the dynamics of airplane rotation within all 
stages of the design procedure, from the concep-
tual determination of airplane shape to the final 
stages of the hardware-in-the-loop simulation and 
in-flight testing. As is often the case, to obtain 
this, it has been necessary to make one backward 
step to the basic principles of mechanics. 

The approach to the analysis of rigid body 
motion in classical mechanics is based on the 
principle of minimal action expressed through 
integral or differential mathematical interpre-
tation and presented as the equation of motion. 
These equations of motion are describing the laws 
of continuity of momentum and energy. The 
analysis performed in this paper is based on the 
observation of system motion through the 
variations of the function describing integral 
interpretation of the principle of minimal action, 
avoiding the requirement to obtain the equations 
of motion. In the observation of the relation 
between Hamilton and Liapunov function has 
been proven that positively defined Hamilton 
function fulfills all the requirements of Liapunov 
function, and system solution all of the Liapunov 
stability conditions. This idea has been used as the 
basis in this paper so that the total airplane motion 
is considered as the complex one, consisting of 
translational motion of airplane center of inertia 
and relative airplane rotational motion about this 
center of inertia. 

The total energy of rotation is only the 
kinetical one and it fulfills the requirements of 
positively definite function, whose independent 
variables are airplane angular velocities. That 
enables that the conclusions about properties of 
the solutions of vector differential equation des-
cribing airplane rotational motion in the vicinity 
of it minimum are made on the basis of the 
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algebraic properties of the derivative of rotational 
energy along the vector of angular velocity. 
The problem to be solved can be set as follows. 
The rotation of the airplane with the non-rotating 
initial state (zero angular velocity) is observed. 
Assuming that the scalar value of rotational 
energy is known, it is necessary to define the 
methodology for determination and evaluation of 
those aircraft parameters that are providing it 
stable behavior within whole range of stream 
angles and angular velocities. It is necessary to 
define conditions that the increase of rotation or it 
stoppage are enabled by control surfaces.  

2 Theoretical grounds  

In developing theoretical grounds for rotation ana-
lysis method presented in this paper, it is assumed 
that the airplane is the rigid body, i.e. in the period 
of observation it inertial properties are invariant 
with time. The complete nonlinear mathematical 
model of the airplane dynamics is, then, obtained 
from the law of continuity of momentum and 
moment of momentum in the form   
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= + + = + ×
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= + = ×
∂

V
F F F F ω V

ω
ω ω+

J
M M M J

(1) 

where , ,a g pF F F  are, respectively, the vectors of 
resulting aerodynamic, gravitational and propul-
zive force and F  of resulting force, M  is the 
resulting moment of force, pM  and a =M  

( , , )a a acol M L N= , are the vectors of resulting 
moments of propulsive group and aerodynamic 
forces, m  is the mass and J  is the general form 
of tensor of inertia of the airplane, =V  

( , , )col u v w=  and ( , , )col p q r=ω  are the vectors 
of airplane translational and angular velocity. Va-
riables , , ; , ,a a aL M N u v w  and , ,p q r  are, respe-
ctively, projections of vectors ,a VM  and ω  on 
the , ,X Y Z  axes of the airplane body coordinate 
system. By solving(1)  upon highest order deri-
vatives, the following set of equation is obtained: 

 
( )
( )1

1

.

a g p

a p

mm
−

 = − × + + + 

 = − × + + 
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ω ω ωJ J M M
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Dot over variable denotes its rate, or first order 
time derivative. 
Airplane on some point of its trajectory possesses 
total energy consisting of kinetic energy of trans-
lation 1 2 T

VE m= V V  and rotation, RE =  
1 2 T= ω ωJ , potential energy HE mgH= and 

gyroscopic energy of propulsive group PE =   

( )1
1 2 n

p p i
I= ∑ ω , where pI  and pω  are moment 

of inertia and angular velocity and n is the total 
number of rotating elements of propulsive group 
that are generating significant gyroscopic 
moments. 
Along its trajectory airplane traverses path s  from 
initial point “0” at the moment 0t  to some point 
“1” at the moment 1t . During that motion propul-
sive group performed work which increased total 
energy of the system by the amount 01

TW =  
1

0 pds= ∫ F , while in the same time aerodynamic 

forces caused energy dissipation equal to 01
aW =  

1

0 ads= ∫ F . If with the upper indices “0” and “1” 

are denoted energies at the corresponding points 
on the trajectory, while “01” denotes work along 
path s , then the law of the conservation of energy 
is of the form 

 
( ) ( ) ( )
( )

1 0 1 0 1 0

1 0 01 01 0.

V V R R H H

p p T a

E E E E E E

E E W W

− + − + − +

+ − + − =
(3) 

If the initial condition at the moment 0t  are set for 
non-rotating airplane, then 0 0=ω , 0 0RE = . That 
corresponds to any flight with straight flight-path, 
and the energy of airplane rotation can be than 
simply obtained by rearranging (3) to form  
 01 01.R V H p T aE E E E W W= ∆ + ∆ + ∆ + − (4) 

If the maneuver condition are further constrained 
so that there are no changes in angular velocities 
of the elements of propulsive group that are 
generating gyroscopic moments and initially 
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airplane is in steady, straight, horizontal, wing-
level flight, then (4) becomes  

 
( )0

01 01

1
2

.

TT
R

T a

E m m

mg H W W

= ∆ ∆ + + ∆ ∆ +

+ ∆ + −

V V V V V
(5) 

Equations (4) and (5) present the transfer from the 
other modes into the kinetic energy of rotation. 
The method in presenting equations (3) to (5) is 
chosen only to clarify particular contributions to 
the energy of rotation RE . 
The airplane with the plane of inertial symmetry 
0xz  possesses kinetic energy of rotation RE =  

1 2 T= ω ωJ , or briefly rotational energy, of the 
inherent form  

2 2 2 2
1 2 3

2 2 2 2

2

2 ,

T
R u J J J

x y z xz

E I J p J q J r

I p I q I r I pr R

= = = + + =

= + + − =

ω ω ωI
(6) 

where uI  is axial moment of inertia around ins-
tantaneous axis of rotation, , ,x y zI I I  are axial and 

xzI  is centrifugal moments of inertia around cor-
responding axes of airplane body coordinate 
system. Scalar 0R >  is defined as the intensity of 
rotation, square of its value being two times the 
amount of rotational energy. 

 

Expression (6) presents the equation of ellipsoid 
of rotational energy, or briefly ellipsoid of rota-
tion. Three main, orthogonal axis of ellipsoid of 

inertia are collinear with three main axis of inertia 
of the airplane and are intersecting at the airplane 
center of mass. Angular velocity presented 
through components in this system is =ω   

( ), ,J J Jcol p q r= and tensor of inertia has the form 

( )1 2 3, ,diag J J J=J ,  1 2 3, ,J J J  being the main 
moments of inertia. For the inertially symmetric 
airplane, ellipsoid of rotation is turned about y  - 
axis of airplane body coordinate system by the 
angle 1 2arctg[2 ( )]xz x zI I IΦ = − . Values of the 
main half-axes of the ellipsoid of rotation are 

1 1R Jλ = , 2 2R Jλ =  and 3 3R Jλ = . 
During maneuvering flight ellipsoid of inertia is 
varying with time, i.e. ( )R R t= . In the absence of 
rotation it becomes a point. With increase or 
decrease of intensity of rotation ellipsoid of 
rotation inflates or deflates. The origin of the 
vector of angular velocity ω  is at the intersection 
of the main axis of inertia, while its apex is 
touching the surface of the ellipsoid of rotation at 
the point T . Normal to the surface of the ellipsoid 
of rotation at T  is grad Rn Eω= − , i.e. the gradient 
of energy of rotation along the vector of angular 
velocity ω . 
The vector of the rate (derivative relative to time) 
of angular velocity, ω , is with origin at T . Kine-
tic energy of rotation RE  is scalar function of ω , 
therefore the rate of change of RE , it derivative 
relative to time, is  

 ( ) [ ]grad ,T
R R R

d E E E
dt

= = ⋅ω ω (7) 

i.e. it rate along the angular velocity vector ω . To 
simplify geometric presentation, let denote relati-
ve angle between grad REω  and the rate of angular 
velocity ω  with τ . When the intensity of rotation 
R  is constant, the vector of the rate of angular 
velocity ω  is tangent to the ellipsoid of rotation. 
Then the angle τ is right, making the inner pro-
duct [ ]grad 0T

RE ⋅ =ω ω . When the intensity of 
rotation is increasing angle τ  is acute with inner 
product [ ]grad 0T

RE ⋅ >ω ω . Opposite, when the 
intensity of rotation is decreasing, angle τ  is 

Figure 1. Ellipsoid of rotation.  
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obtuse with inner product [ ]grad 0T
RE ⋅ <ω ω . 

Therefore, if it is required to prevent the increase 
of rotation, the condition [ ]grad 0T

RE ⋅ =ω ω  must 
be satisfied, and if it is to be stopped, there must 
be fulfilled [ ]grad 0T

RE ⋅ <ω ω . Let notify that the 
airplane control intentionally generates the condi-
tion [ ]grad 0T

RE ⋅ >ω ω . 
The next step is correlation of this condition with 
aerodynamic moments. Initially, it is established 
that  
 ( )grad grad 1 2 .T

RE = =ω ω ω ω ωJ J (8) 

The vector of the rate of angular velocity ω  is 
defined from second equation in (2). The moment 
of propulsive group has two parts. The first, P

pM , 
is generated by propulsive force of engine(s), 
while the second, G

pM , is generated by gyros-
copic moments, so  

( ) ( )
1,2,..., ,

;
( ) 1,2,...,

P G
p p p

i i p pi j j

i n
I j m

= + = =
= × + × =∑ ∑r T ω ω

M M M
(9) 

where n  is the total number of propulsors on the 
airplane, while m  is the total number of rotating 
elements in these propulsors that are generating 
significant gyroscopic moments. Scalar product of 
vector with vector product where one of the multi-
pliers is that vector is zero. When elements from 
(2) are multiplied by Tω J , then ( ) 0T × =ω ω ωJ  

and ( )( ) 0T G T
p p pI= × =ω ω ω ωM . If the active 

moments generated by aerodynamic and propul-
sive forces are denoted by AM , then  

.

P
a p

A P P
a p a p

P
a p

L L L
M M M
N N N

 +  
   = = + = + =   
   +   

M M M M (10) 

Consequently, it is obtained  
[ ]

( )
grad

.

T T T A
R R

T P
a p

E E

Lp Mq Nr

= = = =

= + = + +

ω ω ω ω ω

ω

J M

M M
(11) 

Therefore, the scalar equation defining condition 
for the prevention of the increase and the stoppage 
of the airplane rotation is defined by  

 0.T
RE Lp Mq Nr= = + + ≤ωM (12) 

This general condition has been obtained without 
any simplification in the description of the air-
plane dynamics. It stems out from the inherent 
form of the kinetic energy of rotation in (6). There 
is, however, the simplification in defining initial 
conditions for the maneuver in which transfer of 
the other modes of energy into the kinetic energy 
of rotation occurred, presented in (5). The physi-
cal meaning of (12) is simple, as T

RE = ωM  
presents power necessary to apply to change the 
energy of rotation. The positive power increases 
the energy of rotation, while the negative power 
decreases it. 
The expression (12) contains within its active 
moments all controls available to the airplane 
during the flight along the flight path, aero-
dynamic ( , ,l m nδ δ δ ) and propulsive ( Tδ ) ones. As 
the accent in this paper is on the airplane design 
procedure, consideration shall be further simpli-
fied by assuming that resulting thrust force rT  is 
acting through airplane center of inertia, so that 

0P
p =M . Then the condition in (12) reduces to  

 0.T
R a a a aE L p M q N r= = + + ≤ωM (13) 

To make conclusions about the capabilities of the 
control of the airplane rotation by the means of 
aerodynamic moments only, it is necessary to 
know functional dependence of it components 

, ,a a aL M N . Aerodynamic moment a =M  

( )col , ,a a aL M N=  is nonlinear function of the 
airplane state variables and control surface 
deflection, as well as the rate of both, or  
 ( ), , , .a a= X X U UM M   (14) 

Translatory components are defined and measured 
in the wind, or stream, axis coordinate system, for 
the rotation the same is done in body axis system. 
Then, 0 0 0col( , , , , , , , , , , , )V p q r x y zβ α= Φ Θ ΨX  is 
airplane state vector, where the intensity of velo-
city is V , angle of sideslip and attack are ,α β ,  
Euler angles , ,Φ Θ Ψ  and Earth fixed coordinates 

0 0 0, ,x y z . Control vector col( , , )l m nδ δ δ=U  con-
tains deflections of roll (ailerons) pitch (elevator) 



M. ZIVANOVIC, M. BAJOVIC, P. STOJAKOVIC, B. RASUO   

6 

and yaw (rudder) commands.  For the atmospheric 
flight there exists biunivoke correspondence 
between airplane state vector X  and the stream 
parameters, Mach M  and Reynolds Re  number. 
Then when the stream parameters are known, the 
functional relation for the vector of aerodynamic 
moment, with the precision of up to the first order 
time derivatives, is of the form  

( ), , , , , , , , , , , , , .a a l l m m n np q rα α β β β δ δ δ δ δ δ=M M   (15) 

Important aspect in the presentation of aero-
dynamic moment is that practically in most cases 
it can be modeled as additive regarding to the 
control vector U , i.e. it consists of ‘referent’ r

aM  
and ‘control’ c

aM  part, or  

( ) ( ), , , , .

r c
a a a

r c
a a

r c r c
a a a a

r c
a a

L L
M M
N N

= + =

 +
 = + = + 
 + 

X X X X U U

M M M

M M
(16) 

During the design phase of the airplane, the 
easiest and most precise method to determine 
functional dependences of aerodynamic moments 
is by measurements in wind tunnels. 
It is important to note that (13) is exact analytical 
expression, regardless of the means by which the 
components of aerodynamic moment, , ,a a aL M N  
are obtained. The equation (13) is condition deri-
ved for the arbitrary moment of time that is valid 
regardless to the history of the airplane motion. It 
is obtained out of the scope of the analysis of the 
differential equations of motion. The exactness of 
the analytical approach to the dynamic of airplane 
rotation based on (13) is constrained only by the 
exactness of the method of obtaining the compo-
nents of aerodynamic moment aM . 
The significance of (13) is in it applicability. It is 
valid throughout whole range of airplane state 
space and can be used to assess the properties of 
dynamic of airplane rotation, providing thus ana-
lyzing tool. Furthermore, whenever aerodynamic 
moment aM  can be modeled as in (16), equation 
(13) can be rendered to the form  

( ) ( ) ( ) 0.

T
R a

r c r c r c
a a a a a a

E

L L p M M q N N r

= =

= + + + + + ≤

ωM
(17) 

Because (17) permits separate observation of the 
influence of airplane control, it can be readily 
used as design tool, applicable ab-initio in the 
design of desired properties of dynamics of 
airplane rotation. 

3 Locally linearized model of 
aerodynamic moment 

 
The choice of the shape of model of aerodynamic 
moment in the analysis of dynamics of airplane 
rotation makes the way that leads condition (13) 
or (17) toward approaches based on the separated 
longitudinal and lateral-directional motion. That 
shall be presented through the linearized models 
of the aerodynamic moment of decreasing 
complexity. The reason for the application of the 
simple linearized models is to proof that the 
analysis of dynamics of airplane rotation based on 
the condition (13) is, within domain of validity of 
the models of separated longitudinal and lateral-
directional motion, fully congruent with the 
analysis based upon these models. Nevertheless, 
the condition (13) enables the analysis of 
dynamics of airplane rotation outside of above-
mentioned areas of congruency, without any 
decrease in the quality of the results through the 
loss of the character of the solution by omitting 
part of it.  
Within the set of linearized models of aerody-
namic moment locally linearized one is with the 
highest complexity. It maintains validity within 
sufficiently small vicinity of any point within the 
range of stream angles where the non-stationary 
effects of flow field can be neglected. Then the 
elements of the first and higher order derivatives 
can be neglected and the model of aerodynamic 
moment is derived with the precision of up to the 
zero order derivatives. Let the linearized model of 
aerodynamic moment be derived in this vicinity of 
the referent values of the angle of attack and side-
slip, ,r rα α β β= = , where the above-mentioned 
conditions can be sustained. Then the components 
of the aerodynamic moment are of the form  
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β δ δ

β
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β δ δ

β

= + + + + + = =

 = + + + + + 
 

= + + + = =

 = + + + 
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= + + + + + = =

= + + 02 l nnr n l n n n
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V δ δδ δ + + + 
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 (18) 

where Q  denotes dynamic pressure, V  intensity 
of air velocity vector and , ,S c b  are, respectively, 
wing surface, mean aerodynamic chord and span. 
Dimensionless ijC  and dimensional , ,j j jL M N  
coefficients of aerodynamic moment are derived 
for moment components , ,i L M N=  derived 
upon variables , , , , , , ,l m nj p q rα β δ δ δ= , whereas 
index 0j =  notifies free element in the developed 
sequence. 
By substituting (18) into (13) and rearranging is 
obtained  
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0
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β δ δ

α δ

β δ δ

β δ δ

α δ

β δ δ

   
   = +   
     

+ + + + +

+ + + +

+ + + +

ωM

(19) 

Further on, the rearranged vector of angular 
velocity [ ]T q p r=ω  is introduced, as well as the 
variables  
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;

;
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a M M M
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c N N N N

α δ
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β δ δ
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= + +
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where Lω  is Longitudinal and Dω  lateral-
Directional part of the angular velocity vector, 
M  is matrix of the contributions of angular 
velocity to the aerodynamic moment and LM  and 

DM  its Longitudinal and lateral-Directional part. 
Then, the shortened form of (19) is  
 ,T T

a aq bp cr= + + +ω ω ωM M (20) 
or, rearranged with contributions of angular 
velocity to the aerodynamic moment separated to 
longitudinal and lateral-directional part  

[ ]

2

2

.

T T
L L D D

T T
a L D D D

T T
L L D D

T
L L L

T T
D D D D D D

q aq bp cr

q aq

b c

= + + + + =

= +

= +

= +

ω ω

ω ω ω

ω ω

ω

ω ω ω ω

M M

M

M M

M

M

M M

M

M

(21) 

It must be noted that in (21) separation is perfor-
med only upon the longitudinal and lateral-
directional part of the aerodynamic moment, 
whereas the analysis of the dynamics of airplane 
rotation remains integral. 
Geometrical interpretation of eq. (20) and (21) is 
simple. Equation (20) is observed in the four-
dimensional space ROE qpr  with axes ROE , Oq , 
Op  and Or . Let notify that ( ) T

R ad dt E = ωM . 

The selection of ROE  for notification of the axis 
instead of T

aωM  in (20) and (21) is done to 
accent it physical meaning. It presents sum of the 
hyperparaboloid Tω ωM  and plain aq bp cr+ +  
containing the point of coordinate beginning O . 
The plain can rotate about point O  with the 
position determined by the values of coefficients 
a , b  and c  which are dependent upon the instan-
taneous values of state variables ,α β  and 
deflection of control surfaces ,l mδ δ  and nδ . In 
the case of stationary, straight, wing-level flight of 
geometrically symmetric airplane geometrical 
interpretation of (20) reduces to coordinate hyper 
plane Oqpr . 
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In the analysis of the dynamics of airplane rota-
tion, the transfer from the general form of cond-
ition (13) to the form presented in equations (20) 
and (21) is based upon the locally linearized 
model of airplane aerodynamic moments. Statio-
nary states of airplane dynamics present equili-
brium states from the flight reference point. The 
equilibrium states of flight are only the subset 
within the range of angles of attack and sideslip, 

,α β , where the local linearization can be 
performed. 

4 Relation to the classical approach to 
the analysis of the dynamics of 
airplane rotation 

One special case of flight equilibrium is 
stationary, straight, horizontal, wing-level flight. 
For the inertially and geometrically symmetric 
airplane these are conditions for the classical 
approach to the analysis of airplane dynamics, 
based upon the separated modes of longitudinal 
and lateral-directional motion. Let denote the 
equilibrium flight states by upper index ‘e’, so for 
the case of symmetric airplane coefficients a , b  
and c  in (20) are zero, or   

 

0

0

0

0;

0;

0.

m

l n

l n

e e e e
m

e e e e e
l n

e e e e e
l n

a M M M

b L L L L

c N N N N

α δ

β δ δ

β δ δ

α δ

β δ δ

β δ δ

= + + =

= + + + =

= + + + =

(22) 

Then the values of stream angles and control 
surface deflections are 0eα ≠ , 0e

mδ ≠ , 0eβ = , 
0e

lδ =  and 0e
nδ =  as well as 0 0eL =  and 0 0eN = , 

because last two equations must be identically 
satisfied. In the case of non-symmetric airplane is 

0eβ ≠ , 0e
lδ ≠  and 0e

nδ ≠ , 0 0eL ≠  and 0 0eN ≠  
so the analysis reverts to locally linearized model 
in (20) and (21). 
To show the congruency of the analysis of the 
rotational dynamics of the airplane based on the 
condition (13) with the classical approach to this 
problem, it is necessary to subject it to the same 
set of limitations and constrains that has been 
used in developing decomposed linearized models 
of longitudinal and lateral-directional modes of 
airplane motion. Let these constrains be reviewed 

in brief. Models are derived as linear ones for the 
above mentioned initial condition of equilibrium 
state of symmetric airplane. Range of the values 
of airplane state variables is limited to the domain 
of their linear functional dependability, the most 
important being the range of angle of attack of up 
to 0.8 critα α≤  of it critical value critα . For the de-
fined set of the stream parameters, Mach M  and 
Reynolds Re  number, dimensionless ijC  and 
dimensional , ,j j jL M N  coefficients of aerodyna-
mic moment are then within this range of linearity 
constant. 
Stability analysis within each of separated modes 
is limited to the domain of validity of particular 
linear model. Overall stability of the airplane 
exists if and only if (iff) there simultaneously 
exists local stability in the each of the particular 
modes of airplane motion. 
The meaning of these constrains applied to the 
condition (13) modified to the form in equations 
(20) and (21) is as follows. The sign definiteness 
of expression T

aωM  is achieved iff there is 
fulfilled the requirement that as the total expres-
sion elements T

L LωM  and T
D DωM  are achieving 

independently and simultaneously this sign 
definiteness. For example, non-positive sign defi-
niteness 0T

a ≤ωM  can be achieved if simulta-
neousl and independently there can be achieved 

0T
L L ≤ωM  and 0T

D D ≤ωM . Applications of con-
strains applied in generation of classical approach 
permits that in the integral condition (21) each of 
the elements, T

L LωM  and T
D DωM , is considered 

separately. 

4.1 Longitudinal motion analysis 
Observation of expression   

( )
( )

2

2
0

2 2

0,

0, 0
2 2

m

T
q q L L L

q m

T
L L q q

q q

d E E q aq
dt

M q M M M q

a aM q M
M M

α δα δ

= = = + =

= + + + ≤

    
 = + − ≤ ≠           

ω

ω

M

M

M

(23) 
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is sufficient to use condition (13) in the analysis 
of linear model of longitudinal mode of motion. In 
(23) qE  is separated kinetic energy of pitching 
(longitudinal) angular motion. The second form of 
condition (23) accents form and elements of 
parabola. The significance of simplification made 
in (23) can be best concluded if the comparison is 
made with ellipsoid of rotation (6) as the inherent 
form of kinetic energy of rotation. By assumption, 
separated observation of the longitudinal mode of 
airplane motion reduces to zero rolling and 
yawing component of angular velocity, i.e. 0p =  
and 0r = , which in the analogy with the ellipso-
idal rigid body is equivalent to it reduction to thin 
stick. Therefore, the variation of rotational energy 
is generated only along one fixed direction Oq . 
Geometrical interpretation of condition (23) is 
performed in two-dimensional space qOE q  with 

axis qOE  and Oq . The function T
L L =ωM  

2
qM q aq= +  is the sum of parabola 2

qM q  and 
straight line aq  containing coordinate beginning 
O  and is defined for any value of qM .  The 
second form of condition in (23) determines the 
extreme of parabola and is defined only when 

0qM ≠ . Condition 0qM =  is extremely rare and 
practically impossible for the airplanes with 
empennage. The angular orientation of the straight 
line is defined by coefficient a . Direction 
coefficient from (22) is 0ea =  for the airplane in 
the equilibrium flight and straight line aq  is 
collinear with axis Oq . For decomposed motion 
is 0 0 0|eM M α==  because ( )L αM  is linear. 
For the above equilibrium initial state, the 
necessary condition for the stable rotation 
(pitching) of the airplane in the separated longi-
tudinal mode is 2 0T

L L qM q= <ωM , wherefrom 
emerges requirement 0qM < . Boundary stability 

condition is 2 0qM q = , while for the unstable pi-

tching motion is 2 0qM q > . Any deviation out of 
equilibrium state causes increment a∆ of 
coefficient a , so 0ea a a= + ∆ ≠  and straight line 
is aq∆ , i.e. rotated by a∆ . Parabola extreme is 

then shifted from coordinate beginning along Oq  
axis by amount ( )2 qa M−∆ . Then the parabola 
presenting condition (23) is with two zeroes and 
two sets of values with opposite sign. 

 

For example, for stable airplane and above 
equilibrium initial state is 0qM <  and element 

2
qM q  is with nonpositive values. Deviation out of 

equilibrium causes that sum 2
qM q aq+ ∆  has regi-

on of positive values. Deviation can be caused by 
required deflection of control surface mδ∆  or by 
environment disturbance in the form of either α∆  
or variations of coefficients Mα∆ , 

m
Mδ∆  and 

0M∆ . 
To prevent the increase of rotation in the 
longitudinal mode of motion for the known amo-
unt of the intensity of rotation R  must be fulfilled 
boundary condition  2 0T

L L qM q aq= + =ωM  for 

value of pitching angular velocity  2q R J= ± . 
In the area of constant aerodynamic parameters, 
the necessary boundary increment of control sur-
face deflection is determined from the condition 

( ) ( ) ( )2 0 0
m

e e e
q m mM R J M M Mα δα α δ δ+ +∆ + +∆ + = . 

There from, the boundary increment of control 
surface deflection necessary to prevent the incre-
ase of rotation in longitudinal mode of airplane 

Figure 2. The rate of energy of rotation in the longitudinal 
mode.  
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motion is  ( ) ( )( )2 mm qb
M R J M Mα δδ α∆ = − ∆ , 

which is in full compliance with [8]. 
The condition of the stability of the longitudinal 
motion stems out of the demand to fulfill the 
requirement 0T

L L <ωM  in the presence of the 
disturbance α∆  relative to the existing 
equilibrium state (22). As the necessary condition 
is 2 0qM q < , there from emerges sufficient condi-

tion ( ) 2 0T
L L qM q M qα α= ∆ + <ωM  for 0q ≠ . 

As there is mM QScCα α= ,  ( )2q mqM QScC c V=  

and ( )zq Z mV C QS mVα αα∆ =− =− previous con-

dition becomes ( ) ( )2 0mq z mC C c V C mV QSα α− > , 
which is identical to the condition for the longitu-
dinal motion stability in [9]. 

4.2 Lateral-directional motion analysis 

To analyze lateral-directional mode of airplane 
motion on the basis of condition (13) is sufficient 
to separately observe expression  

 
( ) 2

0,

T
D D D D

T
D D D

d E E
dt

bp cr

= = =

= + + ≤

ω

ω ω

M

M
(24) 

where DE  is separated kinetic energy of the 
lateral-directional angular motion and DM  and 

Dω  are in the same form as in the case of locally 
linearized model of aerodynamic moment. By 
assumption, separated observation of the lateral-
directional mode of airplane motion reduces to 
zero pitching angular velocity, i.e. 0q = .  Then 
the inherent form of kinetic energy of rotation 
presented as the ellipsoid of rotation (6) is 
reduced to ellipse in the Opr  plane 
 2 2 2

1 32 .
DR DE J p J r R= + = (25) 

Geometrical interpretation of condition (24) is 
performed in three-dimensional space DOE pr  
with axis DOE , Op  and Or . The function 

T
D D D bp cr+ +ω ωM  then presents the sum of 

paraboloid T
D D Dω ωM  and planebp cr+  contai-

ning coordinate beginning O . The plane bp cr+  
can rotate around coordinate beginning O  with 

orientation defined by coefficients b  and c , i.e. 
by straight lines bp  in coordinate plane DOE p  
and cr  in coordinate plane DOE r . The inter-
section of paraboloid T

D D Dω ωM  and plane 
constDE =  parallel to the coordinate plane Opr  

is ellipse with the main axes parallel to the first 
and third main axes of inertia of the airplane as 
the rigid body. 
 

 

For the airplane in the equilibrium flight is from 
(22) 0eb =  and 0ec = , so plane bp cr+ and 
coordinate plane Opr  are coplanar. For the above 
equilibrium initial state, the necessary condition 
for the stable rotation of the airplane in the 
separated lateral-directional mode is 

0T T
D D D D D= <ω ω ωM M , wherefrom emerges 

require-ment 0D <M  for negative sign definite-
ness of matrix DM . This requirement is satisfied 
if all main minors of this matrix are negative [11]. 
Expressed through dimensionless and dimensional 
coefficients that is ( )2 2 0p lpL QSb V C= < , 0lpC <  

and ( )( )2 2 0p r p r lp nr np lrL N N L QSb V C C C C− = − < . 
The same requirement is defined in [8,9,12]. 
Boundary stability is in the case 0D =M  and 
instability for 0D >M . 

Figure 3. The rate of energy of rotation in the lateral-
directional mode. 
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Any deviation from the equilibrium state causes 
increments b∆  and c∆ , that is 0eb b b= + ∆ ≠ and 

0ec c c= + ∆ ≠ . Then, the plane equation becomes 
bp cr∆ + ∆  and the plane is rotated around 

coordinate beginning O  by angle b∆  in coordi-
nate plane DOE p  and angle c∆  in coordinate 
plane DOE r . Then, the apex of paraboloid is 
shifted from coordinate beginning generating 
three regions of condition (24). The first contains 
zero values of condition (24) presenting ellipse in 
coordinate plane Opr , with two other presenting 
surfaces of opposite sign. 
For example, for stable airplane and above 
equilibrium initial state is 0D <M  and element 

T
D D Dω ωM  is with nonpositive values. Deviation 

out of equilibrium causes that sum 
T
D D D bp cr+ ∆ + ∆ω ωM   has region of positive 

values. Deviation can be caused by required 
deflection of control surfaces lδ∆  and nδ∆  or by 
environment disturbance in the form of either β∆  
or variations of coefficients Lβ∆ , 

l
Lδ∆ , 

n
Lδ∆ , 

0L∆ , Nβ∆ , 
l

Nδ∆ , 
n

Nδ∆  and 0N∆ . 
The condition of the stability of the longitudinal 
motion stems out of the demand to fulfill the 
requirement 0T

D D <ωM  in the presence of the 
disturbance β∆  relative to the existing equi-
librium state (22), so 0eβ =  and β β= ∆ . The 
necessary condition is always 0D <M , so the 
sufficient condition for the stability of the airplane 
in the lateral-directional motion in the presence of 
disturbance β∆  is that angular velocities p  and 
r  are such that the requirement 0bp cr+ <  is ful-
filled. Boundaries of area where previous inequa-
lity is valid can be determined from expression  

 
( )
( ) 0,

l n

l n

l n

l n

bp cr L L L p

N N N r

β δ δ

β δ δ

β δ δ

β δ δ

+ = + + +

+ + + =
 

because 0 0 0eL L= =  and 0 0 0eN N= = . One partial 
solution of this equation is its identical equality 
when 0b =  and 0c = . Computing β  from 0b =  
and substituting into 0c =  yields the condition  

 0,
l n

l n

l

n

l

n

N N
N L

L L

δ δ

β β

δ δ

δ
δ
δ
δ

+
− =

+
          (26) 

which defines relations in stationary turning flight 
with sideslip. 
From the same boundary condition equivalent 
conclusion can be made. Computing lδ β  from 

0b =  and substituting into 0c =  yields  

 0.l l

n n

l l

n
N N

N L L N
L L
δ δ

β β δ δ
δ δ

δ
β

  
− − =     

(27) 

For undeflected rudder, 0nδ = , previous equation 
reduces to 
 0.

l l
N L L Nβ δ β δ− =               (28) 

If in condition (24) are taken only elements 
multiplied by r  and pβ  where p const= , the 
stability condition is 

2 0r ry L p N r L rp N rβ ββ β= + + + < .  Function y  
is parabola with yawing angular velocity r  as 
independent variable. The value of independent 
variable ( )( )2ax r rr N L p Nβ β= − +  yields the 
apex of parabola y  as 

( ) 2 2 2 22
2

r r r
ax

r

L N N L p N L p
y

N
β β ββ β+ + +

=    (29) 

For the airplane with empennage rN  is negative 
in the area of sub critical angles of attack, 
therefore apex of y  is it maximum. Generally y  
is with two zeroes and two sets of values with 
opposite sign. If it is demanded that the function 
y  is negative then must be 0axy < . One of the 
boundaries is  
 0,r rL N N Lβ β+ =                (30) 

as in the condition (29) sum of squares is always 
positive. It must be noted that all obtained 
conditions are partial solutions of general 
condition 0T

D D <ωM  and are in full compliance 
with the results obtained in [9,12]. 
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5 Airplane lateral-directional rotation 
due to the longitudinal command 

Important property of an airplane is its lateral-
directional behavior generated by the commanded 
longitudinal rotation. This behavior is of 
particular interest in the vicinity of critical values 
of angle of attack. Assessment of this phenome-
non is necessary to understand the physical 
process related to the loss of the lateral-directional 
stability due to the commanded longitudinal rota-
tion, the consequences being “wing-drop” or spin. 
To obtain the full understanding of the airplane 
lateral-directional rotation due to the commanded 
longitudinal rotation it is necessary to consider the 
complete model of the airplane dynamics. For the 
airplane with the plane of symmetry Oxz , the 
developed form of equations (2), with forces in the 
wind coordinate system and moments in the body 
coordinate system is [13]: 

 

( )

( )

( )

( ) ( )

( ) ( )

( )

0

0

0

2

wind

wind

D

L

Y

xz x y zz xz

x z xz x z xz

QSV C g c c s s c s
m

Tgs c c c c
m

QS C q t pc rs
mVc
g Tc c c s s s

Vc mVc
QS gC ps rc c s c
mV V
s Tg c s s c c c
V m

I I I II L I Np
I I I I I I

ϕ θ α ϕ θ β

θ α β α ζ β

α β α α
β

ϕ θ α θ α α ζ
β β

β α α β ϕ θ

β α θ α ϕ θ α ζ

= − + + −

− + +

= − + − + +

+ + + +

= + − + +

 + − + +  
− ++

= +
+ +

( ) ( )( )
( )

( )( )

2

2 2 1

2 2

1

1

nz y z xz
p p i

x z xz x z xz

z x xz

y y y

n
p p i

y

pq

I I I Iqr I q
I I I I I I

I I IMq pr r p
I I I

I r
I

ω

ω

+

−
+ −

+ +
−

= + + − +

+

∑

∑

 

 

( )

( )( )

2

2 2

2

2 1

x x y xzxz x

x z xz x z xz

xz x y z

x z xz

nx
p p i

x z xz

I I I II L I Nr pq
I I I I I I

I I I I
qr

I I I
I I q

I I I
ω

− ++
= + +

+ +

− +
− −

+

−
+ ∑

            (31) 

In equation (31) are, for brevity, with s , c  and t  
notified sine, cosine and tangent functions of bank 
and pitching angles ,ϕ θ  and angle of attack and 
sideslip ,α β . In (31) are also: T – resulting thrust 
force of propulsive group acting in plane of sym-
metry Oxz  at relative angle 0ζ  to Ox  axle,  g  – 
the acceleration of Earth gravity and ,

windD LC C  
and 

windYC  are coefficients of aerodynamic forces 
in the wind axes coordinate system. Eq. (31) 
together with kinematical relations of orientation 

( ), ,col ϕ θ ψ  and relation of rate of this vector 
with angular velocities [13,9,10] are defining the 
complete nonlinear mathematical model of 
airplane dynamics. 
In the stationary straight flight airplane rates ,V  

, , , ,p q rα β  and angular velocity ( ), ,col p q rω =  
are equal to zero. To disturb the airplane out of 
stationary flight it is necessary to make influence 
to the highest time derivative of some state varia-
ble in order to generate the variation of this and 
consequently other state variables. 
The longitudinal command out of stationary stra-
ight flight shall generate the variation of the rates 

, ,V α  and q . The longitudinal command can be 
made on throttle, generating variations of T and 
consequently airspeed and all ( )p iω , airbrakes, 
causing variations in the airspeed, and control sur-
face displacement making direct variation of the 
angle of attack. Any mode of longitudinal com-
mand will generate variation in the angle of attack 
and thus change total aerodynamic moment, as 
well as the coefficients presenting it. The vari-
ation of the M component of aerodynamic 
moment shall cause pitching rotation with 0q ≠  
and 0q ≠ . If on the airplane there are naturally 
unbalanced gyroscopic moments, then the q 
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variation generates 0p ≠  and 0r ≠  and therefore 
airplane bank and sideslip. The influence of the 
gyroscopic effects of the propulsive group on the 
rates p  and r made through coefficient  

( ) ( )p x x z xzi i
I I I I I−∑    is weak and can often be 

neglected. As angular velocities are initially zero, 
products pq and qr are also zero and there are no 
influence of inertial coupling to the rates p  and 
r . Then, the variation of p  and r  can be made 
only through L and N components of aerodynamic 
moment being directly dependent upon the selec-
ted aerodynamic configuration and instantaneous 
value of angle of attack of the airplane. For exam-
ple, the coefficient of directional stability Nβ  
after the critical value of angle of attack is achi-
eved significantly decreases and can change the 
sign. Coefficient of lateral stability Lβ  increases 
proportionally to the angle of attack up to it criti-
cal value and sharply decreases afterward. Similar 
behavior relative to the variation of the angle of 
attack are possessing damping and controlling 
aerodynamic lateral-directional coefficients. 
Therefore, to observe lateral-directional rotation 
due to the longitudinal command, it is sufficient to 
observe developed form of locally linearized 
aerodynamic moment (18), taking into account the 
scope of it validity. Longitudinal command out of 
stationary straight flight with 0p q r= = =  gene-
rates eV V≠  or eQ Q≠ , eα α=  and e

m mδ δ≠ . 
Observing expressions for L  and N  components 
of aerodynamic moment in (18) can be concluded 
that their non-commandend variation can be 
generated if coefficients comprising them are 
multiplied with non-zero value of corresponding 
state or input variable, or if the coefficient with 
zero index is variable. That means that longitu-
dinal maneuver is entered with: 
• Residual equilibrium value of angle of 

sideslip 0eβ ≠ , 
• Residual equilibrium values of control surface 

deflections 0e
lδ ≠  and 0e

nδ ≠ , 
• Existence of non-zero free element 

coefficients 0 0lC ≠  and 0 0nC ≠ , i.e. 
aerodynamic non-symmetry, 

• Combination of previous cases. 

ThisThe first case appears if equilibrium flight is 
performed with stationary value of angle of 
sideslip eβ . Moment generated by sideslip 
(elements ,e e

l nC Cβ ββ β ) is in stationary hori-
zontal flight compensated by deflection of either 
one or both control surfaces ,l nδ δ , as well as with 
action of air stream upon non-symmetric airplane 
( 0 0,e e

l l n nC C C Cβ ββ β= = ). It must be noted that 
for the small values of angle of attack and well 
defined aerodynamic configuration the modulus 
of coefficients lC β  and 

llC δ is the same, which is 
also the case with coefficients nC β , 

lnC δ  and 
nnC δ . 

Therefore, the unit angle deflection of control 
surface compensates approximately the unit angle 
of sideslip. With the increase of the angle of 
attack this correlation among these coefficients is 
not maintained. 
The second case is the most complex one as it 
combines characteristics of the airplane, pilot as 
the human operator and piloting techniques. There 
are multiple causes for existence of residual con-
trol surface deflections. These are: the balancing 
in horizontal straight flight of drag difference on 
the left and right wing due to aerodynamic asym-
metry ( 0 00, 0l nC C≠ ≠ ), of the residual sideslip 
angle described in the previous case and of the 
bank below pilot sensibility threshold ( 0ϕ ≠ ), as 
well as the compensation of the resulting force 
and moment of propulsive group. The last set of 
causes is related to the pilot – control system 
interaction due to inadequate force stimulance in 
one lateral command (stick or pedals) in the 
presence of small deflections of these control 
surfaces. This is the result of high friction in 
controls or the small gradient of commanding 
force relative to control surface deflection. Inade-
quacies in one lateral command are generally 
compensated by trimming the other. 
The third case appears in flight as the combination 
of the first two. It is emphasized as the existence 
of elements 0 0lC ≠  and 0 0nC ≠  notifies the 
aerodynamic asymmetry that is exclusively the 
consequence of the design (modeling of the 
aerodynamic form) or fabrication of the airplane. 
The existence of moment elements 0 0lC ≠  and 
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0 0nC ≠  in the area of small angles of attack is 
either unsensed or easily compensated. However, 
in the region of the high angles of attack due to 
the air stream separation and interference, the 
influence of these elements dominates the total 
amount of the aerodynamic moment components 
L  and N , often without the possibility that it can 
be compensated by the control surfaces deflection. 

The analysis of the weighting factors of the 
particular elements in the total values of the 
aerodynamic moment components as well as the 
modeling of the aerodynamic shape of the 
airplane that shall minimize the appearance of the 
lateral-directional rotation due to the longitudinal 
command is not the main topic of this paper. 

6 The generalization of the condition to 
prevent the increase and stop the 
lateral-directional rotation of the 
airplane 

General condition to prevent the increase and stop 
the lateral-directional rotation of the airplane is 
derived from the corresponding energy of rotation 

DE  and its rate T
D D DE = ωM . These two physical 

properties of the airplane performing lateral-
directional rotation are necessary and sufficient to 
perform the analysis of this mode of motion. As 
previously said, the exactness of the analysis per-
formed on the basis of known rotational energy 

RE  (4), (6) and its rate T
RE = ωM  (12), (13) is 

limited only by the exactness in the obtaining 
components of aerodynamic moment substituted 
into (13). Using developed form of locally lineari-
zed aerodynamic moment (18) provides the suffi-
cient exactness for engineering purposes. As defi-
ned, the scope of validity of (13) is within suffici-
ently small vicinity of any point in the state space 
of the airplane. Thus, the analysis is based upon 
equations (6) and (13) reduced to the case when 
pitching angular velocity is zero, 0q = . Then the 
condition (13) on the basis of (21) becomes  

 
( )
( )

0

0

0,

;
l n

l n

T T
D D D D D D

p r
D

p r

l n

l n

E bp cr
L L
N N

b L L L L

c N N N N

β δ δ

β δ δ

β δ δ

β δ δ

= = + + ≤

 
=  
 

= + + +

= + + +

ω ω ωM M

M
(32) 

the main difference in relation to (24) of the same 
form is that it is derived under more general 
conditions than is the stringent case for (24). The 
ellipsoid of rotation then becomes ellipse in the 
Opr  plane or plane of symmetry Oxz  as Opr  and 
Oxz  are coplanar  
 2 2 22 ,x xz zI p I pr I r R− + =         (33) 

with the analogous relation to (25) as is (32) to 
(24). Equation (33) is presented on figure 4, but 
the properties of the ellipse in the plane Opr  are 
the same regardless to the value of pitching angu-
lar velocity q . When airplane is performing only 
lateral-directional rotation, then 0q = , R DE E=  
and DR R= .  

 

Let review briefly the analysis of the separated 
longitudinal mode of airplane motion. The inequ-
ality 0T

L L <ωM  is observed as the function of 

Figure 4. The ellipse of energy of rotation in Opr  
plane. 
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one argument q  and two varying parameters: 
angle of attack α  and pitching command mδ . Ad-
ditional condition has been obtained for the case 
of reducing ellipsoid of rotation to the Oq  axes. 

Similarly, the condition 0T
D D DE = <ωM  can be 

observed as the function of two arguments, p  and 
r  and four varying parameters , , lα β δ  and nδ . 
Angle of sideslip β , and deflections of rolling lδ  
and yawing nδ  command are explicitly figuring in 
(32), while angle of attack α  is implicitly present 
as all of the aerodynamic coefficients are functi-
ons of instantaneous value of α . The equation 
(33) defines relation for the vector ( ),D col p rω = , 
as it tip is allways on the ellipse of rotation. 
Therefore, the number of independent arguments 
is reduced to one and any component of angular 
velocity can be selected as the independent one, 
either p  or r . In other words, instead of analy-
sing relations (32) and (33) in the space DOE pr  it 
is possible to analyse their projections to the 
planes DOE p  and DOE r . 
Exact analysis of equations (32) and (33) can be 
made in several ways. 
One approach is to solve (32) and (33) as the 
function of the relation r p . That approach is 
consistent one if p is not changing sign and 

0p ≠ . Then from the boundary case 0T
D D =ωM  

and condition 0b c r p+ ≠  the fourth order 
equation is obtained  

 

4 3 2 1
4 3 2 1 0 0

, 0, 0

H h H h H h H h H
p rh p b c
r p

+ + + + =

= ≠ + ≠
(34) 

where  
 

( ) ( )
( )

2 2 4
4

2
3

22 2 2
2

,

2 ,

4 ,

z r

z xz r p r

z x xz r p p r

H I c R N

H I b I c c R N N L

H I b I c I bc R N L N L

= −

 = − − + 
 = + − − + +  

 

 

 
( ) ( )2

1

2 2 2
0

2 ,

.

x xz p p r

x p

H I c I b b R L N L

H I b R L

 = − − + 
= −

 

The roots of equation (34) are defining the 
conditions needed to prevent the increase of the 
lateral-directional rotation. Modeling of 
aerodynamic configuration and selection of the 
permitted intensity of rotation R  adjust the 
distribution of the roots of this equotion. For 
example, the root close to the value x xzI I  defines 
the conditions to stop the spining of the airplane, 
while the root close to the value xz zI I  defines 
the conditions to stop the roll (fig. 4). 
The second approach starts from the assumption 
that the value of angle of sideslip acts as the inde-
pendently variable parametar in (32), when the 
equations (32) and (33) can be expressed either 
through rectangular coordinates p  and r  or 

through polar coordinates 2 2
D p rω = +  and η  

(fig. 4). In the maneuvers is ( )tβ β= , therefore 
as the analytical functional shape of the third 
equation in the (31) is unknown, this approach is 
siutable only in the flight conditions when 

constβ = , or value of β  is known. 
The third approach starts from the assumption that 
the sideslip angle rate β  is apriori known. Accor-
ding to the definition, the angle between velocity 
vector and its projection on the plane of symmetry 
Oxz  is angle of sideslip β . Its rate β  can be 
then assumed as the vector normal to the plane 
formed by β  and lying in the Oxz . Its direction 
is normal to the projection of the velocity vector 
to Oxz , therefore, according to the definition of 
the stability coordinate system, β  is always on its 
axes. As Oxz  is coplanar with Opr , β  can be 
expressed as the linear combination of angular 
velocities p  and r , p rK p K rβ ββ = + . The 

sideslip angle is rarely out of the range of 020±  so 
the approximations sin β β  and cos 1β  can 
be made. Putting the expression for β  and 
approximations  into  the third equation in (31),  
the functional  shape of  sideslip  angle becomes 

( ), , , , , , , , , , , ,l m n p rV p q r T K Kβ ββ β α θ ϕ δ δ δ= . 
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The unknown coefficients  pKβ  and  rKβ  can  be 

determined from the assumption that value of β  
is known. Then the expression for β  can be sub-
stituted into (32) to provide another analytical 
form of DE . 

Let the third equation in (31) express in the form  
0 ,

l nl np rK K p K r K Kββ β β βδ βδβ β δ δ β= + + + + +  

where the coefficients Kβ ∗  can be exactly 
calculated as the functions of variables used in the 
existing literature [13] in the form:  

 

( )

( )
( )
( )

( ) ( )

0 0

0

2 2

0
0

[

2

]

; ;
2 2

; ;
2 2

.

m m

l nl n
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A N m

A N

Yp Yrp r

Y Y

Y

QSK C C c C s
mV

c C c C s q
V
C c C s

C c C s
g Tc s s c c c
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QSb QSbK C s K C c
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QSb QSbK C K C
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QS gC s c
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β α αββ

δ δ

β β

δ δβδ βδ

α α α

α α

α α δ

α α

α θ α ϕ θ α ζ

α α

β ϕ θ

 = + + 
 

+ + +

+ + +

+ + +

+ − + +

= + = −

= =

= +

 

In these expressions, the aerodynamic coefficients 
#AC  and #NC , # , , , ,0mq Yα δ=  are defined in the 

‘stability’ axes coordinate system [13]. Then the 
angle of sideslip can be, by using this redefined 
expression for β , written as  

0.
l np r l nK p K r K Kβ β βδ βδβ δ δ β= + + + +  (35) 

The coefficients are ( ), , , , , ,mK K V q Tβ β α θ ϕ δ∗ ∗= =  
K Kβ ββ∗= − , , , ,l np r δ δ∗ = , whereas the free ele-

ment  ( ) ( )0 0 0, , , , , , ,mV q T Kβββ β α β θ ϕ δ β β= = −  
is the  function  of the rate of sideslip angle, that is 
known by assumption. By substituting (35) into 
(32) the new form of the rate of rotatio-nal energy 

DE  along angular velocities p  and r  is:  

( )
( )
( )
( )
( )
( )

0
0

0
0

0,

l l

n n

l l

n n

T
D D D

T
D D D

p r
D

p r

l

n

l

n

E
b p c r

L L
N N

b L K L

L K L

L L

c N K N

N K N

N N

β β β

β β
β

β β

β
δ βδ β

δ βδ β

β

β
δ βδ β

δ βδ β

β

δ

δ

β

δ

δ

β

= =

= + + ≤

 
=  
  

= + +

+ + +

+ +

= + +

+ + +

+ +

ω
ω ω
M

M

M

           (36) 

with coefficients in D
βM  being 

 
; ;
; .

p p p r r r

p p p r r r

L L K L L L K L
N N K N N N K N

β β
β β β β

β β
β β β β

= + = +
= + = +

 

In the condition (36) angle of sideslip β  is impli-
citly contained in the coefficients it contains, 
which is the main difference in relation to (32). 
Thus it permits more straightforward correlation 
between angular velocities p  and r  and airplane 
commands lδ  and nδ , which together with (33) 
makes it suitable for the analysis of the stability 
conditions of the maneuvering airplane. When 

0β = , as in coordinated turn,  (36) becomes 
identical to (32). 
The sign definiteness of (36) is subjected to the 
same rules, as is the case for (32). For the case 
when 0b cβ β= =  the condition 0T

D D ≤ωM  is 
fulfilled when the matrix D

βM  is nonpositive, 
0D

β ≤M , i.e. if and only if all main minors of this 
matrix are nonpositive. Therefore, the following 
set of conditions must be simultaneously fulfilled  

( )
( )

0
0

0

0

p p
p

p p

p r p r

p r p r r p p

p r r

L K L
L

L K L

L N N L

L N N L K L N N L

K N L L N

β ββ

β β

β β β β
β β β

β β β

+ ≤≤ ⇒  ≤−
 − +
− ≤ ⇒ + − +

+ − ≤

(37) 
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In the same manner that was the case in (24) or 
(33) with matrix DM  the nonpositive sign defini-
tness of matrix D

βM  defined in (37) presents only 
the necessary condition for the stable mode of la-
teral-directional rotation of the airplane, whereas 
the 0DE ≤  or 0T

D D ≤ωM  is the general one. 

For the equilibrium straight stationary flight 
( 0, 0b c= = ) and coordinated turn the condition 
(37) is simplified to 0pL ≤  and 0p r p rL N N L− ≤ . 
General stability condition for the lateral-direc-
tional motion (37) should be fulfilled within 
whole range of interest of the values of the angles 
of attack. Before defining stability conditions, let 
review that positive values of variables are: p  - 
right wing down, r  - nose to the right, β  - velo-
city vector in the first octant of the airplane body 
system, , ,l m nδ δ δ  - deflections generating local 
increment of lifting force. It must be noted that 
coefficients pKβ  and rKβ  are positive for adverse 
and negative for proverse motion. The second 
condition in (37) shall be absolutely fulfilled if all 
of the addends are simultaneously less than zero. 
The conditions than can be expressed as 

       For adverse              For proverse 

     0 0
0 0
0 0

p p p p

p r p r p r p r

p p p p

r r r r

L K L L K L
L N N L L N N L
L N N L L N N L
N L L N N L L N

β β β β

β β β β

β β β β

≤ − ≥ −
− ≤ − ≤
− ≤ − ≤
− ≤ − ≤

       (38) 

The relations (37) and (38) are only necessary 
conditions obtained without taking into account 

relation (33). They are often met in the classical 
analysis of airplane rotation. Out of (33) the rela-
tions ( )p r  or ( )r p  can be obtained. Then, by sub-
stituting these relations into (36), the necessery 
and sufficient conditions for stoppage and preven-
tion of the  increase of the airplane rotation are 
obtained in the form of  the following functions  

2

2 2

2

2 2

T
D D r r r

r r r r r r

p p p

p p p p p p

A r B r E

C r d e r D d e r

A p B p E

C p d e p D d e p

β β β

β β

β β β

β β

= + + ±

± − ± −

= + + ±

± − ± −

ωM

(39) 

with diagrams given in the fig. 5 for the case 
0lδ ≠ . The coefficients in (39) are  
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(40) 

 

 
 Figure 5. The variations of the rate of energy of rotation in planes DOE p  and DOE r .  
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For the cases of equilibrium horizontal flight and 
for the maneuvers in the vertical plane, coef-
ficients bβ , cβ , rBβ , rDβ , pBβ  and pDβ  are 
approximately zero and then (39) becomes  

2 2

2 2

T
D D r r r r r

p p p p p

A r E C r d e r

A p E C p d e p

β β β

β β β

= + ± − =

= + ± −

ωM
     (41) 

Because A Eβ β
∗ ∗∗+  is by order of magnitude 

greater than 2C d eβ
∗ ∗ ∗∗ − ∗ , ,p r∗ = , proper-

ties of  T
D DωM  are basically dominated by proper-

ties of expression A Eβ β
∗ ∗∗+ , ,p r∗ = , that is by 

the values of the moments of inertia, coefficients 
pLβ , pN β , rLβ , rN β  and intensity of rotation R  

generated by longitudinal command. For the 
particular realization of the intensity of rotation R  
or DR  the values of angular velocities are constra-
ined by equation (33). Then, out of the 0T

D D ≤ωM  
the condition for the relation of the coefficients 
that are providing stable behavior of the airplane 
in the lateral directional mode of motion is 
obtained in the form  

( )

( )

2

2 2

2 3

1

2 32 3

xz xzz
p p r r

x x x

xz
r p p r

xzx xz x
zz z

I II L N L N
I I I

IN L N L
II I I
II I

β β β β

β β β β

  
 − − + ≤ 
   

≤ + +
  −−  
 

(42) 

The relation in (42) must be obtained simultane-
ously with 0bβ =  and 0cβ =  within whole range 
of interest of the values of the angles of attack. 
If the relations ( )p r  and ( )r p  have been subs-
tituted into (32) instead of (36), the obtained exp-
ressions should be of the mathematical form 
identical to these in the equations (39) to (42), 
with the difference that the upper index β∗  would 
not exist. Then, for example, for the case of the 
airplane with centrifugal moment of inertia equal 
to zero, i.e. 0xzI = , 1xI J=  and 3zI J= , the 
condition (42) is transformed to the simple form  

 3 3

1 1

12
2p r p

J JL N L
J J

≤ ≤           (43) 

that must bi fulfilled simultaneously with 0b = , 
0c =  within whole range of interest of the values 

of the angles of attack. 
Let remind that geometrical interpretation of (32) 
and (36) is the same as this for (24). For airplane 
fulfilling necessary stability condition for the 
lateral-directional mode of motion matrix DM  is 
negative, as well as the matrix D

βM . In maneuver 
of this airplane coefficients are 0b ≠ , 0c ≠  or 

0bβ ≠ , 0cβ ≠  and if the energy of rotation is 
increasing, its rate is greater than zero, i.e. 

0T
D D DE = >ωM . Then, the geometrical inter-

pretation for DE  or T
D DωM , regardless weather it 

is expressed through (32) or (36) is with three 
regions. First is positive, the second is the line of 
ellipse in plain Opr , while the third is negative. 
Therefore, the stoppage of rotation can be made if 

0T
D D DE = =ωM  and simultaneously is fulfilled 

0b = , 0c =  or 0bβ = , 0cβ = . Out of this 
condition is obtained the relation for aerodynamic 
coefficients  

( ) ( )
0 0 0

l l n nl nL N L N L N L N

L N L N
δ β β δ δ β β δ

β β

δ δ− + − +

+ − =
  (44) 

Deflecting control surface of either one or 
simultaneously both lateral-directional commands 
can fulfill this condition that the energy of 
rotation remains unchanged. 
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Let consider the case of extreme values of angular 
velocities p  and r  as they are defined on the 
ellipse of rotation (fig. 4) in the lateral-directional 
mode. For this case of angular velocities, the valu-
es of the deflections of the control surfaces lδ  and 

nδ  necessary to stop the increase of lateral-direc-
tional mode of rotation ( 0T

D D =ωM ) are easily 
determined by using expressions (32) and (33). In 
this case the relations in equations (39) and (40) 
are without upper index β , while the variables 
under square roots are zero, so the expression for 

T
D DωM  is reduced to  

.T
D D r r r p p pA r B r E A p B p E= + + = + +ωM   (45) 

Assuming that the equilibrium flight is defined 
with zero values of lateral-directional control 
surface deflections and sideslip angle, after 
substitu-ting extreme values of angular velocities 
from (33) (fig. 4) and modified coefficients (40) 
into (45) and equalized with zero ( 0T

D D =ωM ) is 
obtained  
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 ± 
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  
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  
    

± + + +    
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The first equation ( maxr ) contains the relations that 
define the condition to prevent the increase of 
rotation in spin, while the second ( maxp ) defines 
the condition to prevent the increase of rotation in 

roll. Within the boundaries of possible or permit-
ted deflections of control surfaces, using either 
one, or simultaneously both lateral-directional 
commands can fulfill each of the conditions in 
(46). In the difference to (44), which defines only 
the relation among aerodynamic parameters, 
expression (46) defines the relation between 
aerodynamic parameters, inertial properties of the 
airplane and the intensity of rotation R . On the 
other side, for defined point within the state space 
of the airplane the efficiency of the control surfa-
ces is constrained by aerodynamic shape and air 
stream properties, regardless to the possibilities of 
the airframe construction to deflect these surfaces. 
That means that control surfaces are generating 
limited the moments. Therefore, equation (46) 
enables reverse analysis. It can be used, for 
selected point in the airplane state space, to 
determine maximal value of intensity of rotation 

maxR  or maxDR  that can be compensated by any 
combination of control surface deflections of 
lateral-directional commands. For the case when 

maxR R> , it is not possible to stop the increase of 
rotation by lateral-directional controls. Then, it is 
possible to prevent the increase of intensity of 
rotation by using longitudinal command to either 
reduce the intensity of rotation or to shift the 
airplane to the point within its state space where 
the constraints of lateral-directional command are 
providing greater limits to control moments. In 
most cases longitudinal command is performing 
both of these tasks simultaneously. 

7 Conclusion 

Presented new methodology to analyze dynamic 
behavior of the rotating airplane within whole ran-
ge of angle of attack is based on the properties of 
the rate of kinetic energy of rotation. It has been 
shown that the character of the rotational motion 
of the airplane as the rigid body is determined by 
the rate of kinetic energy of rotation. The rate of 
kinetic energy of rotation is equal to the derivative 
of energy of rotation along the vector of angular 
velocity and by applying principles of classical 
mechanic and using full nonlinear model of airp-
lane motion it is proofed that it presents scalar 
product of the vector of moment and vector of 
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angular velocity of the airplane. Then, the exac-
tness of the presented method depends only upon 
exactness of the source of moments that are ap-
plied in it. The concept of the model of locally 
linearized aerodynamic moment has been intro-
duced with local applicability of this model within 
whole range of angles of attack. The application 
of this model enables simultaneous separated 
observation of longitudinal and lateral-directional 
motion. It has been also shown that, within the 
stringent constraints of the classical approach 
based on the separated modes of longitudinal and 
lateral-directional motion, there exists the full 
congruency of partial results of here presented 
method and the results of the classical one. On the 
other side, the general applicability of this method 
has been shown in the areas where the classical 
one fails to produce valid results. One is the ana-
lysis of the lateral-directional rotation generated 
by the longitudinal command. The other is the 
definitions of these conditions needed to prevent 
the increase and stop the lateral-directional rota-
tion of the airplane that are applicable within the 
whole range of interest of the values of the angle 
of attack. The results in the second area are produ-
cing new conditions and relations between values 
of aerodynamic and inertial parameters of the air-
plane, on one side, and the intensity of the airpla-
ne rotation on the other. To apply exposed 
method, it is sufficient to know the mathematical 
apparatus of algebra and functional relations of 
the aerodynamic moments (values of the aerody-
namic parameters) within the whole range of 
interest of the flight regimes. 
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