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Abstract

The Recursive Projection Method (RPM) has
been implemented into an unstructured CFD
code to improve the efficiency of dual time step-
ping for unsteady turbulent CFD simulations.
RPM is a combined implicit-explicit method that
enhances convergence. It can easily be imple-
mented into existing codes and the solver’s ex-
isting acceleration techniques can be used with-
out change. The method has been evaluated by
computing the periodic self-induced shock os-
cillations over an 18% thick biconvex airfoil at
0
�

angle of attack, a Mach number of 0.76 and
a Reynolds number of 11 million. On average,
RPM accelerated the convergence of the inner
loop of dual time stepping to a predefined con-
vergence criterion by a factor of about 2.5.

1 Introduction

Despite the phenomenal growth of computational
fluid dynamics (CFD) in the last three decades,
significant barriers still exist for routine com-
putations of high Reynolds number, highly sep-
arated and unsteady flows [1]. Even with the
continuous and steady growth in computational
power realized during this period, the simula-
tion of three-dimensional unsteady flows is still,
for most cases, a computationally expensive task.
Advances in more efficient algorithms for time-
dependent analysis are therefore urgently needed.

The work presented here offers a means to en-
hance the performance of existing codes to make

unsteady simulations more affordable for prac-
tical applications. A commonly used approach
to solving the time-accurate Navier-Stokes equa-
tions is dual time stepping [2], where a resid-
ual equation is solved iteratively by explicit time
stepping to reach a steady-state in the inner loop
of every physical (outer) time step. In many
cases, the inner loop is computationally too ex-
pensive because of the large number of itera-
tions required to converge the inner loop to steady
state.

One candidate for accelerating the inner loop
convergence is the Recursive Projection Method
(RPM). RPM was initially developed by Schroff
and Keller [3, 4] for bifurcation analysis. The
method has also been applied to accelerate
steady-state iteration processes. It’s main advan-
tage is that it can easily be implemented on top of
the native flow solver’s inner iteration loop. The
solver’s existing acceleration techniques can be
used without change. To RPM, the flow solver is
simply a fixed-point scheme. By monitoring its
convergence, a low-dimensional subspace asso-
ciated with the dominant eigenvalues of the Jaco-
bian of the fixed-point scheme is identified. RPM
eliminates the negative influence of these eigen-
values on the fixed-point iterations by combining
the original iterations scheme with a Newton it-
eration in the dominant subspace. The method
sidesteps, therefore, the construction and solution
of a large system of equations.

RPM has previously been successfully used
with a structured grid CFD code for steady-state
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simulations [5], accelerating convergence by a
factor of up to four. More recently, RPM has
been implemented into a time-accurate CFD code
for unstructured grids. Convergence of the inner-
loop of dual time stepping could be accelerated
by a factor of about two for laminar unsteady
computations of the flow around a circular cylin-
der at a Reynolds number of 100 [6]. Here, were
are more interested in applied aerdynamics prob-
lems, that is turbulent unsteady flow at higher
Reynolds numbers (over 106).

The paper begins with a brief description of
the used flow solver, followed by a detailed pre-
sentation of RPM and its implementation into the
flow solver. The efficiency of RPM for unsteady
turbulent simulations is then evaluated by com-
puting the onset of buffet over an 18% thick bi-
convex airfoil.

2 Flow Solver

As a typical current generation aeronautics CFD
code, Edgewas chosen as the flow solver for this
project. Edge [7, 8, 9] is a three-dimensional
compressible flow solver for unstructured hybrid
grids of arbitrary elements, being jointly devel-
oped by the Swedish Defence Research Agency
(FOI/FFA) and others, among them KTH.

The parallel flow solver is based on a node-
centered finite volume scheme. For steady flows,
the equations are integrated toward steady state
with an explicit multi-stage Runge-Kutta scheme.
To accelerate convergence, residual smoothing
and a multi-grid technique can be employed.
Low Mach-number preconditioning is also avail-
able.

Several different turbulence models are avail-
able. Here we use the two-equation k � ω model
by Wilcox [10] combined with the explicit al-
gebraic Reyniolds stress model (EARSM) by
Wallin and Johansson [11]. The EARSM is a
fully self-consistent approximation of a Reynolds
stress transport model in the weak-equilibrium
limit. It also behaves reasonably well in non-
equilibrium flows. Moreover, the model has cor-
rect near-wall asymptotic behavior for all individ-
ual Reynolds stresses with a near-wall damping

function formulated without the use of the wall
skin friction (or y

�
). This model has been shown

to give results that in many aspects are very simi-
lar to those of full Reynolds stress transport mod-
els but at a computational effort that is compara-
ble to that of standard two-equation models.

Time-accurate calculations are done either by
Runge-Kutta time marching with a global time
step or by implicit time marching with explicit
sub-iterations (dual time stepping [2]).

2.1 Dual Time Stepping

For explicit time-accurate solutions, the above
mentioned convergence-accelerating techniques
cannot be used. Usually, explicit time stepping
becomes impractical because, due to stability re-
strictions, the explicit time step has to be signif-
icantly smaller than the physical time scales in-
volved.

Dual time stepping [2] is one way around this
problem in that it offers higher-order time accu-
racy while allowing the use of efficient conver-
gence procedures, at the cost of an additional it-
eration loop. The starting point is the Navier-
Stokes equations in semi-discrete form:

du
dt
�

R � u ��� 0 (1)

where u is the state vector of conserved variables,
and R is the net flux through the cell divided by
the cell volume.

A second-order accurate implicit backward
difference formula (BDF) for the time derivative
in Eq. (1) yields a fully discrete approximation:

3
2∆t

un
�

1 � 4
2∆t

un � 1
2∆t

un � 1 � R 	 un
�

1 
 � 0 (2)

where n, n � 1 and n
�

1 indicate the present, pre-
vious and future time level, respectively. Because
of the presence of R 	 un

�
1 
 , Eq. (2) is a non-

linear system of coupled equations, which has to
be solved iteratively at each time step.

The idea behind dual time stepping is to
transform Eq. (2) into a steady-state problem by
adding a set of pseudo-time derivatives to the left-
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hand side,

dw
dτ
��� 3w � 4un � un � 1

2∆t
�

R � w ���� 0 (3)

and to advance w in pseudo-time τ by some
suitable method until convergence is reached.
Here, we employ a first-order accurate three-
stage Runge-Kutta scheme with coefficients α1 �
2 � 3, α2 � 2 � 3 and α3 � 1. The advantage of
this scheme is its low memory requirements and
good smoothing properties. Existing accelera-
tion techniques like local time stepping, multi
grid or implicit schemes can be used, though with
the slightly modified residual of Eq. (3). On
convergence, the pseudo-temporal terms vanish,
dw � dτ � 0, and "steady state" in pseudo time is
approached. The original BDF is recovered and
the solution is truly time-accurate.

The advantage of this method is that if the
inner iterations are fully converged,

un
�

1 � lim
τ � ∞

� w � τ ��� (4)

the full non-linear BDF is solved, giving an ef-
ficient A-stable scheme, which allows large time
steps ∆t. Note, however, the time step has to be
small enough to resolve all physical time scales
relevant to the flow problem.

In practice, the number of inner iterations is
either fixed, or is controlled by some convergence
criterion. The scheme becomes very expensive
if a large number of inner iterations is required.
Here, the idea is to reduce the number of inner
iterations using RPM.

3 Recursive Projection Method

Consider a system of ordinary differential equa-
tions (ODEs)

du
dt
� f � u ��� u ��� N � (5)

This system is typically the result of the dis-
cretization of a system of partial differential
equations (PDEs). Note that many such systems
do not give a system of ODEs but rather result
in a differential-algebraic system. In this case, it

is necessary to first eliminate the algebraic con-
straints and transform the system to a ODE sys-
tem. In [12] it is shown how to do this for the
Navier-Stokes equations for incompressible flow.

We start from a fixed-point iteration scheme
of the type

un
�

1 � F � un ��� un ��� N � F : � N ��� N � (6)

corresponding to Eq. (5) and assume that the se-
quence converges to the steady-state solution

un � u ��� u ��� F � u ��� (7)

The ultimate rate of convergence is determined
by the dominant eigenvalues of the Jacobian

J � Fu � ∂F
∂u
� u � (8)

evaluated at the solution u � . If all eigenvalues
lie strictly within the unit circle, the scheme is
asymptotically convergent in a neighborhood of
u � and the linear asymptotic convergence factor
is the modulus of the largest eigenvalue of J.
Should any of the eigenvalues lie outside the unit
circle, convergence is lost.

Following [3, 13, 14, 15, 16], we suppose a
small number k of the eigenvalues λi, i � 1 � ����� � N
of J � u � � lie outside the disk

Kδ �! #" z "%$ 1 � δ &'� δ ( 0 (9)"λ1 "%) �*�+� ),"λk "-( 1 � δ ),"λk
�

1 "�) �*�*� )," λN "
From an orthogonal basis Vp of the invariant sub-
space of J belonging to  λi & , i � 1 � �.��� � k, a pro-
jection P is created which is used to split the so-
lution in two parts, p and q.

un � Pun � Qun � pn � qn

P � VpVp
T (10)

Q � VqVq
T �/� I � VpVp

T �
In general, the basis Vq and its subspace Q � N are
not invariant. By applying these projections to
Eq. (6), the algorithm is split into two parts.

qn
�

1 � QF � pn � qn �
pn
�

1 � PF � pn � qn � (11)

un
�

1 � pn
�

1 � qn
�

1
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The Q-part of this iteration scheme converges if
pn is fixed. However, for fixed qn, the P-part will
still have very poor converge properties. RPM
replaces the P-part of the iteration scheme with
an implicit equation

pn
�

1 � PF � pn
�

1 � qn � (12)

and applies one Newton step.

qn
�

1 � F � un �0� Vp � V T
p F � un ���

∆pn � Vp � I � V T
p JVp � � 1V T

p � F � un �1� pn �
pn
�

1 � pn � ∆pn

un
�

1 � qn
�

1 � pn
�

1 � (13)

The convergence of this scheme is limited by the
convergence behavior of the fixed-point iteration
for the Q-projection. Assuming that most of the
CPU-time is spent on computing F � un � , RPM
can be implemented economically. The only ma-
jor computations specific to RPM are the eval-
uation of the projected Jacobian matrix V T

p JVp

when J is unavailable (which is usually the case).
The projected matrix can be approximated by
finite-differencing in the direction of the basis
vectors Vp �32 v1

����� vk 4
Jvi � 1

ε 5 F � uk � εvi �1� F � uk �76 � Ei � ε ���
Ei � ε �8� O � ε � � O � εF

ε
��� i � 1 � ����� � k (14)

and requires k function evaluations. The trunca-
tion error is O � ε � and εF is the error due to finite
precision in F

As long as k 9 N, the Newton step is not
computationally intensive, and the fixed-point it-
eration qn

�
1 � QF � un � becomes fast. It con-

verges, as does the overall RPM algorithm, at a
rate proportional to "λk

�
1 ";: 1 � δ. Also, the ac-

curacy of the computation is enhanced by elim-
inating a substantial part of the residual in the
Newton step. These two effects provides substan-
tial convergence acceleration.

3.1 Basis Construction

By monitoring the convergence of the Q-part, we
can identify the dominant eigenspace, [15, 16, 5,

3]. By a Taylor expansion of ∆qn � qn
�

1 � qn,
we derive the following relation.

∆qn � QJQ∆qn � 1 � QJP∆pn � 1 � O � ∆p2 � ∆q2 �
(15)

If P is an accurate projection of an invari-
ant subspace of J, QJP=0. The vectors ∆qn � ks

�
1 � ���.� � ∆qn & form an approximative ks-

dimensional Krylov space for QJQ,

K �/2 ∆qn ∆qn � 1 �+�*� ∆qn � ks
�

1 4 ��/2QJQ∆qn � 1 QJQ∆qn � 2 �*�+�QJQ∆qn � ks 4
(16)

3.2 Increasing the Basis

The following ideas are used to identify the ba-
sis. Via a QR-factorization with column pivot-
ing, such that " rii "<� i � 1 � �.��� � k, is decreasing,
an orthogonal basis V that spans K is retrieved.
We introduce the Krylov Acceptance ratio ka as
a criteria for adding vectors to the basis. For the
largest i satisfying==== ri > i

ri
�

1 > i � 1

==== ( ka � (17)

the first i columns of V should be added to the ba-
sis Vp. After orthogonalizing new vectors against
the old basis Vp, the new basis Vp is retrieved.

Vp � orth ��2Vp � v1 � �.��� � vi 4 � (18)

The rate and accuracy with which the basis
is identified depends on the starting vector and
the spectrum. If ∆qn � ks is not rich in the desired
eigenvectors, or if the gaps between the eigenval-
ues of the sought eigenspace and the rest is small,
we expect a slow retrieval of the basis.

The ka-value is problem dependent, in [14]
ka � 25, [3] ka � 1000, [5] ka � O � 100 � . A low
value of ka will enable an early extraction of the
basis, at price of poor accuracy.

Assume that the basis Vp satisfies the rela-
tion VpRp � Xp

�
Sp, where Xp �@? N A k is the

eigenvector-matrix associated with the dominant
eigenspace and Sp represents the error in the ap-
proximation. Then for the Newton-part of the
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RPM-algorithm to perform well, the following
condition must be fulfilled,B

R � 1
p
B

2
B
SpΛp � JSp

B
2 : min

i
" 1 � λi "<� (19)

where JXp � XpΛp, Λp �C? k A k , see [5] for de-
tails.

3.3 Decreasing the Size of the Basis

During the course of iterations the extracted basis
can become unnecessarily large.D The extracted basis contains directions for

which λ � Hp �E: 1 � δ, Hp � V T
p JVp i.e. ei-

ther these eigenvalues have returned to the
disk Kδ due to non-linear effects or too
many vectors were added to the basis due
to a too low ka value.D The accuracy of the basis is too low.

In either case these directions should be deflated
from the basis. We now describe the procedure.
Given the basis Vp and the matrix vector product
Wp � JVp,

Wp � VpHp
�

Rp (20)

where Rp is the residual. From the eigenvalue
decomposition of Hp, HpZ � ZΨ, Ψ � diag � ψi � ,
we can obtain information about the accuracy of
the eigenspace by using thatB

Wpzi � VpHpzi
B

2 � B
Wpzi � Vpziψi

B
2 �B

J Fxi �GFxiψi
B

2 � B
Rpzi

B
2 (21)

where Fxi � Vpzi, and �HFxi � ψi � forms a Ritz-pair.
Let the permutation matrix P �I� k A l , sort and
extract the l eigenvalues according to either our
accuracy or magnitude requirements	 ZP� PT ΨP 
 � � Zl � Ψl � (22)

To avoid complex arithmetic we use that a com-
plex conjugated eigenpair � zRe J izIm � θ J iµ � , can
be expressed in real arithmetic as

Hp 2 zRe zIm 4 �32 zRe zIm 4 � θ µ� µ θ  (23)

By the above relation, we can transform Ψl to a
block-diagonal matrix

Hp FZl � FZl
FΨl (24)

Via a QR-factorization of FZl � QzRz,

WpQz � VpQzRz FΨlR
� 1
z
�

RpQz (25)

the updated basis and projected Jacobian is fi-
nally computed by

Vp � VpQz

Hp � Rz FΨlR
� 1
z
� (26)

3.4 Time-Dependent RPM

Since the inner loop in the dual time-stepping
consists of a steady-state calculation, the tech-
niques described in previous chapter can applied.
Discretizing the time derivative in Eq. (3), yields
a fixed-point iteration, where m is associated with
the fictitious time τ,

wm
�

1 � F � wm � tn
�

1 �
wm �K� N � F : � N L �M��� N � (27)

As the sequence converges,

wm � un
�

1 (28)

un
�

1 � F � un
�

1 � tn
�

1 � �
In order for RPM to be an effective accelerator of
the fixed-point iteration, the dominant eigenspace
should be small and identified fast.

Many problems suffer from clustering of
eigenvalues close to the stability limit, with no
clear gap to between λk and λk

�
1, hence the iden-

tification can become cumbersome. In a steady-
state simulation, one can allow spending quite a
large number of iterations to obtain an accurate
basis, since the tolerance requirements are still
reached several times faster using RPM, see [5].

In dual time stepping, typically the inner loop
tolerance is set to be a fraction of the accuracy re-
quirements of the outer loop. Hence in order for
RPM to be an effective accelerator, the identifi-
cation must be fast. To quickly obtain a basis, a
low ka value must be used, compared to [5]. The
computed V T

p JVp will not be very accurate, but as
long as Eq. (19) is fulfilled, we still expect RPM
to converge, but at a reduced rate.
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3.4.1 Basis Handling in Time-Dependent Prob-
lems

Assume that we have computed the solution un

by RPM. At the next step n
�

1, we have two pos-
sibilities,

1. Restart: Before start, delete the basis V n:
RPM is always switched on with a fresh basis and
the basis-size will be limited. As stated earlier, a
downside of this approach is that it takes more
time before RPM can be switched on.

2. Saving the basis: Take V n to approximate
the new basis V n

�
1, which potentially saves it-

erations, since a candidate for the basis is already
available. The accuracy will depend on the prob-
lem and the outer time-step.

By re-using the bases, the size of the basis
will grow, but with no necessary an improvement
of the convergence rate since accuracy of the ba-
sis is degraded over time therefore it is necessary
to introduce deflation to limit the basis size and
costs.

Performance could be greatly enhanced if a
number iteration steps without RPM was per-
formed. Initially non-linear effects are strong and
the matrix-vector product J � w � V can differ allot
from J � w � � V . By a number of pre-RPM steps,
the non-linear effects are damped out and RPM
is more likely to perform well, see [6].

A remedy for the inaccuracy could be some
matrix-free update techniques, e.g. Krylov meth-
ods. They also suffer from convergence problems
when no clear separation between λk and λk

�
1

exists. Furthermore, the extra function evalua-
tions do not advance the solution closer to the
steady state. In our numerical experiments, we
also found that the extra gain in accuracy could
not compensate for the extra costs, compared to
using the restart approach.

3.4.2 A Combined Update/Restart Approach to
Basis Handling

Assume that the solution un, a basis V n of size
kn and its accuracy estimate ωV , see Eq. (29), is
available from step n. At step n

�
1:

1. Perform r pre-RPM (smoothing) steps.

2. At the cost of kn function evaluations, up-
date V T

p JVp and check basis accuracy by
Eq. (21). If the accuracy estimate is vi-
olated,

B
Rpzi

B
2 ( ωV for some i �@2 1 � kn 4 ,

then that column of Vp is removed. Further-
more since the basis has been corrupted,
the entire basis will be discarded at the end
of step n

�
1, resulting in a restart at step

n
�

2.

3. In the end of step n
�

1, when the solution
has converged, we discard any basis vector
associated with an "λi "%: β, i � 1 � ����� � kn

�
1,

see section 3.3, in order to limit the growth
of the basis size. We used a β � 0 � 9 in our
calculations.

4. Finally we computed the accuracy estimate
of the overall basis V n

�
1, ωV

ωV �ON min
i

B
Rpzi

B
2 P � 1

(29)

For numerical experiments, see section 5.5.

4 Implementation Issues

RPM treats the flow solver as a "black-box". It
sends a vector u into the flow solver, which first
updates the boundary conditions and then com-
putes and returns F � u � by doing a specified num-
ber of iterations of the native scheme (called
function evaluations in the following). Note that
in order for the flow solver to be viewed as a
fixed-point scheme, F � u � must not depend on
previous iterations. For example this places a
restriction on the boundary conditions that can
be used. The number of function evaluations
each RPM iteration is controlled by the param-
eter NSTEP.

A Matlab implementation of RPM was
linked to Edge by an interface. First, Edge
writes the state vector to a file in the native Edge
FFA data format. This file is then read into
Matlab by the RPM process running parallel
to Edge, using the FFA-Matlab Toolbox [17].
After being processed and updated by the RPM
process, the state vector is written to file and read
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by the waiting (idle) Edge process. The read-
write process is coordinated using a flag file that
can be read by both Edge and RPM.

4.1 Increased Robustness by Scaling Vari-
ables

In [5], it was found that scaling the variables in-
creased the robustness of RPM. In laminar cases,
the pressure component is in general several or-
ders of magnitudes larger than the velocity- and
density-components. Here, Ω is the dominent
component. The resulting projections are very
skewed and sensitive to inaccuracy. This problem
could be removed by scaling the components to
be O(1).

Here, the scaling factors are determined at the
beginning of each new outer time-step. If w �n �� ρ � u � v � w � p � k � ω � T is the converged solution at
step n, then the scaling factors become

ρ0 � max � ρ � 1 �
u0 � max ��"u "<��" v "<��"w "<� 1 �
p0 � max � p � 1 �
k0 � max � k � 1 �
ω0 � max � ω � 1 � (30)

and the scaled initial solution at step n
�

1 isFw0
n
�

1 � S � 1w �n
S � diag � ρ0 � u0 � p0 � k0 � ω0 � (31)

Note that only RPM and not Edge, the flow
solver, is aware of the scaling. Assume that a
function evaluation in Edge is given by the so-
lution operator F � F : � N L �Q� � N , then one
function evaluation in RPM is given byFwm

�
1 � S � F � S � 1 Fwm ��� � (32)

5 Application: Flow around Biconvex Airfoil

We consider the periodic self-excited turbulent
flow around an 18% thick circular-arc airfoil in
free flow at M∞ � 0 � 76, α � 0

�
and Re � 11 L

106. At these conditions, the transonic flow re-
sults in a periodic, 180

�
out-of-phase motion of

the shocks over the upper and lower surface of

the airfoil. The unsteadiness is driven by the in-
teraction between the shocks, the boundary layer
and the vortex shedding in the wake. Experimen-
tal data [18, 19, 20] as well as previous compu-
tations [18, 19, 21, 22] are available for compari-
son.

The demanding nature of this flow problem
was illustrated by Wang et al [22], who per-
formed a convergence investigation using the
structured EURANUS code [23]. As many as 260
multi grid iterations were required in the inner
loop of dual time stepping for each of the 50
outer time steps per period to converge the resid-
ual by one order of magnitude. When the num-
ber of outer time steps per period was increased
to 350, still as many as 60 inner iterations were
required to fulfill the convergence criterion. It
is anticipated that RPM can significantly reduce
this number and make such simulations more af-
fordable.

5.1 Numerical Grid and Boundary Condi-
tions

A 2D hybrid grid with 12,000 nodes was gener-
ated using the commercial grid generation soft-
ware ICEM CFD, see Fig. 1. The circumference

Fig. 1 Hybrid Grid for Biconvex Airfoil

of the airfoil is discretized with 216 grid points.
There are 50 layers of quads, compare Fig. 2. The
spacing of the first grid point normal to the solid
wall is 2 � 0 L 10 � 6 m, giving y

� : 1. Away from
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the wall, the spacing increases by a ratio of 1.2.
The circular outer boundary is located 25 root

Fig. 2 Close-up of Numerical Grid

chord lengths away from the airfoil. The bound-
ary condition on the airfoil is a solid wall. Char-
acteristic variable freestream conditions are used
on the outer boundary.

The far-field boundary condition with vortex
correction in 2D used in [6] was not used here
because it is based on information from the pre-
vious iteration, rendering Edge a non-fixed-point
solver. By comparing the two boundary condi-
tions it was found, however, that this had a neg-
ligible influence on the accuracy of the extracted
basis and no impact on the final (converged) so-
lution.

5.2 Numerical Parameters

The unsteady flow was calculated with Edge
using dual time stepping and the EARSM tur-
bulence model. Previous computational re-
sults [22] for the same geometry and flow con-
ditions demonstrated that the EARSM predicts
the unsteadiness due to strong shock-boundary
layer interaction better than both algebraic tur-
bulence models and two-equation models based
on Boussinesq’s hypothesis. Fully turbulent flow
was assumed. A first order upwind scheme were
used to discretize the turbulence equations.

The outer (physical) time step was set to ∆t �
0 � 0001 s (∆t � � ∆t �#� cU∞ �'� 0 � 026), correspond-
ing to about 250 time steps per period of oscil-
lation. The (inner-loop) CFL number was set to

0.7. Three multi-grid levels and residual smooth-
ing were used in the inner loop.

The unsteady numerical simulation was ini-
tialized by a steady-state solution. A total of
2,000 outer time steps, corresponding to 0.2 s of
simulation time, were computed. For every outer
time step, the absolute residual of the inner loop,

resmax � max
i
" res � ρi �0" (33)

where i is the node number, was decreased
by two-and-a-half orders of magnitude,
log10 � resmax1 � resmaxn �R�S� 2 � 5. For this particu-
lar flow problems, this was found to be suffcient
to converge the aerodynamic coefficients within
the inner loop. The number of inner iterations
was not limited.

The simulation without RPM took about
180 h of wall-time on one Pentium Xeon CPU.

5.3 Flow-Field Results

The Navier-Stokes code reproduced the time-
dependent aspects of the onset of buffet. Fig-
ure 3 shows instantaneous Mach number con-
tours at different times. Coalescence of the near-
vertical contours over the latter half of the air-
foil indicates the formation of a shock-wave. It
forms near the trailing edge just above a re-
gion of trailing-edge separation. Its strength in-
creases as the local velocity ahead of the shock
increases. The increased strength gives rise to
shock-induced separation, and the shock wave
and separated region begin to move forward. The
local surface velocities upstream of the shock
continue to increase and stabilize in a maximum
velocity distribution. As the shock continues for-
ward into a region of locally lower velocities, it
diminishes in strength and vanishes as the separa-
tion point reverts to the trailing edge to complete
the cycle. Meanwhile, the identical process is oc-
curring on the lower surface 180

�
out of phase.

This periodic phenomenon causes oscilla-
tions in the aerodynamic forces. The time his-
tories of the lift coefficient CL and the drag coef-
ficient CD are shown in Fig. 4. The time histo-
ries are identical for both the simulation with and
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Fig. 3 Instantaneous Mach Number Contours in the Flow Field about the Circular Arc Airfoil, showing
Oscillatory Separation; M∞ � 0 � 76, Re � 11 L 106

without RPM, because the same convergence cri-
terion was applied in the inner loop.
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Fig. 4 Lift and Drag Coefficient versus Time;
M∞ � 0 � 76, Re � 11 L 106, ∆t � 0 � 0001 s

After the transients have decayed after about
0.04 s, the lift coefficient oscillates almost sinu-
soidally around a zero mean value with an ampli-
tude of about 0.35. The drag coefficient scillies
with twice that frequency around a mean value

of 0.067 and an amplitude of 0.008. The com-
puted reduced frequency of the lift coefficient is
k � π f c � u∞ � 0 � 549. The experimental value is
kexp � 0 � 49 [20].

The difference in the computed frequency is
due to the first-order upwind discretization of the
turbulence equations. Note that the computed re-
duced frequency was k � 0 � 485 when we used
a second-order discretization. This is within 1%
of the experimental value! However, the second-
order upwind discritization changed the dynam-
ics and the spectrum of the problem in such a way
that RPM could not identify a basis. We also ex-
perimented with a second-order central scheme,
with the same result. This demonstrates the com-
plicated nature of this problem.

Since we are mainly interested in the conver-
gence properties of the native iteration scheme
with and without RPM, rather than the dynamics
of this particular flow problem, we only present
results obtained with the first-order upwind dis-
cretization in the following.
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5.4 RPM with Restart: Renewing the Basis
Every Outer Time Step

In all cases presented below, the absolute residual
of the inner loop was converged until the criterion
log10 � resmax1 � resmaxn �T�U� 2 � 5 was fulfilled. The
size of the Krylov space was set to ks � 10. Every
ki � 10 RPM iterations, RPM seeked to identify
or increase the basis V . The value of ε in Eq. (14)
was set to 10 � 8, apart from the first cases, where
we used 10 � 6. However, the influence of ε on the
accuracy of the basis, and thus the convergence
rate, was found to be neglible.

First, we experimented with a Krylov accep-
tance ratio of ka � 20 and two function evalua-
tions (flow solver iterations) each RPM iteration,
NSTEP=2. The corresponding number of inner-
loop function evaluations (iterations) are pre-
sented as a function of the number of outer time
steps in Fig. 5. Only the first 1,000 time steps are
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Fig. 5 Number of Inner-Loop Function Evalua-
tions with and without RPM versus Number of
Outer Time Steps; ka � 20, NSTEP=2

shown for the sake of clarity. The dashed red and
solid blue lines correspond to computations with
and without RPM, respectively.

The periodic behavior of the flow is reflected
by the time history of convergence of the inner-
loop. The results for the simulation without RPM
indicate that portions of the buffet cycle are more
difficult to resolve in time, resulting in up to 490

inner iterations needed to fulfill the inner-loop
convergence criterion. Other portions of the cy-
cle are resolved with as little as 80 inner iter-
ations. The average number of inner iterations
over the entire length of the simulation is 324.

RPM is triggered when many inner-loop it-
erations are required. It reduces the maximum
number of inner-loop function evaluations to
about 195 or less. This correspond to a maximum
inner-loop convergence acceleration by a factor
of 2.5. RPM does not provide any benefit when
100 or less inner iterations are sufficient for con-
vergence. The average number of inner iterations
is 164, corresponding to an average speed-up ra-
tio is 1.98.

Typically, RPM extracted two eigenvalues af-
ter 50 RPM iterations (corresponding to 104 in-
ner iterations). During the portions of the buffet
cycle that are more difficult to resolve in time,
RPM usually found another three eigenvalues af-
ter 90 RPM iterations (184 inner iterations), re-
sulting in a basis size of p � 5. Thus, the condi-
tion p 9 N was well fulfilled.

5.4.1 Influence of RPM Parameters on Inner-
Loop Convergence

In a next step, we investigated the influence of
the Krylov acceptance ratio, ka, and the num-
ber of function evaluations each RPM iteration,
NSTEP, on the performance of RPM. In Fig. 6
we compare the results for .discussed above (red
dashed line) with those obtained for ka � 50 and
NSTEP=1 (green solid line with circles). For the
sake of clarity, only the first 400 outer times steps
are presented here.

It can be seen that during the transient part of
the simulation, it pays off to use a larger Krylov
acceptence ratio together with one function eval-
uation each RPM iteration. The pay off is less af-
ter the transients have decayed. On average, 10%
less inner iteration were required with this param-
eter settings compared to the case with ka � 20
and NSTEP=2. The average speed-up ratio is
2.15.
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Fig. 6 Influence of Parameters ka and NSTEP on
Number of Inner-Loop Function Evaluations

5.5 Saving the Basis: Reusing the Basis from
a Previous Outer Time Step

In Fig. 7 we compare the restart approach with
the combined restart/update approach described
in section 3.4.2. As before, for the sake of clarity,
only the first 400 outer times steps are presented
here. The blue solid line represents the num-
ber of inner iterations versus the number of outer
time steps without RPM. The red dashed and
green dot-dashed lines denote the total number
of function evaluations with the restart approach
and the combined restart/update approach, re-
spectively. The RPM results were obtained for a
Krylov acceptance ratio of ka � 20 and NSTEP=2
function evaluations each RPM step. We used
20 pre-RPM (smoothing) steps in the combined
restart/update approach.

The numerical experiments substantiated that
there is a small benefit to be gained from reusing
an old basis. For some outer time steps the in-
ner loop converged up to four times faster with
RPM than without RPM! The average speed-up
was by a factor of 2.45. However, the basis was
usually kept for only one outer time step before it
violated the accuracy criterion and was rejected.

The results of all three numrical experiments
are summerized in Table 1 together with the rele-
vant RPM parameters.
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Fig. 7 Comparison between Restart and
Restart/Update Approach; ka � 20, NSTEP=2

6 Conclusions

The Recursive Projection Method (RPM) has
been implemented into a CFD code for unstruc-
tured grids to accelerate the inner-loop conver-
gence of dual time stepping. The modified code
was used to compute the unsteady turbulent buf-
fet flow around an 18%-thick biconvex airfoil at
transonic speed. On average, the inner loop of
the modified code converged two times faster to
a predefined convergence criterion than the orig-
inal code. An average acceleration by a factor
of 2.5 could be achieved by reusing and updating
information that RPM extracted at previous outer

case 1 case 2 case 3

ε 10 � 6 10 � 8 10 � 8

ks 10 10 10
ki 10 10 10
ka 20 50 20
NSTEP 2 1 2
smoothing steps - - 20
aver. # inner iter. 164 151 131
aver. speed-up 1.98 2.15 2.45

Table 1 Summary of RPM Parameters, Aver-
age Number of Inner Iterations and Average
Speed-Up
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time steps. The additional computational cost
that RPM incurs was shown to be neglible. In
summary, for unsteady turbulent computations,
the overall efficiency of the code was more than
doubled by using RPM.
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