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al Introduction  
lopment of small (less than 6 inches, or 
d) autonomous flying vehicles is 
d by a need for intelligent 
ssance robots, capable of discreetly 
ng confined spaces and maneuvering in 
ithout the assistance of a human 
 The ability to perform agile flight 
ildings, stairwells, ventilation systems, 
d tunnels is of significant military and 

value. The vehicles will fill the gap in 
rt-distance (less than ten miles) 
nce capabilities, not covered by today's 
 and spy planes. Such capabilities will 
l in battlefields (especially in urban 

 and against terrorists. The vehicles can 

also be used in dull, dirty or dangerous (D^3) 
environments, where direct or remote human 
assistance is not feasible. Non-military uses of 
autonomous micro-air vehicles will, in time, 
exceed in scope and scale the defence 
applications. They will become standard 
equipment for law enforcement and rescue 
services. The ability to explore D^3 
environments without human involvement will 
be of great interest for many industries - the 
vehicles will allow air quality sampling in 
nonattainment areas, utility inspection (power 
lines, oil pipes), examination of human-
inaccessible confined spaces in buildings, 
installations and large machines. 

 
Fig. 1 Shapes of butterfly wings during flight 

Insects are capable of vertical take-off and 
landing and very agile maneuvers. To a first 
approximation, kinematic control of insect flight 
maneuvers is provided by changes in the tilt of 
the stroke plane, which is analogous to 
helicopter control (Ref. 21, 23, 24]. However, 
a detailed analysis reveals more subtle 
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mechanisms at work, especially asymmetries in 
the wingbeats. This includes inter-wing 
differences in: the magnitude of force 
production, timing of the downstroke-to-
upstroke wing rotation and the geometric 
position of the wings when the rotation occurs. 
This is abetted by the ability to control wingbeat 
amplitude and rotation timing almost 
independently, and by the presence of sensors 
on the wings [see Refs 2, 3, 9]. 

The remarkable maneuverability of insects 
is enabled by active control of the three-
dimensional shape of the wings during the beat 
cycle. Insect wings combine the features of 
levers, oscillating aerofoils and cantilevered 
beams and must be able to perform and 
withstand shifting patterns of bending and 
twisting forces. This is achieved by 
deformability of the wings, realized through a 
composition of supporting (deformation-
limiting, or stiff) and passively deformable 
(elastic) areas, whose behavior is monitored 
(and to some extent influenced) by a wide range 
of surface structures. The observed patterns of 
deformation (both active and passive) include: 
torsion, camber change and transverse bending. 
The insect wing is an integrated structure, 
combining sensors, materials and actuators in 
order to achieve structural control and 
adaptability required by highly maneuverable 
flapping flight [22]. 

The application of conventional 
aerodynamic theory to the flapping wing motion 
of insects predicts forces that are too low to 
keep the animal aloft. This failure of 
conventional steady-state theory has fuelled the 
search for unsteady mechanisms that might 
account for the elevated performance of insect 
wings. Direct measurement of the forces and 
flows produced by a flapping wing suggests that 
the aerodynamics of insect flight may be 
explained by the interaction of three distinct, yet 
interactive mechanisms: delayed stall, rotational 
circulation, and wake capture. While delayed 
stall is a translational mechanism, rotational 
circulation and wake capture depend explicitly 
on the rapid rotation of the wings during stroke 
reversal. The regulation of rotational phase 
provides insects with a potent means of 

controlling flight forces during steering 
maneuvers. A general theory of insect 
aerodynamics that incorporates both 
translational and rotational mechanisms shows 
promise in explaining the force generating 
mechanisms of many species as well providing 
insight for the design of biomimetic robots [10]. 

In the background of preparing this paper 
lies our believe that transferring ideas from the 
more matured disciple like aircraft technology 
to emerging animal technology should be 
beneficial for the later one and  vice-versa. One 
integrated idea, of special interest to both 
disciplines, is the active flexible wing concept. 
This concept represents a return to the Wright 
Brothers’ idea of wing warping or twisting by 
combining wing structures and flight controls to 
perform the desired maneuvers [22]. 

It is well known that the dynamics of 
entomopter over the flight envelope is highly 
nonlinear. The character of the loads acting on 
the vehicle - particularly the aerodynamics - 
vary substantially over the angle of attack 
operating range (which may include poststall 
incidences). The control of this type of plant can 
be achieved adequately via a variety of 
approaches, provided that the parameters of the 
controller (the gains in particular) are scheduled 
with flight condition. The nonlinearity of the 
system makes it difficult to implement a 
strategy of interpolating between gains derived 
from a few choice trim points. This is because 
the plant and the controller interact such that it 
is not clear precisely what the closed loop trim 
points are in vide flight regions, because 
aerodynamic loads often become asymmetric 
and where inertial coupling is significant. 

What is required at the design stage is a 
means of continuously evolving the control laws 
in conjunction with the plant dynamics over a 
wide region of the flight envelope, whilst 
achieving some desired control goal. 

In this paper it is used a methodology 
called the continuation design framework (CDF) 
(This methodology is precisely described in 
Refs [1, 4, 6, 7, 13, 25, 27, 28, 31, and 32]. 

Continuation methods are a class of 
numerical algorithm that can be used directly in 
the design of control law gain schedules, for 
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example. Due to the versatility of the technique, 
this can be done in various ways, incorporating 
various analysis tools [5, 12, 14, 17, 19, 26, 29, 
and 30]: 

• Direct inversion of the equations, e.g. to 
find variations in control surfaces to obtain 
desired state variable relationships. This has 
been used in the so-called “bifurcation 
tailoring” approach, in which control schedules 
are derived so as to effect a particular shape to 
the bifurcation diagram.  

• Addition of constraint equations to the 
dynamical system. This is where the 
continuation method is implemented on the 
whole differential-algebraic system (although 
the bifurcation theory apply only to the 
differential equations). The additional equations 
may make reference to properties of the 
dynamical system (e.g. eigenvalues, handling 
quality parameters, or combinations of states to 
constrain the solution to, say, a velocity vector 
roll) or they may refer to auxiliary measures 
(e.g. a model reference database, frequency or 
time response criteria). Each additional equation 
allows an additional parameter to be solved for. 
Examples of this were reported in [ccc], applied 
to nonlinear dynamic inversion and also to 
direct eigenvalue placement. 

• Combining the dynamical system with a 
controller design method that is traditionally 
applied to the linearized system at selected trim 
points. The method may be explicit, with a 
unique solution at each steady state point (such 
as the eigenstructure assignment example that 
follows) or implicit, requiring iterations until a 
specified condition is met. This offers an 
advantage relative to the addition of, for 
example, a cost function as an algebraic 
equation: the system may be redundant 
(allowing determination of a large number of 
unknowns, such as control law gains). The 
intention of CDF is to create a suite of 
interacting tools, linked to the continuation 
method, by which a multitude of design 
problems can be tackled in a modular and 
transparent manner. An important feature of this 
approach is that the model is defined only once 
and accessed by all the tools, thus obviating the 

difficulties experienced by practicing engineers 
when different computer packages use different 
model definitions.  

The CDF approach used in this work uses a 
Fortran-based continuation method (basing on 
XPPAUT software) and MATLAB as the basis 
for most of the tools. The mathematical model 
of the dynamical system is defined within 
MATLAB and the graphical user interface tools 
will be also exploited. 

2  Theoretical Background 
2.1 Dynamical Systems Theory  
In this paper we will study equations of the 
following form: 

( , ; )x f x t µ=&  (1) 

and 

( ; )x g x µa  (2) 

with 1, ,n px U t and Vµ∈ ⊂ ℜ ∈ℜ ∈ ⊂ ℜ
nℜ p

, 
where U and V are open sets in and ℜ , 
respectively. We view the variables x as a vector 
of n state variables, the variables µ as a vector 
of m parameters (or controls), x&

: n m nf ℜ × ℜ → ℜ
 is the time 

derivative of x and  is the 
smooth vector field (the n non-linear functions). 
Note that both open loop (uncontrolled) and 
closed loop rigid-body flight dynamical systems 
can usually be represented in the form of 
equation (1), and referred to [15] as a vector 
field or ordinary differential equation and to (2) 
as a map or difference equation. Both are 
termed dynamical systems.  
 By a solution of Eq. (1) we mean a map, x, 
from some interval 1ℑ ⊂ ℜ into , which we 
represent as follows 

nℜ

1: ,
( )

x
t x t

ℑ → ℜ
a

 (3) 

such that x(t) satisfies (1), i.e., 

( ) ( ( ), ; )x t f x t t µ=&  (4) 

Dynamical systems theory (DST) provides a 
methodology for studying systems of ordinary 

3  



Krzysztof Sibilski 

differential equations. The most important ideas 
of DST used in the paper will be introduced in 
the following sections. More information on 
DST can be found in the book of Wiggins [33]. 
The first step in the DST approach is to 
calculate the steady states of the system and 
their stability. Steady states can be found by 
setting all time derivatives equal to zero and 
solving the resulting set of algebraic equations. 
The Hartman-Grobman theorem (p. 234 in 
reference [33] proves that the local stability of a 
steady state can be determined by linearizing the 
equations of motion about the steady state and 
calculating the eigenvalues. The implicit 
function theorem (Ioos and Joseph [18], in 
Chap.2) proves that the steady states of a system 
are continuous function of the parameters of the 
system at all steady states where the linearized 
system is non-singular. A singular linearized 
system is characterised by a zero eigenvalue. 
Thus, the steady states of the equations of 
motion for an aircraft are continuous functions 
of the control surface deflections and/or vector 
of the thrust inclinations. Stability changes can 
occur as the parameters of the system are varied 
in such a way that the real parts of one or more 
eigenvalues of the linearized system change 
sign. Changes in the stability of a steady state 
lead to qualitatively different responses for the 
system and are called bifurcations. Stability 
boundaries can be determined by searching for 
steady states, which have one or more 
eigenvalues with zero real parts. There are many 
types of bifurcations and each has different 
effects on the vehicle response. Qualitative 
changes in the response of the entomopter can 
be predicted by determining how many and 
what types of eigenvalues have zero real parts at 
the bifurcations point. Bifurcations for which 
one real eigenvalue is zero lead to the creation 
or destruction of two or more steady states. 
Bifurcations for which one pair of complex 
eigenvalues has zero real parts can lead to the 
creation or destruction of periodic motion. 
Bifurcations for which more than one real 
eigenvalue or more than one pair of complex 
eigenvalues has zero real parts lead to very 
complicated behaviour. Continuation methods 
are a class of numerical algorithm used to 

follow a path of steady states in continuous or 
discrete dynamical systems as a parameter 
varies. They make use of the Implicit Function 
Theorem, which essentially states that if the 
Jacobian matrix J (5) of the system linearized at 
a stationary point is non-singular then this 
solution is locally unique, i.e. it is part of a 
unique curve of stationary points which is a 
continuous function of the parameters. 
Parametric continuation methods are used in the 
numerical application of bifurcation theory. The 
associated theorems involve properties of the 
eigenvalues at steady state solutions points (or 
Floquet multipliers for periodic orbit solutions), 
and it is therefore useful in bifurcation analysis 
to solve for all relevant solution branches within 
a state-parameter space whilst evaluating the 
eigensystem as the algorithm proceeds. It is this 
characteristic of continuation methods that make 
them suitable for the “global” control law 
design task at hand: the steady states provide a 
substantial amount of information about the 
mechanics governing system response - 
including that of the closed-loop controlled 
system. The Jacobian matrix of an equilibrium 
point x0 of a vector field or the fixed point x0 is 
the matrix 

1 1

1 1

0

1

. .

.
( )

. .

. .n n

n

.

f f
x x

Df x

f f
x x

∂ ∂ 
 ∂ ∂
 
 

= =  
 
 ∂ ∂
 ∂ ∂ 

J  

 
 
 

(5) 

The eigenvalues of the Jacobian matrix are 
important for the stability analysis. The 
following notations are used: 
Vector Fields: n0=number of eigenvalues of Df0 
with zero real part; n+=number of eigenvalues of 
Df0  with positive real part; n-=number of 
eigenvalues of Df0 with negative real part. 
Maps: n0=number of eigenvalues of Df0 on unit 
circle; n+=number of eigenvalues of Df0  outside 
the unit circle;  n-=number of eigenvalues of Df0 
inside the unit circle. An equilibrium or fixed 
point is called hyperbolic if n0=0, that is, it has 
no overvalues on the imaginary axis. 
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A continuation method is used to explore 
the nature of the system steady states as a 
parameter varies. In this context, steady states 
may refer to standard equilibria (stationary trim 
points such as steady level flight, steady climbs 
and descents, steady turns and spins) or to 
periodic orbits orbits (limit cycles such as 
oscillatory motion). The evolution of branches 
of equilibria are computed by selecting one of 
the m controls/ parameters as the “free” 
parameter (or continuation parameter), and then 
solving for: 

( , ) 0,             nx f x xµ µ= = ∈ℜ& ∈ℜ  (6) 

where µ is one of the members of µ. In the work 
presented here, a continuation method based on 
that of [15] is used. Details on bifurcation 
theory can be found in, for example, Ref. [8, 11, 
15, 20, 33]. 

2.1.1. Methodology scheme 
Taking into account experience of many 
researches, one can formulate the following 
tree-step methodology scheme (being based on 
bifurcation analysis and continuation technique) 
for the investigation of nonlinear aircraft 
behaviour [5, 17]: 

• During the first step it is supposed that 
all parameters are fixed. The main aim is to 
search for all possible equilibria and closed 
orbits, and to analyze their local stability. This 
study should be as thorough as possible. The 
global structure of the state space (or phase 
portrait) can be revealed after determining the 
asymptotic stability regions for all discovered 
attractors (stable equilibria and closed orbits). 
An approximate graphic representation plays an 
important role in the treating of the calculated 
results. 

• During the second step the system 
behaviour is predicted using the information 
about the evolution of the portrait with the 
parameters variations. The knowledge about the 
type of encountered bifurcation and current 
position with respect to the stability regions of 
other steady motions are helpful for the 
prediction of further motion of the aircraft. The 
rates of parameters variations are also important 
for such a forecast. The faster the parameter 

change, the more the difference between steady 
state solution and transient motion can be 
observed. 

• Last, the numerical simulation is used 
for checking the obtained predictions and 
obtaining transient characteristics of system 
dynamics for large amplitude state variable 
disturbances and parameter variations. 

2.1.2. Steady state conditions 
Bifurcation Theory is a set of mathematical 
results, which aims at the analysis and 
explanation of unexpected modifications in the 
asymptotic behaviour of non-linear differential 
systems when parameters are slowly varying. 
For a fixed control vector u, two types of 
asymptotic states are commonly encountered. 
The following relation gives the first: 

( , ) 0f x µ =  (6) 

This relation is named steady state. The second 
relation is given by the equation: 

( ) ( ) ( )
0

0 ,
T

x T x f x dtµ= + ∫  
 
(7) 

Starting with an approximation of a steady state 
for a given value of parameters, the computer 
code determines, by a continuation process, the 
solution curve x(µ) of a following set of non-
linear algebraic equations, and determine  type 
of bifurcation: 

( )
( )

( )

( ) ( ) ( )
1,2

T

0

Equilibrium points f , =0
Limit points f , =0

λ=0
Hopf points f , =0

λ =±2iπ/T

Periodic orbits T = 0 + f , dt

x
x

x

x x x

µ
µ

µ

µ∫

 

The continuation process assumes that all 
functions for (6) are continuous and have 
derivatives.  
The set of ordinary differential equations can be 
solved using the continuation and bifurcation 
software XPPAUT, a Windows version of a 
well known package AUTO97 [8, 11]. This very 
useful freeware gives all desired bifurcation 
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points for different values of control vector 
components. 

3 Mathematical model  
Entomopter structures is continuous systems 
with spatially distributed dynamic properties. 
General mathematical model of such structures 
has the form of boundary value problem: 

,Aw F w= ∈Ω  (8) 

, 1,...,j jB w g j
∂Ω

= = s  (9) 

where: A – nonlinear, nonsteady differential 
operator, w – state variable; F – external loads; 
B – boundary value operator;  –functions 
defining the boundary conditions.  

jg

Such a general description is useful for 
problem formulation but it must be precised and 
simplified for obtaining useful results. 
The standard model for elongated structures 
(such as airplane or animal wings) is a one 
dimension beam, described in the lack of 
damping by partial differential equation: 

2 2 2

2 2 2( ) ( ) ( , )z
w wx EI x P x t

t x x
µ

 ∂ ∂ ∂
+ = ∂ ∂ ∂ 

 
 
(15) 

where  - beam deflection; ( , )w x t µ  - mass 
distribution along the span,  - bending 
stiffness distribution along the beam span, 

 - external load distribution, t - time, x - 
spatial variable. 

( )EI x

( ,zP x t)

To complete the model the boundary conditions 
must be added to (10). For a cantilever model 
they take the form: 

(0, ) 0w t = , (0, ) 0w t
x

∂
=

∂
,

2 3

2 3

( , ) 0w l t
x x

∂ ∂
= =

∂ ∂
( , ) 0,w l t  

 
 
(16) 

where l is the beam length. 
As the control theory for continuous systems is 
not sufficiently developed for direct 
applications, a discretization for continuous 
models is applied, usually by using the Galerkin 

method. In this method, the resulting aeroelastic 
displacements at any time are expressed as a 
function of a finite set of selected modes: 

1

( , ) ( ) ( )
N

i i
i

w x t x q tφ
=

= ∑  (12) 

where: ( )i xφ  - coupled mode shapes for all 
deformations beam eigenmodes;  - normal 
coordinates.  

( )iq t

After discretization the final matrix form of the 
aeroelastic equations of motion is 

( )t+ =M q K q F&&  (13) 

where:  - matrix of generalized masses M

2

0

l

j jM dxφ µ= ∫  
(14) 

K  - matrix of generalized stiffness 
2

j jK M jω=  (15) 

and F - vector of generalised forces 

0

( ) ( , )
l

j zF t P x t dxφ= ∫ j
 

(16) 

This technique may be applied to more complex 
systems given, as we see in Sec. “Mathematical 
model of an entomopter”. 

3.1.  Control system design 

The active control approach in this study is 
based on the deterministic linear optimal 
regulator problem. Results for this full state 
feedback controller are used as baseline against 
which other controllers are evaluated [xxx].  
We present first the standard feedback design 
methodology. For control application the system 
(4) is transformed to a system of linear, first 
order differential equations in state and control 
variables: 

x = Ax+Bu&  (17) 

y = Cx  (18) 
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where  - vector of state variables, 
 - vector of control variables, 

( 1)n ×x
1)(r ×u ( 1)m ×y - 

the vector of system  outputs,  and A, B and C 
are state, control and outputs constant matrices 
of appropriate dimensions.  
The objective is now to find control u that is the 
control input to the animal wings. Control 
system design is described as minimization of 
performance index (called sometimes  the 
quadratic cost function) in the form: 

(1
2

0

T T )I dt
∞

= ∫ x Qx + u Ru  (19) 

where  is non-negative and ( )n n×Q ( )m m×R  
is positive definite symmetric weighting matrix.  
Applying calculus of variations for 
minimisation of performance index (24), the 
feedback control law is obtained in the form: 

1( ) ( )Tt −= −u R B Sx t

S

 
(20) 

A constant, positive-definite symmetric matrix 
S in the feedback gain matrix is obtained as a 
solution of matrix algebraic Riccati equation 

0T T T-1SBR B S - SA - A S - C QC =  (21) 

Generally solution of Eq. (21) requires 
sophisticated numerical methods.  
The resulting closed-loop dynamics equation is 
then defined as: 

x = Lx, L = A + BF&  (22) 

where the feedback control matrix has the form: 
1 T−= −F R B  (23) 

For a controllable system such a solution yields 
to a stable closed-loop system, i.e. the 
eigenvalues ( ), 1,...,j j nλ =L  of L, 

Re ( ) 0jλ <L  (24) 

lie in left-half plane of the complex plane.  
This method is referred as the linear regulator 
problem. By this method systems may be 
stabilised in the range of parameters essential 
for the system application.  
4  Mathematical model of an entomopter 

The dynamical description of a flexible 
structure must accurately represent all structural 
characteristics by relating dynamic responses at 
specific locations throughout the structure to 
forces acting on the system. Mathematically 
speaking, the motion of animals with distributed 
elastic parts can be described by a set of 
ordinary differential equations for the rotational 
motion of a given reference frame, and a set of 
partial differential equations for the elastic 
motion relative to that frame. Such a system of 
differential equations is known as a hybrid 
dynamical system.  
 Often, in the space industry, the analysis 
of unmanned spacecraft with flexible 
appendages begins with the assumption that the 
attitude and the vibrational motions of the 
spacecraft are uncoupled. Such analyses are 
performed for bounding the spacecraft jitter due 
to instrument disturbances. 

For our study the motion of the animalopter 
will be represented in the most general way by 
the differential equations:. 

( , )f=x x& u  (25) 

where : x – is the state vector, u – is the control 
vector. For rigid MAV x=[U, V, W, P, Q, R, 
Θ, Φ, Ψ]T where U, V, W are the forward, side, 
and yawing velocities of the animalopter; (P., 
Q, R are the angular velocities, roll, pitch, and 
yaw, Θ, Φ, and Ψ are roll and pitch angels. In 
Ref. 20, 21, 22 vector u was taken in the form 

[ ]u Tδ,γ, ,λω=  where: γ — feathering angle of 
wings, δ — flapping angle of wings, ω — 
frequency of wing motion respect to the body, λ 
- phase shifting between feathering and 
flapping. 

We propose to derive the system 
equations of motion by means of Gibbs-Appel 
equations procedure. Those equations have the 
following form: 

  d S
dt

∂
∂

 
= 

 
Q

q&&
 (26) 

where: q - is the vector of generalized co-
ordinates; ( ), , ,S q q q& && t - is so called Appel 
function, or functional of accelerations. 
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Functional S for i-th element of the mechanical 
system is given by the equation [16]: 

1
2

i i

V

S d
′

= ∫∫∫ v v& &o im  (27) 

where: means the vector of absolute 
acceleration of elementary mass dm

iv&
i of i-th body 

of the dynamical system considered (Fig. 2). 

 

Fig. 2 Location of points, radius vectors and 
vectors of velocities and accelerations 

( )0 0 0 0
i i i i i i i= + × + × ×v v ε ρ ω ω ρ& &  (28) 

Assuming that: 

3 3
i ii i′′ ′= + +r r r r3

a

 (29) 

and 
Ti i i

i
i i

O

m m
m

 
=  

  

I rM
r J

%

%

 (30) 

2
0 0

0 0 0

i i i
i

i i i i
O

m m
m

 +
=  

+ 

ω ω rh
r ωv ω J ω
% %

% % %
 (31) 

where mi – mass of the i-th element, JO
i tensor 

of inertia of the i-th element, ω vector of the 
angular velocity, v0

i vector of the velocity of the 
i-th element, and assuming that: 

if , than , ,
T

a a aξ η ς =  a
0

0
0

a a
a
a a

ς η

η ξ

η ξ

 −
= 
−

a% − 


 

the term (31) can be expressed in the following 
matrix form:  

( ) ( )1 11
2

T
i i i i i i i iS

− −  = + + 
     
v M h M v M h& &


(37) 

Calculating the matrixes Mi, hi, the Appel 
function Si for all k bodies of the system, and 
defining matrixes: 

1 2, ,... ..., kdiag  
=  

 
M M M M  (32) 

( ) ( ) ( )1 2, ,... ...,
T

T T Tk 
=  

 
v v v v  (34) 

( ) ( ) ( )1 2, ,... ...,
T

T T Tk 
=  

 
h h h h  

(35) 

functional S for the whole mechanical system is 
given by the equation: 

( ) (1 11
2

T
S − −= + +v M h M v M h& & )  

(35) 

Assuming that q is vector generalized 
coordinates of mechanical system, the relations 
between q and v are given by equation: 

( ) (, ,t t= +v D q q f q& )  (36) 

hence: 

( ) (, ,t= +v D q q φ q q&& && ), t  (37) 

where: 
= +Dq f&& &ϕ  

Therefore the Appel function can be expressed 
by following relation: 

( )

( ) ( )
, , ,

1
2

T

S t

− −

=

= + + + +

q q q

Dq h M Dq h

& &&

&& &&1 1ϕ Μ ϕ Μ
 (38) 

Assuming, that: 
T

g =M D MD and   ( )T
g = +h D M hϕ

and remembering, that: ( ) 1 1T T− −=D D MD D M  
the equation (14) can be expressed in the form: 
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( )

( ) ( )
, , ,

1
2

T

g g g

S t

−−

=

= + +

q q q

q h M q h

& &&

&& && 11Μ Μ g

 (39) 

 

 
Fig. 3 Systems of co-ordinates attached to 

flapping wing of MAV 

Non-linear equations of motion of 
rotorcraft-slung load system and the kinematics 
relations are expressed using moving co-
ordinate systems. It is applied the following 
systems of co-ordinates (Fig. 3): 
- Systems of co-ordinates attached to the 
aircraft, the common origin of which is located 
at the arbitrary accept point inside aircraft body. 
- System of co-ordinates Oxwnywnzwn, the origin 
of those system overlap a wings roots, all axis 
are parallel to the system of co-ordinates Oxyz 
attached to aircraft. 
- Systems of co-ordinates attached to the 
flapping wing. The wing is mounted to the hub 
on a universal join – free to flab (flapping hinge 
PW, system of co-ordinates PWtβ bβ nβ), lead or 
lag (lag hinge PO, system of co-ordinates 
POtζ bζ nζ,), but fixed in pitch (feathering hinge, 
system of co-ordinates POtbn). 

In case when we consider model of a 
flapping wings MAV treated as mechanical 
system containing rigid fuselage and 2 rigid 
wings fixed to the fuselage by means of two 
hinges, (considering the flapping and feathering 
hinges only), the vector generalized co-
ordinates has following form: 

[ , , , , , ,  , , , ]T
s s s L R L Rx y z β β θ θ= Φ Θ Ψq (40) 

vector of quasi-velocities can be expressed by 
the following equation: 

[ , , , , , ,  , , , ]T
L R L RU V W P Q R β β θ θ=w & & & & (41) 

For the holonomic dynamical system the 
relation between generalized velocities 

1, 2 ,........ nq q q=   q& & & &

1, 2 ,........ nw w w=

 and quasi velocities 

  w & & &  is following: 

( )T=q A q w&  (42) 

The matrix AT has a construction: 

G

T T

 
 =  
  

A 0 0
A 0 C

0 0 I
0  (43) 

The matrices AG and CT are classical matrices of 
transformations of kinematics relations and can 
be found in Ref. [19], the unit matrix I has 
dimension (3n+1) x (3n+1), n – number of the 
main rotor blades. 
From (18) we have the following relation: 

( )T T= +q A q w A w&&& &  (44) 

Finally, the Appel function has following form: 

( )

( ) (

*

1 1

, , ,
1
2

T

w w w w w

S t

− −

=

= + +

q w w

w M h M w M h

&

& & )
(45) 

where:  
( ) T

w T q=M q A M AT , 
and: 

( ) ( ), T
w T q T= +h q w A M A h&

q  
At last the Gibbs-Appel equations of motion, 
written in quasi velocities has the following 
form: 

( ) ( ) ( )

* * *

1

*

,...........,

, , , ,

TT

k

w w

S S S
w w

t t

  ∂ ∂ ∂
= =   ∂ ∂ ∂   

= + =

w

M q w h q w Q q w

& & &

& , t

(46) 

The vector Q* is the sum of aerodynamic loads, 
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potential forces acting on the MAV, and another 
non-potential forces acting on system. At last 
the equations of motion can be presented in the 
following form: 

( ) C

C

Ω Ω Ω

Ω Ω

+ +

+ + = +

MV M J J J R

MJ R MJ F G

& &

&

+

L +



 (47) 

( )
( ) ( )

0

2

R L
B B R B L

w w
s S S S

R R L L
B B R B B

B C

Ω

Ω Ω

Ω

+ + +

+ + + + +

+ + + +

+ = + ×

J Ω J O J O

J J J J J V

J J J O J J J O

J J Ω M R G

& & &

&

& &
 (48) 

where: M=mI, m – mass of MAV, I – unit 
matrix, F=[Fx, Fy Fz]T– vector of aerodynamic 
forces, M0=[L,M,N]T – vector of aerodynamic 
moments, V=[U,V,W]T – velocity vector; 
Ω=[P,Q,R]T – vector of angular velocity, 

- vector of right wing 

angular rates, - vector 

of left wing angular rate; R

, ,
T

R P Q Rβ θ= − +O & &

LO , ,
T

P Q Rβ θ = + + 
& &

c=[xc, yc, zc]T vector  
of the center of mass; 

0
0

0

R Q
R P
Q P

− 
 = − 
−  

ΩJ , ; 
0

0
0

z y

S z

y x

S S
S S
S S

 −
= 
−

J x


− 


L
B

Sx, Sy, Sz - static moments entomopter without 
wings;  - matrix of static moments of MAV’s 
wing; J

w
SJ

J
B- inertial moment of MAV without 

wings;   - inertial moments of right and 
left wing, respectively. The control vector is 
defined as follows:  

R
B , J

[ ], , , Tβ θ ω ψ=u  (49) 

ωηερε: β - flapping angle of wings; θ - 
feathering angle of wings, ω - frequency of 
wing motion respect to the body; ψ - phase 
shifting between feathering and flapping; 
and: 0 sin tβ β ω= , 0 cos tβ β ω ω=&  

0 sin ( )tθ θ ω ψ= + , ( )t0 cosθ θ ω ω ψ= +& .  
We assume that aerodynamic forces are 
nonlinear functions of angle of attack α, 

feathering angle θ, flapping angle β, and their 
derivatives: 

( )2
0

1 , , , ,
2x DF ρV SC ,α θ β α θ β= & &&  

( )2
0

1 , , , ,
2y yF ρV SC ,α θ β α θ β= & &&  

( )2
0

1 , , , ,
2z LF ρV SC ,α θ β α θ β= & &&  

( )2
0

1 , , , ,
2 lL ρV SbC ,α θ β α θ β= & &&  

( )2
0

1 , , , ,
2 mM ρV ScC ,α θ β α θ β= & &&  

( )2
0

1 , , , ,
2 nN ρV SbC ,α θ β α θ β= & &&  

 

 

 

 

(50) 

where: CL - lift coefficient; CD - drag 
coefficient; Cy – side force coefficient; Cl, Cm, 
Cn – coefficients of aerodynamic moments. 
 
4.  Results  
Control-augmentation systems of flapping 
wings Micro Air Vehicle involve both the direct 
interconnections between the control-surface 
deflections and different kinds of feedback. The 
direct interconnections can significantly 
improve the controllability of an aircraft and 
avoid possible departures due to aircraft-motion 
coupling. 

 
Fig. 4. Bifurcation diagram entomopter control. 
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The continuation technique can be applied to 
compute the nonlinear interconnection laws 
between stabilator, and stroke plane deflections 
to provide decoupling of longitudinal, 
directional and roll equilibrium states. Such 
decoupling may be useful during stabilization of 
flight in turbulent atmosphere with strong 
aerodynamic and inertia interaction between 
longitudinal and lateral dynamics. 

Conclusions 
The results presented demonstrate the efficiency 
of qualitative computational methods of 
nonlinear dynamics analysis for the design of 
control laws during flight in turbulent 
atmosphere. They are especially important in 
cases where there is strong nonlinear behaviour 
due to nonlinearities in aerodynamics and the 
control system. 
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