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Abstract

A generalised uncertainty analysis scheme for the
captive trajectory system of the Medium Speed
Wind Tunnel of the CSIR has been devised. The
scheme uses the trajectory generation data reduc-
tion code to determine the uncertainty of a pa-
rameter. The scheme is implemented using Mat-
lab, utilising the symbolic toolbox, the Maple
kernel and object oriented concepts. The scheme
represents the parameters as symbolic objects, al-
lowing the scheme to determine the equations of
derived parameters under consideration that are
only dependent on system independent parame-
ters from the trajectory generation data reduction
code. A test case using a trajectory generated by
the 1/15th scale stable store being released from
the NACA wing-body model was performed to
assess the implementation.

List of Symbols

b Bias error variance
B Bias limit
Ca Axial force coefficient
Cl Moment coefficient about the store x

body axis
dz Vertical displacement between store

and pylon
K Coverage factor
lre f Reference length
M Mach number
Mx Moment about the store x body axis

P Precision limit
Ps Tunnel static pressure
Pt Tunnel total pressure
q Dynamic pressure
S Precision error variance, reference

area
Tt Tunnel total pressure
U Uncertainty
Wi Store body axis velocity in the z axis

direction
XI Translational displacement of the

store centre of gravity in the inertial
x axis direction

YI Translational displacement of the
store centre of gravity in the inertial
y axis direction

ZI Translational displacement of the
store centre of gravity in the inertial
z axis direction

δik Kronecker delta
∆M Tunnel mach number correction
ψI Rotational displacement of the store

about the inertial z axis
φI Rotational displacement of the store

about the inertial x axis
ρ Correlation coefficient
θI Rotational displacement of the store

about the inertial y axis
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Nomenclature

CTS Captive trajectory system
HAOA High angle of attack
MMS Main model support
MSWT Medium Speed Wind Tunnel
PC Personal computer
RAM Random access memory
SWS Side wall support

1 Introduction

In experimental testing, the presentation of re-
sults requires the qualification of the results with
uncertainty bounds, error bars or an error bound.
This is because the true value of a result can
never be determined through experimental test-
ing. Only an estimate of the true value is ob-
tained, with the measured valued being offset
from the true value. Uncertainty bounds pro-
vide the reader of the results with an estimate
that the true value lies, within a given confidence
level, somewhere between the two extremes of
the bounds defined.

The qualification of experimental results with
uncertainty bounds provides the reader informa-
tion whereby the data can be interpreted more
meaningfully than without it. Indeed without un-
certainty bounds, experimental results are mean-
ingless because the results cannot be placed
within the context of the experimental test itself
let alone applying the results to other applica-
tions. Uncertainty bounds allow results from a
repeated experiment to quantitatively be assessed
for repeatability.

Within the context of captive trajectory test-
ing, uncertainty bounds qualify the meaning of
trajectories by indicating to the reader whether
changes in a displacement state variable are sig-
nificant or not. Alternatively put, uncertainty
bounds can help the reader not to place effort in
trying to interpret trends which may not neces-
sarily be significant.

While the primary motivation for providing
uncertainty bounds with trajectories in captive
trajectory testing is to qualify the results ob-
tained, the uncertainty analysis process can pro-

vide insight into the parameters that contribute
to the uncertainty of a state variable. The uncer-
tainty analysis process can thus move from being
reactive to proactive i.e. from qualifying results
to identifying the major contributing elements in
the uncertainty of a result to designing experi-
ments that can meet expected requirements.

With the emphasis by industry to present re-
sults with uncertainty bounds, the CSIR has im-
plemented an initial attempt at providing captive
trajectory test results with uncertainty bounds.
The implementation was chosen to be flexible so
as to accommodate code changes without hav-
ing to rederive the required formulae. This ne-
cessitated that a generalised uncertainty analysis
scheme be devised. While a generalised uncer-
tainty analysis scheme can be devised, the effi-
cient and effective implementation of the scheme
is facilitated using modern computing develop-
ments.

This paper covers the principles implemented
in the generalised uncertainty analysis scheme.
Details of the implementation are, however, also
elucidated namely the use of symbolic mathemat-
ics and object oriented concepts.

2 Background

The Medium Speed Wind Tunnel (MSWT) at the
CSIR is a closed–circuit variable density tran-
sonic facility, with a Mach number range of
M=0.3 to M=1.4. The total pressure range is
20kPa to 250kPa. The MSWT has a 1.5mx 1.5m
slotted test section with a 5% porosity. The test
section is equipped with four model support sys-
tems namely the main model support (MMS),
captive trajectory system (CTS), side wall sup-
port (SWS) and a high angle of attack (HAOA)
rig. The CTS is used to mount the store models
for the captive trajectory system while the SWS
is used for half model testing. The MMS is the
predominant test article support system, having a
pitch range of -10o to +30o and a roll range of -
180o to +180o. The HAOA rig extends the pitch
range of the MMS by adding a extra degree of
freedom resulting in a pitch range of -7o to +60o.
The CTS has three independent translational and
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three independent rotational degrees of freedom.
The ranges of the various degrees of freedom are
listed in Table 1.

Table 1 CTS Operational Range

Degree of freedom Range Units

Pitch ±45 degrees
Yaw ±45 degrees
Roll ±180 degrees
X ±560 mm
Y ±410 mm
Z ±525 mm

2.1 Theoretical Background

The theoretical background presented has been
obtained from references [1], [2] and [3]. While
the theoretical development given in these refer-
ences is more complete, only the relevant equa-
tions are shown here.

An error (the difference between the exper-
imentally determined value and the true value)
consists of two components, namely a bias or sys-
tematic component,Bi and a precision or random
component,Pi [1].

The uncertainty,Ui , of an experimental value
about the measured value ofXi is given by:

Ui =
√

B2
i +P2

i (1)

The precision limit,Pi , for measured variable,
Xi , is given by:

Pi = KSi (2)

whereSi is the standard deviation andK is the
coverage factor and equals 2 for 95% confidence
level [1]. The use ofK = 2 assumes a large sam-
ple size and Gaussian error distribution.

The uncertainty in an experimental result, r,
(whose result is obtained through a series of data
reduction equations) is a function of j variables
Xi , obtained from [1] and [2] and is represented
as:

r = r(X1,X2, ...,Xj) (3)

The uncertainty in the result, r, is, thus, as
stated in [2]:

Ur =

√
(

∂r
∂X1

Ux1)2 + ...+(
∂r

∂Xj
Ux j)2 (4)

whereUxi are the uncertainties in the mea-
sured variablesXi .

The generalised combined standard uncer-
tainty equation is defined as:

u2
c =

j

∑
i=1

((
∂r
∂Xi

bi

)2

+

j

∑
k=1

∂r
∂Xi

∂r
∂Xk

ρbikbibk(1−δik)

)
+

j

∑
i=1

((
∂r
∂Xi

Si

)2

+

j

∑
k=1

∂r
∂Xi

∂r
∂Xk

ρSikSiSk(1−δik)

)
(5)

whereS2
i andb2

i are the variances of the preci-
sion and bias error distributions respectively,ρSik

are the correlation coefficients for the precision
errors,ρbik are the correlation coefficients for the
bias errors andδik is the Kronecker delta defined
to equal 1 wheni = k and 0 wheni 6= k.

The uncertainty at some specified confidence
level (such as a 95%) is thus defined as:

Ur = Kuc (6)

The choice of which coverage factor to use
is discussed extensively in [1] Annexure 2-A.
For this implementation it was assumed that the
data has a Gaussian distribution and a confidence
level of 95%. References [1] and [2] do indi-
cate that the error distribution may often be con-
sidered Gaussian because of the Central Limit
Theorem. Furthermore, they also indicate that
for most practical wind-tunnel tests assuming a
Gaussian distribution prevents the false sense of
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significance that may be attached to the computed
numbers when using them. Also, the propagation
equation is approximate (being a first order Tay-
lor expansion only).

The 95% confidence expression for an uncer-
tainty,Ur , is thus:

U2
r =

j

∑
i=1

((
∂r
∂Xi

Bi

)2

+

j

∑
k=1

∂r
∂Xi

∂r
∂Xk

ρBikBiBk(1−δik)

)
+

j

∑
i=1

((
∂r
∂Xi

Pi

)2

+

j

∑
k=1

∂r
∂Xi

∂r
∂Xk

ρPikPiPk(1−δik)

)
(7)

2.1.1 Dependent Parameters

The partial derivatives of an uncertainty solution
must be derived with respect to independent pa-
rameters [1]. A common error that is made in
uncertainty analysis is to derive Equation 7 (i.e.
the partial derivatives) using dependent parame-
ters. This is because equations are normally de-
rived using subsequent equations that are depen-
dent on a number of independent parameters. For
example, a result x is, in an analytical derivation,
dependent on variables y and z.

x = x(y,z) (8)

Variable y is dependent on the independent
parameters f and g, and variable z is dependent
on independent variables g and h.

y = y( f ,g)
z = z(g,h) (9)

As both variables y and z are dependent on
g, erroneous uncertainty results can be obtained
if the uncertainty in x is derived with respect to y
and z, and not f, g and h. This requirement results
in analytically more difficult solutions, however.

As an example, consider the derivation of a
coefficientCl defined by the following formula:

Cl =
Mx

qSlre f
(10)

whereMx is a moment,q is the dynamic pres-
sure,S is the reference area andlre f is the refer-
ence length.

The dynamic pressure,q, is a function of to-
tal pressure,Pt , static pressure,Ps and the Mach
number correction,∆M.

q = f (Pt ,Ps,∆M) (11)

The uncertainty ofCl , ∆Cl , is thus a function
of the uncertainties of the independent parame-
ters,Mx, Pt , Ps and∆M.

3 Generalised Uncertainty Analysis Scheme

3.1 Introduction

To determine the uncertainty equation of a pa-
rameter (for example a displacement parameter
and in particular the state variables) for a store
being simulated in a captive trajectory system is
analytically difficult and error prone. This is be-
cause the variable for which the uncertainty is to
be determined must be derived in terms of the
system independent parameters before the partial
derivatives can be derived. For a static test the
derivation of the uncertainty equation for a single
coefficient is also non-trivial. Furthermore, re-
lease constraint conditions are employed in CTS
tests, which results in a dependent parameter hav-
ing different independent parameters as the tra-
jectory is being simulated. An example of this
would be where a missile rail release is simu-
lated. The first part of the release constrains the
missile to one or two degrees-of-freedom. Once
all except of the last missile shoe is free, the re-
lease constraints change to possibly a pivot or
hook release. Only once the last shoe is free
can the traditional six degree-of-freedom equa-
tions of motion be used to simulate the trajec-
tory. For the constrained release modes, different
equations of motion are used. To be as generic as
possible, the generation of the uncertainty equa-
tions for all desired dependent parameters would

4



An Evaluation Scheme for the Uncertainty Analysis of a Captive Trajectory System

need to be determined as the trajectory is being
generated.

3.2 Requirements

The primary requirement for a generalised un-
certainty analysis scheme is the ability to gener-
ate uncertainty equations as the trajectory is be-
ing simulated, because the independent param-
eters may change during the release simulation.
This implies the need of the scheme to utilise the
actual trajectory generation equations as the pro-
gram is executed and not prior to coding or exe-
cution.

3.3 Proposed Solution

At least two methods can be used to meet the
above requirements. The first utilises a jitter pro-
gram, and the second uses symbolic mathemat-
ics.

A jitter program [2] utilises the data reduc-
tion algorithms as a subroutine and successively
iterates using finite difference approximations to
determine the partial derivatives necessary for the
uncertainty analysis. The advantage of this so-
lution is that it utilises the actual data reduction
routines. Thus updating the data reduction rou-
tines results in the automatic updating of the un-
certainty analysis process. This kind of solution
would be feasible to implement for a trajectory
simulation system. It does, however, require the
use of successive iterations to determine the par-
tial derivatives.

Symbolic mathematics is an elegant solution
as the uncertainty equations for the parameters
of interest would be to derived symbolically, and
as functions of the system independent param-
eters only. The symbolic mathematics solution
does not require successive iterations as that of
the data reduction program, only a single pass,
where all the partial derivatives are calculated at
the end. This is achieved using the Maple com-
puter algebra system, where the independent pa-
rameters are expressed as symbols and deriving
subsequent variables or parameters from the in-
dependent parameters as defined by the data re-
duction process by executing the data reduction

code. The scheme determines the equations as
the program is executed, and not prior to program
creation or execution. Thus changes to the tra-
jectory generation code do not affect the process
of determining the derived parameter equations
because they are assessed during program execu-
tion. The determination of the uncertainty of any
derived parameter is thus a straightforward oper-
ation once the derived parameter is expressed as
a function of the system independent parameters.

The Maple computer algebra system kernel
has been included in Matlab through the sym-
bolic toolbox. The trajectory generation code
has been coded in Matlab for code development
purposes, with the production system coded in
FORTRAN. The Matlab code base is used dur-
ing the code development process to initially de-
velop subsequent versions and as an implementa-
tion standard because the code structure and data
flow logic are identical. This allows the gen-
eralised uncertainty analysis scheme to use the
Matlab code base for the uncertainty scheme, the
symbolic mathematics options being chosen for
its elegance.

Unfortunately, the use of the actual trajec-
tory generation equations to determine the equa-
tion of a derived parameter implies the use of
comparison operations to determine code branch-
ing. Comparison operations are not possible if
the symbols do not have a numerical value asso-
ciated with them. This difficulty is overcome by
the fact that the symbolic toolbox in Matlab has
implemented a symbol variable as an object, thus
allowing object extension.

3.4 Generalised Uncertainty Analysis Algo-
rithm

The algorithm employed is shown in figure 1.
The scheme is started by initialising the indepen-
dent parameters. The precision and bias uncer-
tainties and and correlation coefficients for the
independent parameters are stored in a computer
file. For each time step of the trajectory deter-
mination process, the uncertainties for the vari-
ables under consideration (at minimum the state
variables) are determined symbolically. At the
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end of analysis process, the uncertainty values
are simply calculated numerically from the sym-
bolic equation. For a trajectory, because subse-
quent steps are dependent on the previous results,
the uncertainties of the independent parameters
of the next step must be updated.

Of particular importance is the updating of
the uncertainty of the store loads (three orthog-
onal forces and three orthogonal moments) and
positions (three orthogonal linear and three or-
thogonal rotational). This is because combined
uncertainties result in the store not being posi-
tioned absolutely correctly. These uncertainties
may result in a trajectory being significantly dif-
ferent to the ’true’ trajectory. This occurs when
the gradients in interference loads are high. The
differences between the ’true’ and simulated po-
sitions ultimately result in a simulated trajectory
with a high uncertainty. This growing uncertainty
is taken into by the algorithm increasing the un-
certainty of the store loads in direct proportion to
the store load gradient with respect to store posi-
tion. These gradient data are obtained from grid
tests. Thus for a store where the load gradient
is zero, the store load or coefficient uncertainty
will be that as obtained from the balance. For a
store in a high gradient zone, the store load uncer-
tainty is a combination of the balance uncertainty
and the load gradient multiplied by the positional
uncertainty.

The other area that required attention was
the ordinary differential equation solver. The
trajectory utilised a fifth order Adams-Moulton
predictor-corrector alogrithm with a fifth order
Runge-Kutta initializer. It was decided to sim-
plify the propogation of errors by using a first
order Euler method, rather than the Runge-Kutta
Adams-Moulton alogrithm. While the use of an
Euler algorithm is not recommended for the gen-
eration of the trajectory itself, because the un-
certainty analysis is a truncated first order Tay-
lor expansion, it was deemed sufficiently accu-
rate to use the Euler algorithm for the uncertainty
propogation. The state variable values (after
each time step) used for the uncertainty equations
were that as calculated by the trajectory genera-
tion code (fifth order Adams-Moulton predictor-

corrector algorithm).

3.5 Matlab Implementation

3.5.1 Matlab Objects

A short discussion on the implementation of ob-
ject oriented concepts in Matlab is pertinent be-
fore the details of the implementation are de-
scribed. Matlab implements objects through
classes i.e. an object is defined as a class (sim-
ilar to fourth generation object oriented program-
ming languages such as C++ and Java). These
classes have similar capabilities to fourth genera-
tion object oriented programming languages such
as C++ and Java. Of particular importance are the
capabilities of polymorphism and encapsulation,
both of which are exhibited by Matlab objects.

Classes or objects encapsulate object func-
tions (or methods in Matlab) and object data (or
fields in Matlab). Matlab objects (or base class)
can be extended (polymorphism) through the cre-
ation of subclasses or derived classes, with sub-
classes thus inheriting methods and fields from its
parent or base class, and adding or altering meth-
ods and/or fields.

3.5.2 Implementation

Implementing the object oriented concepts in
the Matlab programming environment was per-
formed by extending the base Matlab symbol ob-
ject to include the numerical value of the sym-
bol, thus allowing the comparison operations to
be performed as the formulations of derived pa-
rameters are determined according to the imple-
mented equations. The implementation of the
generalised scheme would be considerably more
complex without the object oriented capabilities
of Matlab and its representation of symbols as
objects.

A generalised uncertainty analysis scheme
can thus be created which utilises the actual equa-
tions employed in the data reduction process.
This is possible because of the following factors:

• The data reduction process is performed in
Matlab
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• Matlab can transparently use symbols and
base type variables such as floating point
numbers

• Matlab has object oriented capabilities

With reference to figure 1, the generalised un-
certainty scheme first generates the data reduc-
tion equations of all subsequently derived param-
eters by defining the system independent param-
eters as symbols. Subsequent derived parameters
are thus expressed in symbolic format as they are
defined. This thus allows the uncertainty of any
dependent parameter to be assessed using equa-
tion 7.

4 The Uncertainty Objects and their Imple-
mentation

The generalised uncertainty analysis scheme is
based on two objects namely a parameter symbol
and uncertainty variable. The parameter symbol,
“usym” is a subclass of a Matlab symbol class,
“sym”, while the uncertainty variable represents
the uncertainty of the parameter under consider-
ation. It would have been more elegant to en-
capsulate the uncertainty fields of a parameter in
the parameter symbol. The separation of the un-
certainty variable from the parameter symbol was
required because the numerical calculation of the
uncertainty was performed in a separate thread to
speed execution.

4.1 Parameter Symbol

As mentioned previously, the parameter symbol
class, “usym”, is a subclass of the Matlab symbol
class that extends the Matlab class by including a
field containing the numerical value of the sym-
bol. As mentioned in section 3, a subclassed pa-
rameter symbol, “usym”, was required because
the generalised uncertainty scheme uses the ac-
tual Matlab code to determine the symbolic form
of any derived parameter. Any code branching
because of comparison operators (such as greater
than and less than in if statements) cannot be per-
formed on non-numerical symbols. Implement-
ing the parameter symbol requires the overload-

ing of all mathematical functions that can be per-
formed on symbols. These include:

• addition, subtraction, division and multi-
plication (both scalar and matrix)

• trigonometric operations such as sineous,
cosineous and tangent

• comparison operations such as less than,
and greater than

4.2 Uncertainty Variable

The uncertainty variable of a parameter is imple-
mented as a class which encapsulates the follow-
ing fields:

• uncertainty variable name

• numerical value

• independent parameters

• derivatives of the dependent variable with
respect to the independent parameters

• precision and bias values

• correlation values (bias and precision)

• correlation coefficients (bias and precision)

5 Test Case

A test case was used to evaluate the uncertainty
analysis scheme. The test case used was for a tra-
jectory run performed on the 1/15th stable store
from the NACA wing-body parent. The run re-
lease conditions were as follows:

• M = 0.4

• Pt = 150kPa

• Tt = 310K

• dz= 10mm

• Store Angle= 0o

• Parent Angle= 0o
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• Ca = 0.015

• Wi = 10f t/s

During the test run the only uncertainties
assessed were the state variables. These were
the body axes velocities (translational and rota-
tional), body axes displacements, hook release
body velocities and the body to inertial path axes
transformation matrix (from which the rotational
displacements can be obtained), i.e. 21 variables.
Furthermore, no bias uncertainties and correla-
tion limits were used, only precision uncertain-
ties.

6 Results and Discussion

6.1 Results

The results of the test case are displayed in fig-
ures 2 to 7. The inertial referenced translational
and rotational displacements are shown with the
uncertainty bounds.

6.2 Jitter versus Symbolic Mathematics

The decision to use the symbolic mathematics
option instead of the jitter program was driven
by the elegance of the symbolic mathematics so-
lution. The separate components contributing to
the uncertainty of a parameter can be extracted
not only numerically but symbolically, allowing
greater analysis of its relative contribution. The
use of a jitter program could, however, be easier
due to its black box approach. The substitution
of the Adams-Moulton ODE solver for the Euler
solver would also not be required.

6.3 State Variable Uncertainties

The results obtained for the uncertainty analysis
show a relatively large uncertainty for the rota-
tional degrees of freedom, and in particular the
pitch displacement,θI . The vertical displacement
uncertainty is small, as expected, because the in-
terference effect is small and the store is pre-
dominantly under the influence of gravity, which
within the CTS code is considered a constant.

The horizontal displacement,XI , shows an in-
creasing uncertainty even though the axial force
was simulated through the use of a constant (see
section 5) because an uncertainty bound was ap-
plied to the axial force coefficient.

6.4 Execution Speed and Implementation
Efficiency

As mentioned previously (see section 4), the ac-
tual uncertainty code was separated into two sep-
arate threads to increase the execution speed. The
generalised approach only facilitates a minimum
level of optimisation. Furthermore, for each time
step, the symbolic form of the equations are red-
erived. Optimisations can be made in this regard,
especially when the store no longer has any ap-
plicable release constraints in the simulation.

7 Conclusions

A generalised uncertainty analysis scheme was
devised for the captive trajectory system of the
MSWT, CSIR. The scheme determines the uncer-
tainty equations of derived parameters, using the
trajectory generation equations, that are functions
of system independent parameter only. The equa-
tions are derived as the program is executed. Im-
plementing this scheme in Matlab was achieved
using the symbolic toolbox with the Maple ker-
nel and the subclassing of the symbol object to
include the numerical value of the symbol or pa-
rameter so that comparison operations can be per-
formed as the code is traversed. Parameters of in-
terest are thus derived with respect to system in-
dependent parameters instead of derived parame-
ters.

A test case using a trajectory run of the 1/15th
scale stable store being released from the NACA
wing-body model was used to assess the im-
plementation. The results obtained were as ex-
pected. The current implementation can be opti-
mised with respect to the algorithm that generates
the uncertainty equations.
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Fig. 2 Translational Displacement,XI , as a Func-
tion of Time with Uncertainty Bounds
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Fig. 3 Translational Displacement,YI , as a Func-
tion of Time with Uncertainty Bounds
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tion of Time with Uncertainty Bounds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−6

−5

−4

−3

−2

−1

0

1

2

3

Time [sec Full scale]

θ I [d
eg

 F
ul

l s
ca

le
]
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