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Abstract

This paper describes techniques to construct
NURBS based parametric geometric models for
wing geometric modelling. The surface ob-
tained intrinsically respects several geometric
constraints as it consists in a mixture of ruled and
cubic surfaces represented with a single NURBS
model. The model is expected to provide a good
framework for wing aerodynamic optimization
based on CFD tools and formal mathematical
programming.

Nomenclature

u parameter in the chordwise direction
v parameter in the spanwise direction
Ni�p�u� B-Spline function of order p
Pi� j control point
ωi� j weight of control point
Ri� j�u�v� piecewise rational basis function
C�u� NURBS curve
S�u�v� NURBS surface
x�y�z Cartesian body axes
U knot vector U for the parameter u
V knot vector V for the parameter v
CAD Computer Aided Design
CAGD Computer Aided Geometric Design

1 Introduction

Owing to the continuous progress of the com-
putational algorithms and computational power,

aerodynamic analysis using CFD are now rou-
tinely performed using Navier-Stokes solver on
three-dimensional wing configurations. It is now
tempting to use these powerful technologies in
a computational-based design environment, cou-
pling optimization software with CFD solvers
based on appropriate geometric parametrization
and cost function. Recent literature reports many
attempts in this direction which are illustrating
the state-of-the-art of the technology.

Our contribution to this domain lies in the
construction of parametric geometric modeling
specialized for wing design. Our methodology
exploits the power and the flexibility of NURBS1

interpolation curves to construct wing surface
having special characteristics mostly related to
the curvature field. Several authors ([8, 10, 11,
14, 16]) have shown that curvature is a main fac-
tor in determining the quality of a geometric rep-
resentation. The objective of this work is to ob-
tain, within a parametric model, a family of sur-
faces, controled through a very small set of pa-
rameters, having strict respect of a set of geo-
metrical constraints found on real wings. This
will then insure that wings produced using this
parametrization will intrinsically respect the con-
straints, without having to treat them explicitly
in the optimizer. Also, the treatment of the ge-
ometric constraints at the geometric model level
generally results in a reduction of the number of

1NURBS computations presented in this article have
been made using the C++ class library Pirate:
http://www.cerca.umontreal.ca/pirate/
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free parameters in the model, thus reducing the
number of design variables for the optimization
phase.

In the present work, we describe three strate-
gies which have been developed and imple-
mented in order to construct the wing surface
with special curvature requirements. The next
section will describe the required wing surface
characteristics while section 3 will present main
definition and features of NURBS curves and sur-
faces. In section 5, we will describe the three
modifications strategies developed and we will
present results of their implementation. Section
6.2 will present the conclusion of our work.

2 Wing Surface Requirements

A plane view of the wings constructed in the
present study is shown in Fig. 1.

The wing planform is fully described by the
sweep angle α, and the chord of the wing sec-
tions at the wing root, break and tip. The slats
and flaps cover a constant percentage of the chord
length at the leading edge and trailing edge re-
spectively. The three wing sections at the wing
root, break and tip are airfoil shapes defined inde-
pendently. The geometric constraints considered
in the present work are related to the construc-
tion of the three dimensional surface. In fact, in
the slat and flap regions, the surface must be a
piecewise linear interpolation between the root
and break sections and between the break and
tip sections respectively. These patches of the
surface are thus “ruled” surface; this constraint
coming from manufacturing requirements. The
inboard and outboard central surfaces have more
freedom and a third degree NURBS interpolation
approaching conic sections in the spanwise direc-
tion is seeked. However, the Gaussian curvature
must always be constant in sign, usually negative
on the extrados, positive on a patch parallel to the
flaps and negative on a patch parallel to the lead-
ing edge on the intrados. The presence of an in-
flection point at mid-chordwise position induces
this inversion in sign of the Gaussian curvature.
Controlling the sign of the Gaussian curvature on
the different parts of the wing avoids oscillations

in the final surface.

3 Definition of NURBS Curves and Surfaces

In computer aided design, the most common geo-
metric representation method use Bézier curves,
B-splines and NURBS. It is not surprising that
Bézier curves are often used because this was
the first interpolation method developed to use
control points ([2]). Furthermore, the method
is simple to implement, and moving the control
points allows for easy, and visual, shape modi-
fication. Nevertheless, Bézier curves have two
major disadvantages: first, they cannot represent
conics exactly; and, second, their parameteriza-
tion is global, which means that when a con-
trol point is moved the whole curve is modified.
B-splines use the concept of control points in-
troduced by Bézier, but the interpolation func-
tions are more complex, with local character-
istics such that the displacement of a control
point induces only a local modification of the
curve([7, 15, 13]). Though conics cannot be rep-
resented exactly using B-splines, this method has
often been used. NURBS are an extension of B-
splines, using fractions of the same interpolation
functions. Those fractions are weighted by a co-
efficient (weight) assigned to each control point.
So, the family of curves that can be represented
with NURBS is much wider than that with B-
splines or Bézier curves, and also includes con-
ics. The algorithms associated with NURBS are
easier to implement with the definitions intro-
duced by Cox ([6]) and De Boor ([4, 5]). It has
been established that these algorithms, as evalu-
ations of positions or derivatives, are stable and
fast ([1, 3]).

NURBS curves are defined by

C�u� �
n

∑
i�0

Ri�p�u�Pi (1)

with Ri�p�u� �
Ni�p�u�ωi

∑n
j�0 Nj�p�u�ω j

(2)

where Pi are the control point coordinates, ωi

their respective weights, Ni�p the p-th degree B-
spline basis functions and C�u� the position of a
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Fig. 1 Descriptive wing planform.

point on the curve. The basis functions are ob-
tained through a knot vector of the form

�0� � � � �0� �� �
p

�up�1� � � � �um�p�1�1� � � � �1� �� �
p

� (3)

which defines the functions’ break points. The
basis functions are equal to zero everywhere ex-
cept on an interval delimited by �m� 1�� 2� � p
knots. This interval defines the area of influ-
ence of the corresponding control point. NURBS
curves have the visual aspect of Bézier curves
and the local properties of B-splines. They are
suitable for use in a very wide range of applica-
tions and are likely to produce naturally smooth
profiles. The tensorial notation of a NURBS sur-
face induce properties corresponding to the uni-
variate basis functions defining NURBS curves.
A NURBS surface of degree p in the u direction
and of degree q in the v direction is a bivariate
vector-valued piecewise rational function of the
form:

S�u�v��
n

∑
i�0

m

∑
j�0

Ri� j�u�v�Pi� j 0� u�v� 1 (4)

with Ri� j�u�v� �
Ni�p�u�Nj�q�v�ωi� j

n

∑
k�0

m

∑
l�0

Nk�p�u�Nl�q�v�ωk�l

(5)

where the Pi� j form a bidirectional control net,
ωi� j their respective weights, Ni�p�u� and Nj�q�v�
are the non-rational B-Spline basis functions de-
fined respectively on knot vectors of the form

�0 � � � � � 0� �� �
p�1

� up�1 � � � � � ur�p�1 � 1 � � � � � 1� �� �
p�1

� (6)

�0 � � � � � 0� �� �
q�1

� vq�1 � � � � � vs�q�1 � 1 � � � � � 1� �� �
q�1

� (7)

where r � n � p � 1 and s � m � q � 1. The
weights ωi� j considered in this formulation are
positive in order to keep the rational function
Ri� j�u�v� also positive. The important properties
of the functions Ri� j�u�v� are the same as the non-
rational basis functions Ni�p�u�, Nj�q�v�. A brief
enumeration of these properties is given here:

1. Non-negativity: Ri� j�u�v� � 0 for all i,j,u
and v.

2. Partition of unity:
n

∑
i�0

m

∑
j�0

Ri� j�u�v� � 1 for

all �u�v�ε �0�1�� �0�1�.

3. Local support: Ri� j�u�v� � 0 if �u�v� is out-
side the rectangle given by �ui�ui�p�1��
�v j�v j�q�1�and thus the corresponding
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control point Pi� j has no influence on the
surface outside of this patch.

4. In any given rectangle of the form
�ui0�ui0�1� � �v j0�v j0�1�, at most
(p+1)(q+1) basis functions are nonzero, in
particular the Ri� j�u�v� for i0� p � i � i0
and j0�q� j � j0 are nonzero.

The properties of the Ri� j�u�v� functions imply
important geometric properties as:

1. Local modification: if Pi� j is moved, or ωi� j

is changed, it affects the surface shape only
in the rectangle �ui�ui�p�1�� �v j�v j�q�1�.

2. Strong convex hull property: if
�u�v�ε �ui0�ui0�1� � �v j0�v j0�1�, then
S�u�v� is in the convex hull of the
control points Pi� j, i0 � p � i � i0 and
j0�q� j � j0.

Complete definitions can be found in [12].

4 General Approach for the construction of
the wing surface using NURBS

Our approach for the construction of a NURBS
surface respecting the above described con-
straints starts with the construction of a bi-cubic
interpolation surface combined with a special po-
sitioning of the control points in the spanwise di-
rection. The first step is the interpolation of air-
foil sections at the root, break and tip sections.
This interpolation is illustrated in figure Fig. 2.

Airfoils

Control Points

Airfoil section

Inflection point
End flap intrados

End leading edge intrados

End flap extrados

Control points

End leading edge extrados

Fig. 2 Airfoil section represented by a cubic
NURBS curve and its control polygon.

The airfoil is first given as a set of discrete
points. The algorithm for the construction of the
NURBS interpolation curve section comprises
five steps:

1. reading the points defining the 2D normal-
ized airfoil sections and the parameters fix-
ing their position in 3D space. Usually
there are around 200 definition points per
section;

2. subdividing each set of data points in 5 sub-
sets of data points belonging respectively
to the flap intrados, inner center intrados,
outer center intrados, center extrados and
flap extrados;

3. computation and storage of the discrete
curvature κi at the data points of each sub-
set, serving to drive the selection of the
points to be interpolated;

4. for every subset at each section, mi�0 �
i � 4� points to be interpolated are chosen
among the initial subset of data points;

5. collecting all points to be interpolated for
each section to construct a cubic B-spline
curve interpolating these data points for
each section.

The criteria used to produce the five subsets
of data points at each section are the lengths of
the flaps and the leading edge in the chordwise
direction and the inflection point dividing the in-
ner and outer central parts on the intrados. The
continuity between each subset is achieved by se-
lecting the first and last points of the subset defin-
ing the flaps and the leading edge. The inner parts
contributes only by giving inner points. This pro-
cess is repeated for the three sections at the root,
break and tip. Based on these three interpolation
curves, an interpolation surface is initially con-
structed using a tensorial NURBS surface with
26 interpolation points. The leading edge having
higher variations in the curvature needs 8 inter-
polation points in the chordwise direction to be
well fitted. Chord lenght parametrization is used
in the chordwise and spanwise direction.

If one uses only a linear interpolation in the
spanwise direction, the interpolation surface will
be linearly varying in this direction. This will in-
trinsically respect the constraints in the flap and
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the slat regions but will not provide a cubic in-
terpolation in the central part, thus limiting the
smoothness of the surface, especially at the break
position.

If one simply uses three sections and increase
the NURBS to a second degree, then the align-
ment of the trailing and leading edge will not be
maintained as illustrated in figure Fig. 3. De-
pending on the parametrization, oscillations are
probable in the spanwise direction.

Alignment of the trailing edge lost

Fig. 3 NURBS surface of a wing of order 3�3.

In order to keep the ruled surfaces in the slat
and the flap region, we simply introduce two ad-
ditional spanwise control sections all precisely
located initially at the break section. This results
in a line of triple control points at the break sec-
tion. With these triple points, the surface can be
interpolated using third degree NURBS blending
functions but will remain linear because of the
tripling of the points. This surface is illustrated
in Fig. 4.

At this point, our approach investigate two
ways to modify this net of control points in order
to produce cubic interpolation in the central sec-
tions. The first approach enables the cubic inter-
polation in the inboard central section only while
the second approach enables a cubic interpolation
in both inboard and outboard central sections.

5 Method I: cubic inboard central section

5.1 Spreading out the tripled control points
by setting linear displacements

The method to obtain a cubic interpolation sur-
face in the inboard central region involves the in-
sertion of an additional line of control points at
the mid-distance between the root and the break

G

-6e-09 -2e-09-1e-08 6e-092e-09 1e-08

(a) Extrados

G

-6e-09 -2e-09-1e-08 6e-092e-09 1e-08

(b) Intrados

Fig. 4 Null Gaussian curvature identifying lin-
earity in the spanwise direction.

sections. Applying a knot insertion algorithm
modifies the knot vector in the spanwise direc-
tion, which results in a new line of control points
as a linear interpolation of the control points at
the break and root sections. This does not mod-
ify the surface, which remains linearly interpo-
lated in the spanwise direction. This procedure is
illustrated in Fig. 5.

Y

X

Z

��
��
��

��
��
��

Root section

Tip section

Additional line of control points

Triple line of control
point at break section

��
��
��
��

control point

Fig. 5 NURBS surface of a wing of order 4� 4
with a triple line of control points at break section
and an additional line of control points between
the root and the break sections

The next step is then to consider the z dis-
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placement of the control point marked with a
lined square. In Fig. 5 modification of this de-
gree of freedom will then allow us to generate a
family of surfaces which will become cubic inter-
polation surfaces in the spanwise direction. Since
only one point is allowed to move, the region
influenced by the movement can be adjusted to
span the only central inboard region through a
proper selection of the knot vector. Typical re-
sults obtained using this method will be presented
in the form of section cuts along the chordwise
and spanwise directions.

Fig. 6 illustrates how the movement of the
control point in the z direction has been parame-
terized. The position noted α� 0 corresponds to
the initial position of the control point and leads
to a linear interpolation surface in the spanwise
direction. The position α � 1 corresponds to a
displacement which will generate a C�1� continu-
ity of the interpolation surface at the break sec-
tion in the spanwise direction.

way of displacement

X

Z

Y

at tip section

a relative position 
mid-section with
Control point atroot section

Control point at 

equal  0 , original

Control point 
Triple control point

a relative position 
equal  1

Control point with

position

at break section

α

α

Fig. 6 Description of the linear displacement of
a control point at mid-distance from the root and
the break sections.

Results are presented for a wing with a plan-
form as described in figure Fig. 1 and airfoils sec-
tion with thickness to chord ratios τ

c of 15%, 10%
and 8% at the root, break and tip sections respec-
tively. The airfoils sections, with the required
ratio τ

c , are initially NACA64015, NACA64010
and NACA64008 airfoils. Results are shown
in figures Figs 7 to 12. Deformation of airfoil
sections become inacceptable for values of rela-
tive position exceeding 0�2 as shown in figures
Figs 7 and 8. In figure 9, oscillations are neg-
ligible. The corresponding ISO-vcurve lies at
the limit of influence of the control point being
displaced. Gaps between original ISO-ucurves
(straight lines) and the altered surface are pre-

sented in figures Figs 10, 11 and 12, for relative
positions inferior or equal to 0�2. The resulting
ISO-ucurves have unfortunately no special intrin-
sic geometric property at this stage. The next
paragraph explains how the conic curves in the
spanwise direction are obtained.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

relative position 0.0
r.p. 0.2
r.p. 0.5
r.p. 1.0

Fig. 7 ISO-parametric curves (v � 0�33) for dif-
ferent values of the relative position: inflexions
appear for values exceeding 0.2.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

relative position 0.0
r.p. 0.2
r.p. 0.5
r.p. 1.0

Fig. 8 ISO-parametric curves (v � 0�26) for dif-
ferent values of the relative position.

6 Methods II and III: cubic inboard and out-
board central sections

To better understand the geometric modelling
possibilities offered by spreading tripled control
points, two other displacement methods are now
considered. Modification method II constrains
the displacement of all tripled control points to
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Fig. 9 ISO-parametric curves (v � 0�13) for dif-
ferent values of the relative position near the
break section.
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-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

relative position 0.0
r.p. 0.1
r.p. 0.2

Fig. 10 ISO-parametric curves (u � 0�72), pro-
jection on plane (YZ), for values of the relative
position not inducing inflexions.

0.15

0.2

0.25

0.3

0.35

0.4

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

relative position 0.0
r.p. 0.1
r.p. 0.2

Fig. 11 ISO-parametric curves (u � 0�7), pro-
jection on plane (YZ), for values of the relative
position not inducing inflexions.
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Fig. 12 ISO-parametric curves (u � 0�66), pro-
jection on plane (YZ), for values of the relative
position not inducing inflexions.

lie in a plane, while method III uses a modified
cubic interpolation scheme to compute displace-
ment values.

6.1 Method II- planar displacement of
tripled control points

The plane of displacement is defined in Fig. 13.
Unit vectors are first defined in order to have
parameters controlling the displacements. The
unit vector e

�

inner is on the line joining control
points at the break section and tip section, ori-
ented towards the inboard central section. The
second unit vector normal

�

inner is obtained by
rotating counterclockwise by 900. The displace-
ment plane is thus fixed with these two vec-
tors. Given two parameters, inner deviation an-
gle and inner relative position, a control point is
then moved aside the tripled control points to-
wards inboard central region. The relative po-
sition parameter is the position of the displaced
control point along the normal defined by the
e
�

inner vector. Similarly unit vectors e
�

outer
and normal

�

outer are defined for displacements
in the outboard central region. The unit vec-
tor e

�

outer is simply computed by a 1800 coun-
terclockwise rotation of the unit vector e

�

inner.
Numerous attempts force us to conclude that only
very small deviation angle avoid oscillations in
airfoil sections. Figure 14, shows that while de-
viation angles are maintained to zero, no effec-
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tive improvements are recorded in comparison
with the preceding method. Furthermore Figs. 15
and 16 show that using this method the break
section is no longer interpolated, one of the re-
quirements of the industry. A more efficient al-
gorithm needed to be implemented at this stage
of development. Next section introduce a suc-
cessful method based on a modified interpolation
scheme.

e_outer

normal_outer
outer deviation angle

outer e_deviation

normal_inner

e_inner

inner e_deviation

Inner deviation angle

X

Control point at 
root section

Control point at
break section

Z

Y

Control point at 

the vector outer e_deviation

tip section

Control point with 
a  inner deviation along
the vector inner e_deviation

Control point with 
a outer deviation along

Fig. 13 Description of the plane displacements of
control points at mid-distance from the root and
the break sections.

-0.4
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-0.2
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0

0.1

0.2

0.3

0.4

2.5 3 3.5 4 4.5 5 5.5 6

deviation angle 0.0 relative position 0.0
r.p. 0.5
r.p. 0.8
r.p. 0.8

Fig. 14 Intersection of the wing surface and the
plane (Y � 2�75) for different deviations (inner
and outer) on the extrados and the intrados. De-
viation angles are maintained to zero.

6.2 Method III-Spreading out the tripled
control points by modified interpolation
scheme

From the previous studies, the final wing surface
must interpolate the three sections of definition.
Based on this requirement a major feature of the

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-2 0 2 4 6 8 10 12 14

deviation angle 0.0 relative position 0.0
r.p. 0.8

Fig. 15 Trace of the ISO-parametric curve (u �
0�22) on the plane (YZ), for extreme relative po-
sition values on the intrados without oscillation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-2 0 2 4 6 8 10 12 14

deviation angle 0.0 relative position 0.0
r.p. 0.8

Fig. 16 Trace of the ISO-parametric curve (u �
0�72) on the plane (YZ), for extreme relative po-
sition values on the extrados without oscillation.

surface must consider the control points result-
ing from the approximation of the airfoil sections
as interpolation points in the spanwise direction.
The tensorial nature of the NURBS surface al-
lows such an assumption. So central parts of the
wing must be described using five control points.
Initially, we have three spanwise control points at
our disposal. Conic curves are easily obtained by
the quadratic rational Bézier arc with three con-
trol points represented in a local coordinate sys-
tem as shown in Fig. 17. By keeping constant the
weights of control points P0 and P2 and by mod-
ifying the weight of the middle control points P1

from 0 to infinity a family of conic curves can be
generated. We can force the conic curve to inter-

123.8



Wing Shape Optimization using a Constrained NURBS Surface Geometrical Representation

cept a middle point and we can thus generate an
infinity of conic curves interpolating three points
namely P0, a middle point P and P2. The two ad-
ditional control points needed to close our system
of unknowns are extracted from intrinsic prop-
erties of the conic curve being considered, i.e.
first and second derivatives at the middle point.
The knot corresponding to the middle point is the
inner knot v4 of a cubic curve with five control
points. We then solve a system of five equations
with five unknown represented by the matrix:
�
�����

1� 0� 0� 0� 0�

0� N1�3�v4� N2�3�v4� N3�3�v4� 0�

0� N1�2�v4� N2�2�v4� N3�2�v4� 0�

0� 6� �12� 6� 0�

0� 0� 0� 0� 1�

�
				


T = P 2

t
t 2

0

Oblique reference

a

1

P
0 = a 0

2

P
1

P
2 = a

P

1 - P- P

1

S = P 0

Fig. 17 Local coordinate system for rational
quadratic Bézier curve.

The resulting displacement is shown in the
figure Fig. 18.

Isoparametric curves are presented in figures
Figs. 19, 20, 21 and 22. One can observe that
the break section is interpolated on the intrados
and the extrados, a major advantage in compari-
son with the two preceeding methods. And also,
the ISO-parametric curves approach in that case
a conic curve in the spanwise direction. A bet-
ter visualization of the overall final wing surface
involves the use of the Gaussian curvature. Gaus-
sian curvature is a powerful tool to caracterise
any local modification on the wing surface. In

k=|C’(u)

at root section
Control point at 

C’’(u)|/|C’(u)|

tip section
Control point at

Distribution of control points

Interpolated conic curve

3

C’(v)

C’’(v)

Curvature k:
X

Z

Y

Fig. 18 Description of the conic displacements of
control points at mid-distance from the root and
tip sections.

the field of visualization in CAD/CAGD, it is of-
ten used ([9]). Ruled surfaces have in general a
negative or nil Gaussian curvature. In the partic-
ular case of the flap and slat regions the Gaussian
curvature is identically equal to zero. The Gaus-
sian curvature of the central parts are related to
the conic curve used during the modified inter-
polation scheme. The extrados is by construc-
tion a hyperbolic surface. The intrados due to the
existence of an inflection point presents a hyper-
bolic patch and an elliptic patch. This visualiza-
tion identifying with appropriate colors each part
of the wing insures a C�2� surface without oscil-
lations.
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Fig. 19 Trace of the ISO-parametric curve (u �
0�28) on the plane (XZ) on the intrados.
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Fig. 20 Trace of the ISO-parametric curve (u �
0�28) on the plane (YZ) on the intrados.
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Fig. 21 Trace of the ISO-parametric curve (u �
0�77) on the plane (XZ) on the extrados.
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Fig. 22 Trace of the ISO-parametric curve (u �
0�77) on the plane (YZ) on the extrados.
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Fig. 23 Extrados of one break wing surface: null
Gaussian curvature on ruled parts (green color)
and negative on hyperbolic part (blue color).
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Fig. 24 Intrados of one break wing surface: null
Gaussian curvature on ruled parts (green color),
negative on hyperbolic part (blue color) and pos-
itive on elliptic part (red color). Existence of an
inflection point responsible for the positive val-
ues.

Conclusion

In this work, we have discussed how to introduce
geometrical constraints in a wing representated
as a NURBS surface: alignment and positioning
of the trailing edge and the leading edge, ruled
surfaces and central parts described as conic sec-
tions. This work has already been extended to a
wing with two breaks and three slats not aligned
with the breaks in the spanwise direction. At this
stage two problems attract our attention: improv-
ing the parametrization in the chordwise direc-

123.10



Wing Shape Optimization using a Constrained NURBS Surface Geometrical Representation

tion in order to fix the length of the break and the
slats and the automatization of the construction.
This will greatly help for shape optimization of
practical aeronautical applications.
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