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Abstract  
A method of optimizing large-scale air-combat 
formation based on simulated-annealing GA 
(SAGA) was developed and investigated. In this 
study, a weighting method was used to model 
the problem of large-scale air-combat formation 
optimization and a “hierarchical coding 
method” was developed to encode formation. To 
avoid the premature convergence of GA, the 
simulated annealing algorithm was embedded 
into GA, and self-fitted Markov chain was 
introduced to improve the performance of SAGA. 
The optimization of 16-fighter formation was 
implemented, and the optimal formations were 
presented and showed that SAGA was much 
better than simple GA. To explore an efficient 
and robust SAGA, the comparisons of different 
Markov chains and different state functions 
were made, it was shown that the combination 
of self-fitted Markov chain and the state 
function of equation (2) was more appropriate 
for large-scale air-combat formation 
optimization using SAGA. 

1 Introduction 
Large-scale air-combat formation tactics plays 
an important role in modern air combat of BVR 
(Beyond Visual Range). The Large-scale air-
combat formation (LACF) is superposed from 
some small-scale air-combat formations (SACF), 
and inherits and develops the formation tactics 
of theirs. Exploration on the optimization 
method for LACF is practically significant. It 
may provide formation references to the pilots, 
so that they can quickly adjust the formation to 

acquire the initiative in the air combat. A good 
formation can make up weakness of single-
fighter performance and achieve better outcome 
of combat. 

Mulgund et al utilized stochastic GA to 
optimize LACF and developed correlative 
software [1,2]. This method is usually used in 
the case that long genetic code exists. Yet 
Krishnakumar indicated that it couldn’t solve 
the problem of premature convergence [3]. We 
proposed simulated-annealing GA to overcome 
such premature convergence and obtain optimal 
formations. 

2 The Hierarchical Formation Tactics 
The term, formation tactics encompasses two 
concepts, including [1]: 

•  Formation tactics that specify how small 
groups of aircraft can work 
cooperatively 

•  Principles for constructing division 
tactics 

The large-scale formation tactics 
employing a basic fighting unit of small-scale 
formation is most effective. The formation 
tactics for large groups can be developed using 
a hierarchical structure consisting of small units 
or divisions [2]. Basic fighting units of two 
aircrafts includes Double-Attack (DA) and 
Fighting-Wing (FW), as shown in Fig.1: 

 
 

 
The top vertex of triangles denotes heads of 
aircrafts. DA refers to the formation that the 
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Fig.1. Formation of DA (left) and FW (right) 
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wingman is flying in the region between 15 
degree ahead of and 20 degree behind the lead 
man. Such a formation is often adopted to gain 
attacking and defensive advantage in high 
altitude. FW, by which the wingman is flying in 
the region of 30～60 degree behind the lead 
man, is fit for a low altitude because of its fine 
maneuverability. While these small formation 
units are integrated hierarchically, their tactics 
are also inherited and developed. Giving 
fighting units of two aircrafts as blocks, the 
potential four-aircraft formations are shown as 
follows: 
 
 
 
 
 
 
In Fig.2, formations are superposed from two 
same fighting units. Taking formation (4) in 
Fig.2 as example, two FW formations form a 
DA-like formation (In this case, DA was called 
the “root formation” in this study). One FW of 
formation (4) is the leading-man unit in this 
DA-like formation and another FW takes the 
duty of wingman unit. In the same way, larger-
scale formation can be developed from some 
four-aircraft or three-aircraft fighting units. The 
next section would discuss how these units 
could be integrated to form large fighting 
groups by using SAGA for optimizing the 
overall air-combat effectiveness. 

3 Formation Optimization 

3.1 Modeling of Formation Optimization 
Taking the air-combat formation as the design 
variable, fighter casualty statistics was 
employed to evaluate BVR (beyond visual 
range) combat outcome and the effectiveness of 
large-scale air combat formation. The 
mathematical model could be written as: 
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Where, Ci denoted weighting coefficients; X 
denoted the formation of blue team; Ri was 
percent of undestroyed blue-team fighters, 
percent of destroyed red team fighters, average 
living probability of remained blue-team 
fighters, average loss of living probability of 
remained red-team fighters, respectively. 

To evaluate the result of air-combat 
simulation, the simulation of radars and air-to-
air missiles should be considered. The 
probability that radar detects the target relies on 
azimuth and distance of the target. The models 
of detecting probability (Pd) and killing 
probability (Pk) were provided by Ref.4. The 
latter was utilized to calculate the living 
probability of the aircraft after being attacked. 
Pk/d denotes the conditional probability that the 
aircraft is killed after being detected. Assuming 
that Pk/d was equal to Pk, therefore the final 
living probability was calculated by multiplying 
Pk by Pd. 

How to assign target aircrafts to the 
attacker, was a key point in many-vs-many 
engagements. Making use of the method 
referred in last paragraph, one could calculate 
the one-to-one relative advantage of blue team 
to read team. All the data formed the advantage 
matrix. The rule of assigning targets proposed 
by Ref.5 and 6 was average, non-repeated and 
wholly advantageous. Then the target aircrafts 
were assigned according to the value of 
advantage, from large to small. If one attacker 
was selected to attack some target, its 
threatening power was weakened. That was to 
say, its referred advantageous value should be 
cut down. Afterward the advantage matrix was 
updated. When the living probability of some 
aircraft became smaller than the set threshold, it 
deemed to be destroyed. Besides, the initial 
distance between the two teams was set to 80 
kilometers, and it was becoming shorter, for 
they were all forward with a velocity while 
fighting. While the distance was as short as 10 
km, the combat ended. Finally Ri was evaluated 
according to the result of combat. Weighting 
coefficients were decided by one’s balance in 
killing and destroying. 

(1) (2) 

(3) (4) 
Fig.2. Potential four-aircraft formations 
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3.2 Hierarchical Coding Method 
The formation of blue team was adopted as the 
design variable in the optimization model. 
Conventional algorithms cannot deal with such 
discrete problem, while GA can easily do it. In 
GA optimization, appropriate coding and 
decoding method must firstly be ensured. Here 
the binary code was defined to encode some 
usual small-scale air-combat formation units, 
such as “00” for wall-formation, “01” for 
finger-four formation, and the code of large-
scale air-combat formation was obtained by 
hierarchically superposing the codes of small-
scale formations. All the other codes for 
formation units were shown in table 1. 

Table 1. Units of binary codes 

Binary codes Formation Binary codes Formation

00  10  

01 

 

11 

 

The developed “hierarchical coding 
method” easily translated the formation into 
binary code with a one-to-one mode. Taking the 
formation of 16 aircrafts illustrated in Fig.3 as 
an example, it was explained how to translate a 
formation into a string of binary codes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

This formation could be denoted by ten digits of 
binary code. The first two digits indicated that 
the root formation was Lead Trail 4 formation, 
while every two digits in remained part denoted 
the formation of units, respectively. 

An effective genetic code should be easily 
one-to-one decoded. The hierarchical method 
conformed to this rule. Supposing the whole 
formation was flying in a same altitude, the 
space between each aircraft was 2 km in x and y 
direction, respectively. Then the comparative 
coordinates for each aircraft could be concluded. 
Given an absolute coordinate to one aircraft in 
the formation, coordinates for all aircrafts could 
be gained. 

3.3 Optimization based on SAGA 
Simple GA owns fine ability for global search. 
But it is not so well in local search that 
premature often happened. So simple GA is 
usually combined with other algorithms of best 
local search ability. Here Simulated Annealing 
(SA) algorithm was introduced to improve it. In 
each generation, “sub-optimization” was 
implemented with SA before the GA operations, 
i.e. selection, crossover and mutation. This sub-
optimization corresponded to an equilibrium 
procedure in constant temperature. SA operated 
on every individual. As the generation increased, 
the temperature reduced, until convergence. The 
optimization procedure was shown in Fig.4. 
Note that, module “Evaluation” meant combat 
simulation and evaluation of the outcome of 
engagement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. A formation of 16 aircrafts and its 
corresponding binary codes 
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Fig.4. Procedure for formation optimization 
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In SA algorithm, some key points needed 
to be emphasized, that was: 
•  State function 

In the equilibrium procedure of constant 
temperature, a new state is acquired by slightly 
disturbing the current state. A state function is 
defined to decide whether this new state is 
accepted. According to the Metropolis rule in 
SA, fine points are always accepted and bad 
points are partly accepted by probability, which 
was described as [7]: 
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Where, Pt denotes the probability of replacing 
state i with state j; fi and fj are the function value 
of target in state i and j, respectively; T denotes 
the current temperature. 

Yet in most cases, the state function 
proposed by Ref.8, shown in the follows, had 
higher efficiency and better ability of 
optimization than the regular one proposed by 
[7]. 
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•  Initial temperature 
Initial temperature should be not too high 

and not too low, so that efficiency and 
optimizing ability can be improved. Here a 
method suggested by Ref.9 was adopted. One 
could estimate the best value fb and worst value 
fw of target function, and defined a probability 
pa to accept the bad points, and then the initial 
temperature was as equation (4): 

awb pffT ln/)(0 −=  (4)

•  Function of descending temperature 
As the control parameter in SA, 

Temperature T must be reduced slowly avoiding 
Markov chain too long. In present work, the 
following function was adopted: 

m,2,1,0,1 =⋅=+ kTT kk µ  (5)

Where, µ  denotes the descending coefficients, 
which usually valued with 0.5~0.99. According 

to this function, temperature would be reduced 
slower and slower as the optimization going on, 
which was helpful to gain better stability. 
•  State producer 

In SA algorithm, state producer is used to 
disturb current state slightly for acquiring a new 
state while holding the temperature constant. In 
the case of formation optimization, it meant 
little change the current formation to get a new 
one. In GA, this was reflected in the change of 
codes. Yet was the root formation changed, the 
combat result must change greatly. In the 
contrast, change in formation units would only 
affect combat condition a little. So a unit was 
randomly chosen from current formation, then 
replaced with one selected in unit code table. 
•  Self-fitted Markov chain 

As the optimization going on, the optimum 
was closer. The iteration time needed to achieve 
balance in constant temperature was shortened 
gradually. So it need not to always maintain the 
same number of iterative steps in different 
temperature. That was to say, the length of 
Markov chain should not be constant. Firstly we 
designed manmade Markov chain as following: 

( )( )000 exp TTTMM −−⋅=  (6)

Where, M and M0 denotes the length of Markov 
chain in current temperature and in initial 
temperature, respectively, while T and T0 is the 
current temperature and initial temperature 
separately. Such an alterable Markov chain was 
better than a fixed one in optimization ability. 
Yet it could not timely fit the converging trend. 

Therefore, to control the optimization 
procedure of SA intelligently, a self-fitted 
Markov chain was used. Given a threshold of 
chain length sM , if the optimum in the same 
temperature had not been changed for sM  times, 
iteration was interrupted in this condition. By 
this means, it was realized that the optimization 
procedure was dominated by the converging 
condition itself. 

4 Results and Analysis 

4.1 Formation Optimization 



 

5  

LARGE-SCALE AIR-COMBAT FORMATION OPTIMIZATION USING
SIMULATED-ANNEALING GA (GENETIC ALGORITHM)

Given a population size of 80 and generation of 
40 for GA, the crossover and mutation 
probability was endowed 0.6 and 0.001 
separately. The coefficient µ in equation (5) 
was evaluated 0.95, and the initial length of 
Markov chain was 40. Two sides in engagement 
both owned 16 fighters, which were same in 
their combat capability. When the red team 
adopted two formations, the corresponding 
optimal formations of blue team were shown in 
Fig.5 and Fig.6, respectively. The outcome of 
combat was listed in table 2 and 3. From Fig.5 it 
could be concluded that, when adopting root 
formation of LT4, the blue team could win the 
red team 1, which was accord with the results 
given by Mulgund [1,2]. It showed that better 
engagement performance of fighter team could 
be obtained by optimizing large-scale air-
combat formation tactics using our SAGA. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. The engagement outcome according to Fig.5 

Evaluation criterion Blue Red 
Casualties 2 11 

Average living probability 0.37 0.44 

Table 3.The engagement outcome according to Fig.6 
Evaluation criterion Blue Red 

Casualties 4 15 
Average living probability 0.40 0.80 

4.2 Analysis for Computation Ability 
Taken formation optimization as example, the 
computation ability of SAGA was investigated. 

4.2.1 Comparison SAGA with Simple GA 
Using same parameters with section 3.1, the 
calculation was performed through Simple GA 
and SAGA, respectively. Performing trial 
calculation 50 times, the outcome was listed in 
table 4: 

Table 4.  Computation statistics of two algorithms 
The algorithm The simple GA SAGA

The times converging on the 
global optimum 8 50 

The times converging on the 
local optimum 42 0 

The probability that converging 
on the local optimum 16% 100%

The investigation above showed preliminarily 
the effectiveness of our algorithm. It could also 
be concluded that the convergence performance 
was markedly improved by using simulated 
annealing GA. 

4.2.2 Investigation of different SAGA 
To explore an efficient and robust SAGA, the 
comparisons of different Markov chains and 
different state functions were made. 

1) Using Fixed Markov Chain (FMC), 
Manmade Markov Chain (MMC), and Self-
fitted Markov Chain (SMC) respectively, state 
function in formula (2) was compared with that 
in formula (3). The converging history of 
average fitness was shown in Fig.7, 8 and 9. 
Through these three figures above, it was 
obvious that when FMC and MMC were 
combined with state function in formula (3), the 
converging performance of SAGA could be 
greatly improved. Yet it was not the same to 

Fig.6. The optimal forma-tion for blue 
team confronting red team 2 
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Fig.5. The optimal formation for blue 
team confronting red team 1 
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SMC. State function (3) did not bring SMC 
obvious improve. 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
2) Using state function (2) and (3), FMC, MMC 
and SMC was compared with each other. The 
converging history of average fitness was 
shown in Fig.10 and 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
One could see, from these figures, whether 

state function (2) or (3) was adopted, SAGA 
using SMC always won the best converging 
capability. SAGA, when combined with FMC 
or MMC, was almost the same in optimization 
ability. Through the calculation experiments, 
even FMC was a little better than MMC with 
state function (3). However the number of 
iteration steps of MMC was much smaller than 
that of FMC, which had a proportion of 
3620:24820. 

5 Conclusions 
This paper mainly investigates on two aspects 
below: 
1) Implementation of large-scale air-combat 

formation optimization 
2) Exploration of efficient SAGA 
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Fig.10. Comparison of three different Markov 
chains on condition of state function (2)

Fig.7. Comparison of two different state 
functions on condition of FMC 
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Fig.8. Comparison of two different state 
functions on condition of MMC 
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Fig.9. Comparison of two different state 
functions on condition of SMC 
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Fig.11. Comparison of three different Markov 
chains on condition of state function (3)
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Through these investigations, it can be 
concluded that: 
1) Better engagement performance of fighter 

team could be obtained by optimizing large-
scale air-combat formation tactics using 
SAGA. 

2) The convergence performance was 
markedly improved by using SAGA. 

3) Combination of self-fitted Markov chain and 
the state function of equation (2) were more 
appropriate for large-scale air-combat 
formation optimization using SAGA.  
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