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Abstract

An original parameterization of the aerodynamic
coupling between trimming and performance of
a Flying Wing will be proposed. This will lead
to an analytical model for trimming and perfor-
mance coupling on flying wing, very useful at
conceptual stage.

An analytical evaluation of the performance
of the trimmed Flying Wing at conceptual stage
will then be presented.

Assumptions and

models

1 An innovative approach

1.1 Span loading : an inverse approach

It is usual to compute the lift distribution along
span from wing planform and twist distribution.
The effect of aspect ratio λ, sweep φ and taper
ratio ε on span loading have been studied to a
certain extent [1]. However those studies do not
cover a wide range of geometries. Furthermore,
the performance is not easy to parameterize.

An alternative approach will here be pro-
posed, it is an inverse approach : The span load-

ing will be considered as a conceptual input.
The geometry that leads to this span loading will
hence be obtained as an output.

This is a very powerful approach, and the pro-
cess is quite a physical approach at the end. Pro-
viding the requested span loading is realistic, it is
possible to find an accurate twist distribution that
creates the targeted span loading for any plan-
form.

Such a tool, using numerical optimization
routines, has been implemented using Matlab.
A lifting surface aerodynamics program called
AILESPRIT computes the circulation distribution
along span. Twist distribution is parameterized
for implementing into optimization routines. Af-
ter the optimization process has converged to the
targeted span loading, the physical twist distribu-
tion solution to the problem is obtained for one
flight condition. This approach offers the exact
calculation of the cruising point.

The method can be extended to other flight
conditions, under the assumption that a "rubber-
like twist flying wing" is considered. The twist
could be adjusted. This will give a very use-
ful method for conceptual use, for modelling
the complex aspect of trimming and performance
coupling on flying wings.
Nota : Such an idealistic flying wing can be very
fairly approached with an accurate set of flaps along
trailing edge : this was done on a particular example.
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1.2 Trimming ability

The work detailed in [2, 3] leads to the definition
of a new conceptual variable : the trimming abil-
ity, particularly interesting for flying wing con-
figurations.

This variable expresses the "performance in
trimming" of a given planform, associated to a
span loading and static margin. In few words,
trimming ability quantifies the "pitch-up" or
"pitch-down" effect of the lift distribution associ-
ated to the planform, at the neutral point location.

The balance of pitching moment on a
trimmed Flying Wing aircraft, for a given static
margin MStat and wing lift coefficient CL, can be
written as :{

CmNP−MStatCL = 0
CmNP = CmGeom +CmAir f

(1)

The total pitching moment at neutral point CmNP
is split into CmGeom, the pitching moment created
at neutral point by the local lift l(y) applied at
local quarter chord point and CmAir f , the pitching
moment due to the airfoil over the whole wing.

X

Z

Y

Neutral point

l(y)= L P(y)

 Quarter chord line 

y
d(y)

Fig. 1 Sketch for calculation of CmGeom, the
pitching moment created by the local lift l(y).

The local lift is defined by l(y) = LP(y)
where L is the total lift and P(y) the span loading
form. CmGeom is determined by the momentum

equation :

CmGeom =
2

ρSV 2 MAC

Z
l(y)d(y)dy

where d is the lever arm from quarter chord line
to wing neutral point and MAC is the Mean Aero-
dynamic Chord. Then the trimming ability ξ can
be defined as follows [3] :

ξ =
CmGeom

CL
=

1
MAC

Z
P(y)d(y)dy (2)

Trimming ability is hence a function of planform
geometry (λ,ε,φ) through d and MAC, and of lo-
cal lift distribution through the span loading form
P : ξ(dλ,ε,φ,P).

1.3 Span loading issue

Since span loading is considered as a conceptual
variable, a proper span loading form is to be used.
Proper span loading must be both realistic and
useful to the overall performance. We shall also
choose span loading in order to be able to handle
it analytically.

1.3.1 Choosing two basic span loadings

Two different basic span loading were studied :
minimum induced drag distribution lell , and so
called "bell shaped" distribution lbell . They were
chosen for their particular characteristics (see Ta-
ble 1).

1.3.2 Combination of the basic span loadings

The more general linear combination of these two
lift distributions can then be considered. This
combination is fully determined by the interpo-
lation factor called t :

l(t) = t lell +(1− t) lbell

Although idealized, this combination will cover a
wide range of span loading for conceptual design.

If the variable θ is used for describing the
span, through the usual expression : y = b

2cos(θ),
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Elliptic distribution "Bell shaped" distribution

Analytical form lell(y) = Ltot
2
π

√
1−

(
y

b/2

)2
lbell(y) = Ltot

8
3π

(
1−

(
y

b/2

)2
) 3

2

or lell(θ) = Ltot
2 sin(θ) or lbell(θ) = 3Ltot

4 sin3(θ)
- Higher value for trimming ability

Positive aspects - Minimize induced drag : e = 1 - Solution for reducing bending moment
while minimizing induced drag impact

Drawbacks - Small values for trimming ability - Quite high induced drag : e = 0.75

Table 1 The two basic span loading : pro and cons

some calculations lead to 1 :

l(t,θ) = 2ρbV 2 CL

πλ

(
sin(θ)− 1− t

3
sin(3θ)

)
(3)

This parameterization allows to calculate the
resulting Oswald factor e through classical
Multhopp’s calculation [4] :

e(t) =
1

1+ (1−t)2

3

(4)

Similarly, trimming ability is a function of t :

ξ(t) = t ξell +(1− t) ξbell (5)

Where ξell is the trimming ability for an elliptic
span loading, and ξbell the trimming ability for
a "bell shaped" span loading, both applied on a
given wing planform.
Nota : There is no need for the interpolation factor
t to be kept within [0, 1] : calculation is exact for any
value of t. However values over t ≥ 1 leads to pitch
down, high drag situation, that are not interesting.

1.4 Application to the swept tapered wing

For the study case of single tapered swept wing,
trimming ability ξ has been tabulated thanks to
AILESPRIT lifting surface code. Results were
identified as an analytical function ξP(λ,ε,φ) of
the planform (λ,ε,φ), for given span loading
form P.

1For t = 1, elliptic span loading can easily be checked,
as well as "bell shaped" for t = 0.

Tapered, swept wings have been treated
over a wide range of plan-form (Sweep φ ∈
[−10, +60o], taper ratio ε ∈ [0.1, 1], aspect ra-
tio λ ∈ [4, 16]). To reach a high level of accuracy
over this whole range, it was necessary to con-
sider the following polynomial function :

ξP(λ,ε,φ) = k1 + k2φ+ k3φ
2 + k4φ

3

+ k5εφ+ k6ε
2
φ+ k7εφ

2 + k8εφ
3

+ k9εφλ+ k10εφ
2
λ (6)

+ k11εφ
3
λ+ k12ελ+ k13φλ+ k14φ

2
λ

+ k15φ
2
ε

2
λ+ k16φ

3
ε

2
λ+ k17λ

2

Values for "k" coefficient are given in appendix
A. This function will be very useful in the eval-
uation of the performance under trimming con-
straint.

2 Dedicated models for drag and maximum
lift of an airfoil on a finite wing

Due to the trimming issue, it is interesting for
Flying Wing to consider the performance of an
airfoil as a function of its pitching moment coef-
ficient Cm0.
Straightforward models will be presented in this
paper, but could be replaced by more accurate
ones.

2.1 Models for airfoil drag

Based on [5, 6], it can be illustrated that for
a fixed Reynolds number, airfoil drag coeffi-
cient Cd0 can be kept constant over the range of
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pitching moment among classical airfoils (Cm0 ∈
[−0.1, 0.05]).

To a certain extent, Cd0 can be set inde-
pendently from airfoil pitching moment, within
this Cm0 range, as a "technological value" (see
Fig. 2).
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Fig. 2 Cd0 as a function of Cm0 among classical
airfoils : a technological level.

A model for additional drag ∆Cd0(∆Cm0),
caused by a flap deflection, is also derived from
[5] (for more details see [2]) :

∆Cd0 = 0.2487∆Cm0
2−0.2509∆Cm0

3

+6.825∆Cm0
4 (7)

2.2 Models for airfoil maximum lift
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Fig. 3 Clmax as a function of Cm0.

According to data from [6, 7], maximum lift
of the airfoil Clmax can be considered as a linear
function of pitching moment Cm0, including high
lift device cases as depicted in Fig. 3 : the more
negative Cm0, the higher Clmax.

2.3 Conversion from bidimensional to tridi-
mensional data

For use on a finite wing, some relationships have
to convert the airfoils wind tunnel data to more
accurate "airfoil on a finite wing" data.

2.3.1 Pitching moment CmAir f oil 3D of the wing

The effective pitching moment of an airfoil over a
finite wing called, CmAir f oil 3D, taken at the wing
neutral point, is not exactly the airfoil’s Cm0.
This was studied thanks to AILESPRIT and ex-
pressed as followed :

CmAir f oil 3D(ε,φ,Cm0) = (8)
Cm3D0(λ,ε,φ)+Ψ(ε,φ)Cm0

Functions Cm3D0 and Ψ are detailed in appendix
B.

2.3.2 Maximum lift CLmax of the wing
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Fig. 4 The relationship between airfoil Clmax and
wing CLmax depends on span loading "t".

The following definition for operational max-
imum lift CLmax of the wing is taken from [5] :

4



An analytical approach to trimming and performance coupling on Flying Wings

"Operational CLmax is reached as soon as any-
where along the wing span, local Clmax is
reached".

This is illustrated in Fig. 4. Local Clmax is
plotted along span when the operational maxi-
mum lift is reached, for two different value of "t".
With a local Clmax = 1.5, the reached wing CLmax
is 1.36 for t = 1, for t = 0.3, just CLmax = 1.2 can
be reached.
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Fig. 5 The relationship between wing CLmax and
airfoil Clmax as function of taper ε and "t".

It can furthermore be shown that the relation-
ship between Clmax and CLmax just depends on ta-
per ratio ε and span loading form parameter "t",
as seen on Fig. 5. Thanks to the inverse approach,
it is not a function of λ and φ anymore.

3 Model for CDi constrained by trimming

From the innovative approach explained before,
an analytical model for induced drag coefficient
CDi, constrained by longitudinal trimming, can
be derived.

The induced drag is expressed by Eq. 4. The
trimming ability concept (1) in combination with
Eq. (8) allows to quantify the effect of the span

loading on the longitudinal balance :
Trimming constraint (1):
ξ(λ,ε,φ, t) = MStat −

CmAir f oil 3D(λ,ε,φ,Cm0)
CL

Induced drag (2):
CDi(λ, t,CL) = 1

πλe(t)C
2
L

(9)
Reversing the trimming constraint leads to the
choice of an accurate span loading (via the spe-
cial value t(Cm0)) that satisfies the longitudinal
balance.

Then the level of induced drag due to this par-
ticular span loading is now known via the Oswald
factor e(t(Cm0)) :

t(Cm0) =
MStat−

Cm3D0(λ,ε,φ)+Ψ(ε,φ)Cm0
CL

−ξbell(λ,ε,φ)
ξell(λ,ε,φ)−ξbell(λ,ε,φ)

e [t(Cm0)] = 1

1+[1−t(Cm0)]2
3

As a final result, the value of induced drag CDi is
obtained, that is a function of the whole set of the
following variables :

• CDi is a classical function of aspect ratio λ

and lift coefficient CL

• CDi is also a function of the Oswald fac-
tor e. This factor is a function of plan-
form geometry λ,ε,φ, lift coefficient CL
and static margin MStat , as a consequence
of the span loading constrained by longitu-
dinal balance via the value of t(Cm0).

It can be written formally by :

CDi(λ,Cm0,CL)(ε,φ,MStat) = (10)
1

πλe
(
t(Cm0)(λ,ε,φ,MStat ,CL)

) C2
L

This is the main result of this paper. This analyt-
ical result can be added to any other pre-design
aerodynamic module within an optimization loop
in order to take into account the trim condition on
induced drag, i.e. the main part of trim drag.
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Optimization of the
trimmed Flying Wing
conceptual
performance
The models detailed before and the trimming
ability concept will be combined in order to
analyse analytically conceptual performance of a
trimmed flying wing.

4 Minimizing drag in cruise flight : the con-
cept of optimal airfoil

4.1 Optimal trimming in cruise flight

Our goal is here to minimize the trim drag for
the cruising flying wing. Wing planform (λ,ε,φ),
the static margin MStat and lift coefficient CL are
fixed.

No deflection drag ∆Cd0 is caused if flaps are
not used for trimming in cruise. That means an
accurate airfoil has to be chosen to trim the air-
craft. According to §2.1, Cd0 can be considered
as constant.

On the other hand, induced drag Cdi is ex-
pressed as a function of airfoil pitching moment
in Eq. (10).

As a result, only Cdi is a function of Cm0
within classical airfoil range (Fig. 6).

Then induced drag Cdi can be minimized by
searching the accurate value of airfoil pitching
moment. Minimizing Cdi corresponds to setting
the maximum value for Oswald factor, that is
e = 12.

Let us call Cm0design the value of airfoil pitch-
ing moment that allows to minimize induced drag
Cdi at e = 1, while respecting the trimming con-
straint Eq. 9-(1).

For given planform (λ,ε,φ), static margin
MStat and lift coefficient CL, choosing for the air-
foil pitching moment the value Cm0design will en-

2This is equivalent to set the lift distribution as elliptic
in the inverse formulation of the problem.
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Fig. 6 Cdi as a function of Cm0 : a result from
trimming.

sure the designer that the trim drag is minimum.
An "optimal cruising airfoil" with respect to the
trimming constraint is defined.

This leads to the following value for the opti-
mal pitching moment{

(Cm0design)approx = [MStat −ξelli(λ,ε,φ)]Cz

Cm0design =
(Cm0design)approx−Cm3D0(λ,ε,φ)

Ψ(φ,ε)
(11)

Nota : Up to now, transonic effects on lift have not

been considered as there was no need to do so. The
design parameter t is independent of transonic effects.
Then the inverse problem must be solved. Transonic
effects will interfere at this stage of the design, in par-
ticular during the determination of the actual twist. At
the moment, our current tools solve the inverse prob-
lem just at low speed.

4.2 Parametric study for the "optimal air-
foil"

4.2.1 Parametric effect of different variable

The "optimal cruising airfoil" with respect to the
trimming constraint has been defined in §4.1,
for a given planform (λ,ε,φ), given static mar-
gin MStat and lift coefficient CL. This airfoil
is characterized by its pitching moment, called
Cm0design.

The parametric effect of all parameters
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λ,ε,φ,MStat and CL on the optimal airfoil pitch-
ing moment Cm0design has also been studied.

Let us now focus on the taper ratio ε effects
on performance. Concerning aspect ratio, it is
found that the higher the λ is, the more negative
becomes the Cm0design.

4.2.2 Parametric effect of taper ratio ε and
sweep φ

Taper effect on trimming has rarely been studied.
However, taper appears to become a sizing pa-
rameter in the flying wing case, via the trimming
constraint. Our approach allows to quantify this
effect.
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On Fig. 7, the values for Cm0design are plotted
for given cruise CL, static margin MStat and aspect
ratio λ, as a function of taper ratio ε and sweep φ.

As expected, it can be noticed that generally
speaking, the higher the sweep angle φ, the more
negative Cm0design gets. The sweep angle helps
trimming.

But the effect of taper ε is unexpectedly im-
portant. If taper becomes close to ε = 1 (that is
"square" wing), the more negative the Cm0design
is. On the contrary, if taper gets close to ε = 0,
the effect of the sweep can be reversed !

Consequently, if you want to use a transonic
airfoil (Cm0 ' −0.1) that would be the optimal
airfoil Cm0 = Cm0design, you must choose high
sweep and taper close to 1. On this example, this
is not realistic (sweep up to 60 !). You might also
release the constraint on aspect ratio λ (higher
values) and the static margin MStat .

5 Minimizing conceptual take off distance
under trimming constraint

5.1 Simple model for take off distance

The take off will just be considered from a per-
formance point of view. The rotation phase is not
taken into account. Conceptual take off distance
TOD is hence the sum of ground distance, TODg,
and the initial climb distance TODclimb :

TOD = TODg(CLmax)
+TODclimb(CLmax,L/D) (12)

Ground distance TODg is linked to CLmax,
whereas the initial climb distance TODclimb is in-
fluenced by CLmax and L/D ratio.

The pitching moment Cm0 reflects the high
lift level : the more negative the pitching moment
Cm0 is, the higher the maximum lift CLmax will
be allowed. Cm0 is from now on not the result
of an optimization process as it was in §4, but a
parameter input standing for the setting of high
lift devices which will be set within the interval
Cm0 ∈ [−0.4, +0.1] for the following analysis .

The additional deflection drag, written as
∆Cd0(Cm0) can be computed using Eq. (7).

5.1.1 Ground distance TODg

During the ground run, the airspeed increases up
to VTakeO f f , the speed corresponding to the oper-
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ational maximum lift CLmax. The simple model
from [8] is used, that gives TODg proportional to
the following expression T̃ODg :

TODg(Cm0) ∝ T̃ODg(Cm0)

T̃ODg(Cm0) =
(mg)2

S CLmax(Cm0) F0.7
(13)

where F0.7 is the thrust when the speed is
0.7VTakeO f f .

5.1.2 Initial climb distance TODclimb

The initial climb is ruled by the thrust-to-weight
ratio F

mg and the effective L/D at the take off
speed. According to [8], TODclimb is the distance
where the height hsecu is reached, projected to the
ground :

TODclimb(Cm0) =
hsecu

0.81 F0
mg −L/DTakeO f f (Cm0)

(14)
where F0 is the thrust at V = 0m/s and
L/DTakeO f f is a function of Cm0 since it is de-
fined as follows :

L/DTakeO f f =
CLmax(Cm0)

CD(Cm0)

5.2 Maximum high lift level

Thanks to our approach, take off calculations are
naturally done under trimming constraint.

Results are plotted on Fig. 8 : the greater
the high lift level (i.e. the more negative the
Cm0), the shorter TODg, but also the longer the
TODclimb. TODclimb is indeed strongly penalized
by the additional trim drag through L/DTakeO f f
from Eq. (14).

An optimal Cm0 for minimum TOD appears.
This Cm0 is associated to a maximum allowable
high lift level.

This work has been done for a Flying Wing
configuration and a classical configuration (with
a proper trim drag model). The comparison
shows that the high lift maximum limit occurs
much earlier for Flying Wing than for classical
configuration, because of extra trim drag.
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Fig. 8 Conceptual TOD detail. Comparison with
classical configuration.

As a result, the minimum conceptual
TOD

WingLoading is much longer for Flying Wing than
for classical configuration. The following well
known result is confirmed : lighter wing loading
is needed on Flying Wing for the same TOD as
classical configuration.

5.3 Parametric study of taper ratio ε

As for optimal airfoil, parametric sensitivity of
each variable has been studied. Once again, we
will focus on taper ratio ε.
Two effects are encountered :

1. On the one hand, taper close to ε = 0 causes
higher trim drag (as for §4.2.2).

2. On the other hand, taper close to ε = 0 also
allows higher values for wing CLmax for a
given airfoil Clmax, as shown on Fig. 5.

The predominant effect remains however the sec-
ond effect, see Fig. 9 : taper close to ε = 0 re-
duces TOD due to the complex coupling between
trimming and performance. It can be concluded
that for the Flying Wing, taper can be tailored in
order to improve take off performance with inter-
esting results.
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Fig. 9 Conceptual TOD as a function of taper ε

and "high lift level" Cm0.

6 Conclusions

An innovative approach was detailed for Fly-
ing Wing conceptual performance evaluation,
proposing an inverse problem on span loading.
The result is an analytical approach for the trim-
ming and performance coupling.

Particularly, an independent expression for
induced drag CDi under trimming constraint was
presented.

This approach was then illustrated on a con-
ceptual optimization example.

For cruising flight, it was shown that an opti-
mal airfoil, defined through its pitching moment
Cm0design, can be properly chosen to minimize
trim drag.

For take off, the performance gap compared
with classical aircraft configuration was illus-

trated leading to some design rules.
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wing

The values ki of Eq. (6) for elliptical span loading
are :

k1 = 2.0624 10−3 k2 = 2.8635 10−4

k3 = 7.2193 10−5 k4 = −5.1723 10−7

k5 = −6.3268 10−3 k6 = 1.7347 10−3

k7 = −1.3713 10−5 k8 = 2.4930 10−7

k9 = 1.0896 10−3 k10 = 1.9649 10−5

k11 = 1.3099 10−7 k12 = 5.8523 10−5

k13 = −2.5644 10−4 k14 = −5.5720 10−6

k15 = −2.7188 10−5 k16 = 2.0751 10−7

k17 = −6.0909 10−5

The values ki of Eq. (6) for "bell shaped" span
loading are :

k′1 = −2.7271 10−3 k′2 = 3.6980 10−3

k′3 = −8.0429 10−5 k′4 = 1.2723 10−6

k′5 = −5.6574 10−3 k′6 = 5.2503 10−4

k′7 = −2.1094 10−5 k′8 = 3.3288 10−7

k′9 = 1.4932 10−3 k′10 = 4.7188 10−6

k′11 = 4.3625 10−7 k′12 = −8.7402 10−4

k′13 = 1.3622 10−4 k′14 = 4.1099 10−6

k′15 = −2.4646 10−5 k′16 = 8.3283 10−8

k′17 = −1.1869 10−5

B Wing pitching moment CmAir f oil 3D

The wing pitching moment CmAir f oil 3D is given
by Eq. (8) as :

CmAir f oil 3D(ε,φ,Cm0) =
Cm3D0(λ,ε,φ)+Ψ(ε,φ)Cm0

with :

Cm3D0(λ,ε,φ) = ka + kbφ
2 + kcλ+ kdε

Ψ(ε,φ) = kα + kβφ+ kγφ
2 + kδεφ

+ kσε+ kζε
2

where :
ka = 2.27544040364 10−3

kb =−1.89047090 10−6

kc =−3.6058065218 10−4

kd = 9.33053537282 10−3

kα = 8.1905745765293 10−1

kβ = 5.377947288 10−4

kγ =−1.2433649855 10−4

kδ =−1.34709072940 10−3

kσ = 3.3437468167639 10−1

kζ =−1.7572199349854 10−1
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