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Abstract  

A time accurate viscous-inviscid zonal method 
is presented for simulating compressible and 
incompressible external aerodynamic viscous 
flows. The division of the flow field into inviscid 
and viscous zones is warranted by the physical 
nature of the problems. However making full 
use of such division is the motivation of the 
present method. 

A finite element method is used to solve 
both the inviscid and viscous problems. The 
inviscid solution is computed by solving the 
potential flow with a density upwind (also called 
artificial compressibility) finite element method. 
The viscous solution is obtained by solving the 
Reynolds-averaged Navier-Stokes (RANS) 
equations via a streamline upwind Petrov-
Galerkin finite element method. 

Numerical results are presented for two-
dimensional compressible and incompressible 
high Reynolds number turbulent flows around 
NACA 0012 and RAE 2822 airfoils. The results 
obtained with the present viscous-inviscid 
method are in good agreement with the full 
Navier-Stokes solutions of the present author 
and other researchers. 

1  Introduction 
Difficulties encountered in the simulation of 
fluid flows, especially aerodynamic flows, are 
usually related to the existence of very different 
length and time scales in different flow regions 
such as the inviscid flow region, viscous thin 
layer and shock wave. When handling this type 
of challenge, commonly referred to the stiffness 

of the governing equations, by most numerical 
algorithms and methods, special care must be 
taken for grid generation, turbulence modeling 
as well as solving the equations and many other 
issues. The aerodynamic flow around an aircraft 
is a typical example of the above difficulties. 
This stiffness of the governing equations may 
also be an indication that dealing with different 
flow regions by different approaches might be 
wiser, more efficient and revealing. For an 
aerodynamic problem, although the flow is 
governed by the Navier-Stokes equations, the 
vast portion of the flow field around the aircraft, 
where the viscous effects are not important, can 
be well represented by a potential or Euler 
solution. Viscosity is important only in a very 
thin layer close to the aircraft surface for 
attached flows. Even for large separated flows, 
the substantial viscous effects are restricted to 
the region near the aircraft surface and in its 
wake. Therefore, from an application 
perspective, a natural solution procedure would 
be based on a viscous-inviscid splitting 
approach [1-7]. This approach consists of 
dealing with different regions of the flow in 
different ways by taking advantage of the flow 
nature in each region. The early viscous-inviscid 
interactive boundary layer method is the best 
example of this philosophy. The approximations 
to the Navier-Stokes equations of the early 
boundary layer method limited its application 
range. However, a viscous-inviscid splitting 
approach does not necessarily mean the 
degradation in the accuracy of the solution 
compared to a RANS solution method [3-10]. 
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Researchers such as Brune, et al [8], 
Cambier, et al [9], and Le Balleur [3-7] should 
be mentioned amongst others for their 
contributions to the viscous-inviscid splitting 
approach. Specially, major contributions have 
been made by Le Balleur to bring the approach 
to the stage of engineering applications. Le 
Balleur started his research on a viscous-
inviscid splitting method in late 1970s. Through 
decades of research, he has developed a 
sophisticated and yet efficient method with a 
strong physical insight to deal with high 
Reynolds number external turbulent flows. In 
his viscous-inviscid splitting method, Le Balleur 
introduced a defect-formulation theory that is 
the key for his subsequent derivations of 
integral forms of the governing equations and 
handling of the coupling between viscous and 
inviscid solutions [3-7]. With a thin-layer 
approximation and introduction of a parametric 
velocity profile model, he was able to solve, at 
much lower cost, large separated flows around 
three-dimensional configurations [6]. He has 
applied his method to two and three 
dimensional, compressible and incompressible, 
steady and unsteady, high Reynolds number 
external flows.  

The viscous-inviscid zonal method 
presented in this paper is one type of the 
viscous-inviscid splitting approach. In the zonal 
method, the computational domain is divided 
into an inviscid zone where an inviscid solver is 
used and a viscous zone near the body surface 
and its wake where a RANS solver is employed 
to deal with the turbulent flow. The 
computational efficiency is thus improved by 
reducing the extent of the viscous computational 
domain [8-10]. The RANS solver must be 
coupled with the inviscid solver along a 
patching boundary, located in the inviscid part 
of the flow. 

As far as the space discretization is 
concerned, in the present paper, the finite 
element method [11-14] is used to address both 
the inviscid and viscous problems. The inviscid 
solution is computed by solving the potential 
flow equation with a density upwind finite 
element method. The viscous solution is 
obtained by solving the RANS equations via an 

inconsistent streamline upwind Petrov-Galerkin 
finite element method that can be regarded, as 
shown in the present paper, as a Galerkin 
method applied to a modified governing 
equation. The Spalart-Allmaras one-equation 
turbulence model is employed in this study 
because of its success in solving the 
aerodynamic flow problems.  

The present zonal method has been 
previously applied, by the author [10], to two-
dimensional compressible and incompressible 
low Reynolds number flows. In the current 
study, the author has further extended and 
applied the method to two-dimensional 
compressible and incompressible high Reynolds 
number turbulent flows. 

2  Governing Equations and Numerical 
Method 

2.1 Navier-Stokes viscous solution method  
In the present study, we consider two-
dimensional compressible and incompressible 
viscous flows around an airfoil. For these flows, 
the governing equations take the following 
form: 
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where TCe υ=  is the specific internal energy 
and  is the specific heat coefficient; υC

ρ/peh +=  is the specific enthalpy; the 
repeated indices indicate summation. The heat 
flux vector  is governed by Fourier's law jq

      
j

j x
Tq

∂
∂−= κ     (j=1,2)                      (4) 

where κ  is the thermal conductivity. The 
perfect gas law 
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  RTp ρ=                                            (5) 
and the constitute relation between stress and 
strain rate 
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close the above system. Here, R is the perfect 
gas constant and ijδ  is the Kronecker delta. The 
thermal conductivity is determined by 

PrR /1 µκ γ
γ
−= , where Pr is the Prandtl number 

and γ  is the ratio of specific heats. 
An implicit operator-splitting algorithm is 

employed to solve the above momentum 
equations. The algorithm essentially splits the 
velocity components into two parts such that the 
continuity equation and pressure terms in the 
momentum equations can be treated separately. 
In the algorithm, juρ is divided in the time 
interval from tn to tn+dt as     
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and the pressure p is expressed as 
),,(),(),,( 212121 txxpxxptxxp n ∆+=      (8) 

where (j=1,2) and  are 
incremental values as yet to be determined. 
Substituting equations (7) and  (8) in the 
momentum equation (2), we can split the 
momentum equation into two equations as  
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From equation (10), we note that  is 
associated with the increment of pressure p. 
This equation may be regarded as a correction 
equation that ensures the satisfaction of mass 
continuity. 

**)( juρ∆

A fully implicit algorithm is developed for 
the solution of equation (9) that is further 
replaced by a non-conservative form by making 
use of the continuity equation. Discretizing the 

resulting non-conservative equation in time, we 
obtain 
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Equation (11) is then solved by an inconsistent 
streamline upwind Petrov-Galerkin finite 
element method [14]. 

A prescribed Dirichlet velocity boundary 
condition is implemented for the first part of the 
solution. That is 

  ),,(),,()( 2121
*

njjj txxutxxuu −=∆  
                                     (j=1,2) on Ω∂   (13) 

where Ω∂  is the boundary of the fluid domain 
of investigation, Ω , and ju  denotes the 
prescribed value on the boundary. For the 
second part of the solution we impose 
homogeneous boundary conditions, namely,  

   (j=1,2) on               (14) 0)( ** =∆ juρ Ω∂
so that the combination of the two parts of the 
solution satisfies the given physical boundary 
conditions. 

Equations (10) and (1) are required for the 
solution of and . With discretizing 
both equations in time and a little derivation, we 
obtain 
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where∇ is the gradient operator. These two 
equations with the following boundary 
conditions 
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determine the solution of ∆ and **)( juρ p∆ . n  
denotes the normal to the boundary. The 
discretization of equation (3) is similar to that of 
equation (9). 

When turbulent flows are considered and a 
turbulence model is introduced, the viscosity µ  
in equations (2) and (3) is replaced 
by Tµµ + where Tµ  is the eddy viscosity as 
defined below, and κ  is replaced by Tκκ +  

where TR r1γ
γ
−= TµTκ P/  with  being the 

turbulent Prandtl number. In the present study, 
the Spalart-Allmaras one equation model is 
employed to compute the eddy viscosity [15]. 
Its defining equations are as follows: 

TPr
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where d is the distance to the closest surface and 
the kinematic viscosity is ρµν /= . The 
definition of the closure coefficients and 
auxiliary relations can be found in [10,15].  

The time discretization of equation (20) is 
similar to that of equation (9), however, care 
should be taken with its spatial discretization. 
To ensure a positive matrix operator that 
guarantees a non-negative eddy viscosity, 
following the suggestion by Spalart and 
Allmaras [13], equation (20) is rearranged as 
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where the differentiation of the molecular 
viscosity has been neglected. Using equation 
(21) instead of (20) avoids the discretization of 
the term , which does not easily generate 
a positive discrete matrix operator. 

2)( ν∇

2.2 Potential inviscid solution method 
The full potential equation is the continuity 
equation (1) with the velocity defined as 
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determined by 
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where ,,,     ,)( ∞∞∞∞ Tpu j ρ ∞M , and φ  are the 
freestream velocity, density, pressure, 
temperature, Mach number, and the perturbation 
velocity potential, respectively; V  ;iiuu=2

tt ∂∂= φφ . For incompressible flows, the 
density ρ  is constant and thus the perturbation 
potential satisfies the Laplace equation. The 
boundary conditions for equations (1) and (22) 
are: 

1. The perturbation velocity potential in the 
farfield (except at the outflow) is set to zero; 

2. The flux through the outflow boundary 
is set equal to the freestream flux. This 
condition allows a jump in the velocity potential 
in the wake; 

3. If the whole flow field is chosen as an 
inviscid potential zone, then additional 
conditions are required. At any location on a 
prescribed wake sheet, there are two values for 

,φ so two conditions must be imposed. First, 
the mass flux through the wake is continuous 
and second, the pressures on the upper and 
lower surfaces of the wake sheet must be equal. 

A density upwind Galerkin finite element 
method  [16,17] was used to solve the above 
potential flow problem. The basic concept of the 
density upwind is to replace the density in the 
continuity equation, when implementing the 
spatial discretization, by 

       )( upwindf ρρσρρ −−=                (26) 
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where upwindρ  is the density at the upstream 
node of the current node and 
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where M  is the local Mach number and 
 is a critical Mach number 

defined to control the spatial extent of the 
upwind region. 

)98.0criticalM (  ≈

)0.3~0.1( =cσ  is a parameter 
to control the amount of the upwind effect. 

2.3 Match of the inner viscous and outer 
inviscid solutions 

The interfaces that separate the inviscid and 
viscous zones are located in the inviscid domain 
and have two adjacent surfaces. The velocity, 
pressure and temperature are matched on these 
surfaces in such a way that the potential 
governing equation is satisfied on one surface 
while the viscous Navier-Stokes equations 
including the energy equation are satisfied on 
the other surface. 

 
Fig. 1.  A  typical zonal C-grid around an airfoil 

 
In figure 1, the interfaces are indicated by 

surfaces A and B. On surface A, a following 
potential boundary condition is implemented 
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where in denotes the ith component of the unit 
outward normal to the boundary. On surface B, 

the Navier-Stokes boundary conditions below 
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This also implies that the potential equation is 
satisfied on surface B while the NS equations 
are satisfied on surface A. 

3  Numerical Implementation 
A finite element method is employed to 
discretize the governing equations in space after 
the time discretization. For demonstration, 
equation (11) is considered. A weak formulation 
is obtained by taking a scalar product with an 
appropriate weighting function and integrating 
over the domain Ω . Then, for the discretization 
of the weak formulation we may use different or 
the same interpolation approximations for both 
velocity and pressure. In the present study, we 
use bilinear approximations for all variables. 
The interpolations are expressed as   
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where N  is the total number of nodes for the 
velocity components; M  is the total number of 
nodes for the pressure; (  and  are the 
nodal variables; U  and Π  are 
node functions. By using equations (30) and 
(31) and setting the weighting function the same 
as the corresponding node function (with an 
upwind modification for a Petrov-Galerkin 
method), we can derive a finite element 
algebraic system of equations, which is solved 
for the nodal variables.  

iju )
)

ip
,( 1x, 21 x(xi )2xi

A similar procedure is used for equations 
(15) and (16) for and , equation 
(21) for eddy viscosity, equations (1) and (24) 
for the velocity potential, and equation (3) for T. 

**)( juρ∆ p∆

Focusing on the streamline upwind Petrov-
Galerkin method, the following derivation 

5  



Jichao Su 

shows its essence. A general form of a transport 
equation can be written as 
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To solve the above equation numerically, an 
upwind effect is generally required to make a 
solution stable in the spatial discretization when 
the convection terms dominate the solution. In a 
finite volume method, including upwind is quite 
straight forward and a variety of first-order or 
high-order schemes have been developed. 
However, in a finite element method, the 
common way of considering upwind effects is 
by modifying the weighting function; weighting 
upstream nodes more than downstream nodes 
[14]. Here we deal with the issue from a 
different perspective. We first modify equation 
(32) to include an upwind effect prior to spatial 
discretization. To achieve that, ϕ  is replaced in 
the convection terms in the above equation by a 
Taylor expansion along the local streamline as 
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where controls the magnitude of the upwind 
effect and is defined below. Thus the modified 
non-conservative form of equation (32) is 
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By applying a standard Galerkin method, we 
obtain a weak formulation as 
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which is simply an inconsistent streamline 
upwind Petrov-Galerkin weak formulation if 

0=ii nu
Ψ

 on the boundary of the fluid domain, 
where  is a Galerkin weighting function. If 
the weighting function, applied to the 
convection term in the above equation, 

j
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, is applied to all the terms in 

equation (32) (in the non-conservative form), 
then a consistent streamline upwind Petrov-
Galerkin weak formulation results. In this study, 

η=  at each node with h  being the average 
of the maximum dimensions of the elements 
around the node and 

e

1.0≈η . This definition is 
different from that suggested by Brooks and 
Hughes [14]. 

=∞M

0.0

4  Numerical Results and Discussion 
Some calculated results are presented for two- 
dimensional compressible and incompressible 
flows around NACA 0012 and RAE 2822 
airfoils. A typical C-type grid near the airfoil is 
shown in figure 1.   

4.1 Incompressible flow 
Figure 2 (where c is the airfoil chord length) 
shows the pressure coefficient on the surface of 
the NACA 0012 airfoil with 0o angle of attack 
and a Mach numer of . A 199x51 C-

grid and its modifications in consideration of a                

0.0

 
Fig. 2.  Pressure coefficient over the NACA 0012 airfoil 

at ,0o=α =∞M  and Re=5x106. 
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certain angle of attack are, generated for the 
calculations of flows around the NACA 0012 
airfoil. The 199x28 grid near the airfoil and its 
wake is chosen as the viscous zone and the 
199x23 grid outside the viscous zone as the 
inviscid zone. When the whole grid is chosen as 
an inviscid zone, a potential solution is 
obtained. A full Navier-Stokes solution is 
calculated if the whole grid is chosen as a 
viscous zone. The first grid point off the wall is 
at a distance of about 1x10-5 chords, which 
provides a reasonable numerical resolution for 
the flows considered (guaranteeing a value of 

, where  is the friction 
velocity). Both full Navier-Stokes and zonal 
solutions are shown in the figure for a viscous 
flow with a Reynolds number (Re) of 5x10

10/ <=+ ντ yuy τu

6. 
The agreement is very good. The results are also 
in good agreement with the empirical data from 
[18].  

4.2 Compressible flows 
The numerical results for compressible flows 
around the NACA 0012 airfoil are shown in 
figures 3-5. The results for 10o angle of attack, 

 and Re=5x105.0=∞M 6 are presented in figure 
3. Again the full Navier-Stokes and        

 
Fig. 3.  Pressure coefficient over the NACA 0012 airfoil 

at and Re=5x10,10o=α 5.0=∞M 6. 

zonal solutions are in excellent agreement for 
these viscous flows. For the case of zero angle 
of attack, =0.80 and Re=9x10∞M 6, the result by 
the zonal method matches very well the full       

 
Fig. 4.  Pressure coefficient over the NACA 0012 airfoil 

at ,0o=α 8.0=∞M and Re=9x106. 

 
Fig. 5.  Pressure coefficient over the NACA 0012 airfoil 

at and Re=9x10,25.1 o=α 8.0=∞M 6. 
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Navier-Stokes result as shown in figure 4. These 
results are also in a fairly good agreement with 
the full Navier-Stokes result on a 320x64 grid 
obtained by a finite volume method [19]. The 
same conclusion can be drawn from the 
numerical results shown in figure 5 for the case 
of 1.25o angle of attack, =0.80 and 
Re=9x10

∞M
6. While the difference near the shock 

wave between the present full Navier-Stokes 
and the finite volume results may mainly be 
attributed to the grid resolution and different 
turbulence models, the difference between the 
present full Navier-Stokes and zonal results may 
be due to the accuracy of the potential 
approximation near the shock wave. 

Calculations were also performed for a 
compressible flow around the RAE 2822 airfoil. 
The results for 2.92o angle of attack, 

 and Re=6.5x10725.0=∞M 6 corresponding to 
the Case 6 of reference [20], are presented in 
figure 6. A grid of 217x65 is employed for the 

 
Fig. 6.  Pressure coefficient over the RAE 2822 airfoil at 

and Re=6.5x10,92.2 o=α 725.0=∞M 6. 
 
present full Navier-Stokes and zonal solutions. 
For the zonal result, the 217x41 grid near the 
airfoil and its wake is chosen as the viscous 
zone and the 217x20 grid outside as the 
potential zone. The first grid point off the wall 

is at a distance of about 1x10-5 chords. Again 
the full Navier-Stokes and zonal solutions are in 
excellent agreement for the considered viscous 
flow. The grid resolution, different turbulence 
models, and different numerical methods may 
all contribute to discrepancy between the finite 
volume result [21] (using a grid of 369x65) and 
the current result. 

It is concluded from the above discussion 
that the overall agreement between the full 
Navier-Stokes and zonal method is very good. 
However, significant computational time is 
saved by using the zonal method for the  present 
two dimensional compressible and 
incompressible high Reynolds number turbulent 
flows. The author also believes that the 
interfaces could be placed closer to the airfoil 
surface and its wake. This will be investigated 
further. 

5 Conclusions 
A zonal finite element method has been 
developed in the present paper to simulate two-
dimensional compressible and incompressible 
high Reynolds number external flows.  

Numerical results presented for the two-
dimensional turbulent flows around the NACA 
0012 and RAE 2822 airfoils show that the 
coupling between the outer potential flow 
solution and inner viscous flow solution is 
successful, which is justified by the physical 
flow natures of the problems. 

A streamline upwind Petrov-Galerkin finite 
element method is shown, in the present paper, 
to be equivalent to a Galerkin method applied to 
a modified transport equation. 

Further investigation into the effects of the 
grid resolution and interface locations is needed 
before applying the approach to practical three-
dimensional steady and unsteady aerodynamic 
problems.  
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