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Abstract

Flange bending is the frequent operation in A/C
parts production - ribs, bulkheads, frames,
stiffeners. The quality of products, pressings is
dependant on their geometrical parameters and
forming conditions. To avoid defects as f.e. cracs,
warpings, uncompiete geometry, Forming Limit
Diagrams (FLD) can be used, having border lines
between good and not correct pressings.

The article brings the theoretical derivation of such
limit lines, enabling to analyze quickly the influence
of changed geometrical and forming conditions,
minimizing thus the number of needed experiments.
The described case reffers to convex flange bending
by an elastic tool; loss of stability of the flange in
elastic region propagates in plastic region by
creation of permanent waves, wrinkles. Three
border lines were theoretically derived, defining
uncomplete geometry and wrinkling of pressings,
respecting the hight of the flange (b), sheet
thickness (t), radius of the convex flange (R) and
tool pressure (p).

The secant and tangent modulae Eg, E, and new
definition of a material flow stress curve were used
for transition from elastic to plastic state. The theory
was successfully prooved by experiments.

Introduction to the problem

Pressing is supposed to be one of the leading
technologies in the production of the airframe, the
majority pieces of which are made of sheet metal,
tubes and profiles. Ribs, webs, bulkheads,
stiffeners, flat brackets, stiffened panels are typical
parts of an airframe structure, the main feature of
which are flanges, having straight, concave or
convex contours. Flanges, as edge stiffeners, being
simultaneously rigidity and joinging elements, can
be unfortunately depreciated by some crack,
warping and unfinished geometry. The generation of
these defects can be in many cases predicted, prior
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to their appearance during the pressing process,
using the analysis of technological formability of the
problematic components.

Let's tum the attention to the convex flanges, which
can suffer by permanent waves due to their
unadequate geometrical parameters and
technological unsufficiences.

It should be noted, that when the he:ght and the
shape of the wave are within the allowed limits it
can be accepted as repairable, removable by some
additional, very often manual operations.

A convex flange can be depreciated by plastic
buckling due to the upsetting process of its lenght,
when compressive stress originates the loss of
stability. Realising, that this phenomenon obeys the
same laws imrespective if it reffers to a convex
flange plate or straight flat plate @), it is
reasonable to make full use of the general equation
of a critical stress, being valid in the elastic range
(M@E), It has the form

t 2
GCR =0,9KT.E(‘E) y (1)

where generally Ky = %4. b'm :

numbers reflecting the number of sinusoidal half
waves that buckie in the direction of | or b, when
critical stress is reached and loss of stability starts.
K; is a coefficient, expressing not only the number
of waves, but also influence of geometrical
parameters, way of clamping of the elementary
flange, incorporates the mode of outer loading, etc.
The state of stress of such a plate (flange) is slightly
more complicated, while twist-bend loss of stability
occurs influenced by St. Venant's stress including so
called bending due to torque giving additional
normal and shear stress.

The influence of non elastic range of strains is
usually introduced in the eq (1) by the coefficient
n, = E, . E', where E, is the effective modulus,
which is given, for the case of an rectangular
element, by the traditional formula

m and n are
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where E; represents a tangent module, E; = P
€

The definiton of E; , regardeless to the knowledge
of a material flow stress curve o = f () acc. to © is
not easy; that's why favoured are auxirially charts of
relations between critical stress in non elastic range
and value of stress in elastic range 2910 The
recommended transcription reads

Ocrp; = Mo - Tcr * 3)

The value of =n, has the interval
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The results of experiments (12 and theoretical
solutions @), relating to the operation of convex
flange bending by an elastic tool, both enabled to
plot a Forming Limit Diagram, see fig. 1, comprising
the border lines, surrounding the area of good,
acceptable processing. As a technological chart, its
coordinate system is represented by geometrical
parameters of components; here R denotes the
outer radius of the developed, initial semiproduct;
the border lines of the chart reflect the behaviour of
the flange:

a - elastic loss of stability

b - plastic loss of stability

¢ - uncomplete geometry of the bend.

Definition of the border line "a"

Bending of the flange having the width b is realized
by elastic tool, exhibiting a uniformally disctributed
pressure q,. Considering the elastic compressibility
of the tool, the pressure can be expressed by the
equation

b
= 7(1_ 6R°) ' @

and the comresponding moment with respect to
flange medium line by

2
m, =K®:)—2-(1—§-—9—) ' ®)

-y -
-9 l

Fig. 2

where K [N/mm?] is an elasticity coefficient of the
cushion tool; the geometry of the flange shows the
fig. 2a. In the caried out theoretical calculations of
the critical stress, when the loss of stability takes
place, was the thickness of the flange substituted by
the mean layer being gradually bent arround the
point (0). Due to the upsetting process when R > r,
(see fig. 2b) the bent flange section is
simultaneously twisted by the angle v (fig. 2c). Here
the reaction q, and moment c® are acting as well,
as the effect of the material continuity.

Conditions of equilibrium and relations between the
twist angle ® and displacement enable to express
the equation, defining the obtained geometrical
changes. The assumption, that the critical pressure

force Fg is acting at the distance e =—g— from the

axis of the loaded strip element was considered.
The course of the twist angle ©(s) is defined by
differetial equation

eV +2a%@" +a*®@=0 . (6
where

2
2 1 (b) 2 EJ, ( b )
= ———I F —| ~r°+eb b+GJ -1
2 EJ-[ CR{ 2 +2Ro ¥ ZRo
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=K, +3 - K, =—— .

d EJ, 3\ ° 16 R ° " 2c
b)? b)) i 2 Jdxt+dy

EJ°=EJx "2— +EJ.¥ 1—§-°— ' re = A

The mentioned equations testify that the loss of
stability was analyzed, considering not only bending
of the crossection around the axis (x), but also its
twisting; in the analysis the. torsional rigidity was
expressed by St. Venant's rigidity GJ, and by the
torsional - bending rigidity’ in the direction
perpendicular to the medium line of the cross-

()

section EJ, =E
7 144

; according to J, =T,

The equartion (6) enables to define the value of the
critical stress having the well known form

t 2
O R =KTE.(E) . (7)
The eq. (7) is valid within the range of the Hook's
law validity. Thus, the maximum value of this
expression is reached at the point of the
proportionality limit opg, therefore

2
t
Ocr =0pr = KTmE.(“E) ’ (8)

m
Consequently it follows, that the border of the
elastic wave propagation (see point C in the fig.1) is

defined by the limit value of (—?) ratio as well.

m

O (=

The limit values of (—?) and (K,),, obtained by
m

"step by step” approximation of eq.(8) and (9), are
needed for the definition of the point C coordinates.
For the next analysis there is necessary to calculate
the number of the waves, having the shape of the
lateral area of a cone (see fig.3). They have the
maximum possible height, respecting the elastic tool
behaviour and restriction of the flange size; then'
minimum number is

min = T
nb

There was prooved (9 that the number of the
waves is not changed during the flanging process,
but a half of them is loaded by compressive

pressure, leading to the change of the radius R; to
R,, as shown in fig. 3. The supposed normal stress
in the wave is

R2 Rynm

t 2bl, ' an

G = ,=Rgp -

-t S
A AR AR AR A
.l

Fig. 3
Trying to defined another geometrical parameter of
the flange, the relation between the  relative
elongation and the stress at the fringe of the flange
seems to be usefuil, thus

b_o
R_GKnK‘

where limiting elastic stress, practically yield stress

is defined as oy = g .E.my.
Considering the above mentioned operations the eq.
(12) has the form

o= Rpoz ) (12)

1
4
R K°(1 1 °)+3
(P.)_ P, RiRo b °\ 16R, (12)
o Ktb b |2t '
R (2r°+1X4--9~)
2R,
where
=20 —— e 13
fo = R, R_, (13
b

The general dependance between the coordinates,
defining the elastic region, considering the eq. (7)
and (12), is

b KemE (b) 2 :

—=——nk|=] . 14

R~ oy )11K N (14)
Using the point C, being defined by eq. (9) and (12)
it is possible to plot in the graph fig (1) the elastic
border limit as a line, having the slope (-2).

2144



Definition of the border line "b"

The value of the critical stress in plastic region is
defined by the equation
Ocrp, = Scre - Mo (15)

To express analyticaly the border line (b), see fig. 1,
the transformation of the eq. (12) into the inelastic
range was done, using the eq. (15). Considering the
continuity of the searched function at the point C
and accepting the eq. (12) and (15) is

SHICIOES

R \RJ (1) \b) M
Further step in calculation is possible, whem the
value of the coefficient n, is known. According to
(12, if the results are to be on the safe side, the
effective modulus can be substituted by the
tangentional modulus, n, = n;. Consequently, to
determine n; a new flow stress function was
proposed in (9 giving the advantage of simplier
definition, thus

(16)

_..m _1m
c=0y.0g '

o n
w=(2)
Gcr
where o, is an arbitrary value of the flow stress in
the proximity if the yield point, og that has
hyperelastic behaviour, is og = ¢ . E. The exponent
m is determined from the condition, that at a
certain point of the flow stress curve, coincide the

experimental and approximated value of the stress;
very oftenis used ¢ = 6, = R,

-1
- o [+
m=11] —ﬂ)(lo V) ]
(ogaE 9enE
Using the previous equations for o. and
corrections for inelastic range (') the resulting

dependance between the geometrical parameters of
the fange, when plastic wrinkling appears is

®-G.0E™

m
In the coordinates Iog%—log% the equation (20)

is represented by a straight line, having the slope -
2(1-n) starting from the point C. It is clear, that when

m =1, then Iog% = konst.

(17

(18)

(19)

(20)

Definition of the border line C

The field of "good" products in the forming limit chart
is closed by a line C, see fig. 1. It represents the
border, where the tool pressure is insufficient to
finish a complete bent. Reasonably, this situation
occurs when the width of the flange is narrow, there

is no buckling or wrinkling. In the analysis a uniform
distribution of the tool pressure p can be assumed
whilevthe elasticity of the tool is depleted. The
deviation from the nominal flange shape and
uncomplete bent, measured at the fringe of the
flange, is denoted by the symbol R, see fig. 2b.
The definition of the border line C is based on the
solution of moments equilibrium. The general
equation is

M, +M, +My=0 21)
where :

h
M, =-[pydy  bending moment of extemal
0

pressure p

bending moment of intemnal

forces

h

My =Jjpyydy  bending moment of axial
0

forces

The solution brought a slightly complicated resulting

equation nevertheless plotting of the border line was

possible.

In the solution, the suitability of the flow stress

approximative function, eq. (17), was prooved.

Practical results

The proposed definition of the border lines was
justiffied and prooved by solving a practical
example, which was based on available
experimental results presented by (14, Suitable
material, duralumin, had foliowing mechanical
properties: opg = 200 MPa, R 02 = 280 MPa, R, =
400 MPa, E = 7,06.10* MPa, ¢, = 0,14.

The results of calculations, being gathered bellow in
some charts were compared with experimental
values presented by ('4); very good correlation was
prooved.

The basic chart, fig. 4, shows the positive influence
of the forming pressure p; its increase brings the
enlargement of the field of correct pressings.

The influence of the tool elasticity is prooved by the
chart in fig. 5. Lower elasticity causes the increase

of the coefficient K, =!(E:, resulting in an
enlargement of the good pressing field.

Comparatively important influence has the
acceptable height of the wave which s

characterized by R /t ratio, see fig. 6. As shown, the
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wave size could be managed also by the working
pressure p.
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The change of the radius r, has lesser influence, see
chart in fig. 7. Moreover, the majority of components
provided with flanges have nearly standardized
values of ry/t ratio, according to the component
material.
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Conclusion

Conterporary literature relating to the Forming Limit
Charts of the discussed type brings a few
informations about semiempirical derivation of the
border lines. There exist some very simple,
technological charts, having been plotted by means
of experimental resuits. They usually comprise only
one line and describe the influence of one
geometrical parameter on the pressing quality. It is
obvious, that the experiments were very much time
and money consuming. The teoretical derivation of
the border lines, the course of which could be
veryffied only by some experiment, prooved to be
very economic.

As shown in listed charts, the teoretical definition of
the border lines enables to study very easy the
influence of a change of the process parameters.
The most decisive are the forming conditions, it
means the working pressure p and the elasticity of
the tool defined by the K, coefficient. The other
parameters, r, and R, which influence on the
pressing quality was also analysed, could be called
as technological parameters. They are very often
given, nearly standardized.

The another contribution of the teoretical work was
a new definition of a material flow stress curve. The
proposed approximation enables a very suitable and
precisse definition of the secant and tangent
modulae, which are frequently needed, when the
loss of stability of thin wall structures is to be
analysed.
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