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Abstract

A numerical technique for solving design
problem for 2-D and axisymmetric duct
flows is presented. The method is also used
to evaluate the shape of plumes and in-
terfaces of flows with different thermody-
namic properties. The unsteady Euler equa-
tions are integrated numerically by using a
time-dependent procedure and by adopting
an upwind finite volume approximation that
belongs to the class of the the second order
ENO schemes.

Several numerical examples are presented:
the design of diffusers that perform tran-
sonic compression through a shock wave in
the flow core, but shockless at the walls, is
shown feasible; the evaluation of the shape
of plumes for axisymmetric nozzles and for
2-D simple expansion ramp nozzle is also
performed.

Introduction

The efficiency of propulsion systems is
strongly affected by the air intake and noz-
zle. Despite their quite simple geometry,
such devices exhibit flow phenomena that
can be rather complex over the expected
range of operation.

Furthemore, in hypersonic propulsion the
high integration of airbreathing engines in
the vehicle requires an accurate prediction
of the exhaust system performances because
of its strong influence on the net trhust.
For example, the flow through a single-sided
nozzle can interact with the external air-
flow causing an increase of the installation
drag, wich reduces the net trhust even if the
gross trhust is relatively high, specially in
the transonic flight speed [1]. The descrip-
tion of the flow phenomena is complicated
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by the presence of shear layers, due to the
interaction of flows with different thermody-
namic properties; the location of the inter-
faces are not known a priori and will be part
of the solution.

The design of the compression and expan-
sion components, the assessment of the flow
behaviour through these apparatuses and its
interaction with the external flow field, play
a very important role in the evaluation of
the net thrust.

Some useful insight for studying the above
mentioned flow problems can be suggested
by the inverse methods. In inverse prob-
lems the designer prescribes some flow prop-
erties and then inquires for the walls geom-
etry that realizes the imposed flow features.
In the present work a numerical method
for solving inverse problem is presented. It
refers to compressible, two-dimensional or
axisymmetric, inviscid rotational flows gov-
erned by the Euler equations.

The basic idea consists in considering the
solid boundaries of the flow field as imper-
meable and deformable walls along which a
pressure distribution is given as design da-
tum. The wall geometries, wich are un-
known and part of the solution, are evalu-
ated by using a time-dependent process, as
illustrated in [2] - [4]. In the present work,
we use a finite volume formulation to ap-
proximate the solution of the hyperbolic sys-
tems of conservation laws in integral form.
The main advantage of the method is related
to the capabilty of capturing flow disconti-
nuities correctly from a numerical point of
view. )

We use an upwind finite volume scheme
inspired to the Godunov’s Flux Difference
Splitting idea [5], based on the approxi-
mate Riemann solver [6], [7]. A two-steps,
predictor-corrector integration scheme that
belongs to the class of the second order ENO
scheme is adopted [8]. The present formula-
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tion retains many of the good qualities of
the previous formulations we proposed in
the past [3] [9], that were based on a finite
difference upwind discretization of the Eu-
ler equations. The main advantage that we
preserve is the consistency of the numeri-
cal procedure with the hyperbolic nature of
the time dependent Euler equations: the do-
mains of dependence of the computed points
are taken into account and are not violated
by the numerical computation. The method
has been checked with an analitically known
solution, such as the duct confined by two
streamlines of the Ringleb flow considered
in [11]. The method has a straightforward
extension to 3-D flows, as it has been already
done in the previous forulations [4], [12].

Numerical Method

Governing Equations

The Euler’s equations for a two dimensional
or axisymmetric unsteady motion of an in-
viscid compressible fluid, are written in di-
vergence form:

V-[V]=-2.N (1)
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a = 0 for 2-D flow and a = 1 for ax-

isymmetric flow, i, j, k are the unit vectors
of a Cartesian frame of reference of the 3D
space-time (z,y,t), and
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p, p, €, denot density, pressure and in-
ternal energy per unit volume, respectively,
while u, v are the Cartesian components of
the flow velocity. All the flow properties are
normalized with respect to suitable reference
values.

According to the Gauss formula, the inte-
gral of eq. (1) in a given volume D of the
space-time can be written as:

/3 V] ndo = —a / Nee

DYy

with 8D being the boundary of the volume
D and n the outward normal.

Eq. (2) is approximated by a finite volume
technique by discretizing the (z,y) plane by
means of four sided cells whose shape de-
pends on time.

The integration in time is carried on ac-
cording to the mentioned two steps scheme.
At the predictor step, a standard first order
FDS is used: the primitive variables (p, p,
e, u, v) are assumed at a constant average
value inside each cell. The fluxes F, G are
evaluated by solving the Riemann’s prob-
lems pertinent to the discontinuities that
take place at the cells interfaces. To this
purpose, we adopted the approximate Rie-
mann solver suggested in [6]. At the cor-
rector level, the second order of accuracy
is achieved by assuming a linear, instead of
constant, behavior of the primitive variables
inside the cells, according to the ENO con-
cept ([8], [10]).

The resulting scheme is second order ac-
curate in both time and space.

The boundary conditions

The computational domain is bounded by
artificial (i.e. far field boundaries) and phys-
ical contours (i.e. impermeables walls), that
can be solid, as in a direct problem, flexi-
ble, as in a inverse problem, or partly solid
and partly flexible. The theory of character-
istics states the number of conditions to be
imposed at each boundary of the computa-
tional domain.

For examples, one boundary condition is
nedeed at impermeable boundaries; it is
prompted by the physics of the problem:
at a solid wall the vanishing of the velocity
component normal to the wall is imposed,
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Figure 1: Transonic diffuser: @) isoMach b) isoen-
tropy

while at a flexible wall, according to the in-
verse problem formulation, the design pres-
sure is prescribed.

The computation at the boundaries is car-
ried out by solving an half Riemann problem,
as described in [11].

At a deformable wall, once the flow prop-
erties are computed, the geometry is up-
dated by enforcing the condition of imper-
meability: each point of the wall has to move
with a normal velocity equal to the normal
component of the flow velocity, as described
with details in [2].

Jet contours and interfaces

The same method here described to solve in-
verse problems can be used to determine the
shape of plumes and interfaces. For istance,
the streamtube confining a jet in air at rest
can be seen as the wall of a duct along which
costant pressure is prescribed.

Moreover, in flow regions, such as af-
terbodies or dual nozzles in by-pass tur-
bofans, contact discontinuities are gener-
ated by different stagnation conditions and
thermodynamic properties of the incoming
flows. Such discontinuities are interfaces
that can be computed explicitly according
to the present method: they are considered
as impermeable and deformable walls across
which pressure and normal component of the
flow velocity are imposed to be continuous.

Numerical results

Some examples of the proposed method
are here described.

The first computation refers to a tran-
sonic diffuser in which the design pressure
distribution has been chosen arbitrarily; the
second example deals with the design of a
dual axisymmetric nozzle; finally, the flow
in a single expansion ramp nozzle (SERN)
with internal/external flow interactions is
presented.

2-D transonic diffuser

In this example we look for a transonic
diffuser. The design pressure along the un-
known upper wall is prescribed according to
the law:

Pd = Pin + dp(z/1.5)
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Figure 2: Transonic diffuser: wall evolution

with p;, = 0.4, p. = 0.75, P® = 1 and
dP = Pe — Pin

while the lower wall is assumed solid. The
inlet flow is assumed supersonic,while a sub-
sonic condition is imposed at the exit. Figs.
1 a) and b) show the final geometry with
the isoMach lines and the isoentropy lines,
respectively. These pictures exhibit a tran-
sition from supersonic to subsonic regime
through a shock wave in the flow core but
shockless at wall, as it should be expected,
since the design pressure is prescribed as a
continuous function along the wall.

In fig. 2 the evolution in time of the up-
per wall i1s presented. A final stable geom-
etry is obtained even if the intial configuar-
ion (K = 0) is very far from the final one

(K = 1000).

Dual nozzle and contact discontinu-
ities

In this examples we show the computation
of a dual axisymmetric nozzle and jet.

The wall geometry of the external nozzle
and the shapes of the interfaces confining
the inner and outer flows are determined ac-
cording to the inverse procedure. The com-
putational domain is divided in two regions:
the inner region which represents an “inter-
nal flow” bounded by the centerline, the in-
ner nozzle contour and the contact discon-
tinuity; the outer region is confined by the
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Figure 3: Dual nozzle :a) isoMach , b) isopressure ¢

time evolution
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Figure 4: Dual nozzle :a) isoMach ,b) time evolution

external nozzle’s walls, the contact disconti-
nuity and a free pressure boundary. Along
the outer jet contour we prescribe constant
pressure p, while along the inner contact dis-
continuity we impose that pressure and nor-
mal component of velocity have to be con-
tinuous across it.

The inner nozzle has a 5° half-angle, while
the external one has a 10° divergence an-
gle. The inlet flow is supersonic for both
nozzles, but with different total conditions.
At the inner nozzle we prescribe total pres-
sure P® = 1.0, total temprerature T° = 1.0
and Mach number M = 2.0; at the inlet
of the external nozzle we impose P° = 0.9,
T° = 1.0 and M = 1.8. The external pres-
sure 1s p, = 0.07.

Moreover, along the upper wall of the sec-
ondary nozzle, a design pressure distribution
1s set according to:

Pd = (Pin—pe) sin(wz/1.5)

Pd = Pe (L5 <z <2.15)

where p;, = 0.1566 and p, = 0.07 are the
inlet and the external pressure, respectively.

(0.0 < =z < 1.50)

The above pressure distribution allows the
secondary nozzle to be fully expanded with a
nearly uniform axial flow at the exit section.

The resulting flow configuration and the
geometry of the wall of secondary nozzle are
shown in figs. 3. The isoMach contours,
plotted in fig. 3 a), reveal the presence of a
oblique shock wave due to the change of the
curvature of the wall; the picture displays
also the computed free pressure boundary
and the shape of the interface discontinuity.
In fig. 3 b) the isopressure contours show a
continuous behavior across the interface.

The evolution in time of the jet contour
and interface are given in fig. 3 ¢). The com-
putation starts by assuming straight lines
for the jet and the interface (K = 0). The
final steady configuartion is obtained after
K = 1000 time steps.

The behaviour of the dual nozzle, with the
design geometry previously computed, has
been analyzed in an off-design overexpanded
configuration. The inlet conditotions are
unchanged, while the external pressure is
pe = 0.1. The resulting flow configuration,
shape of the jet contour and internal inter-
face are shown in figs. 4.

The isodensity contours, plotted in fig. 4
a), show an inner embedded shock and a
shock originated at the trailing edge of the
outer nozzle; they merge generating a Mach
disk, a contact discontinuity and a reflected
shock that impingies on the free pressure
boundary and is reflected back as an ex-
pansion wave. The isolines in this picture
put also in evidence the computed shapes of
plume and inner interface. The evolution in
time of the jet contour and the interface are
given in fig. 4 b). The flow configuration at
design condition has been chosen as starting
condition (K = 0) for the off-design compu-
tation. The final steady solution has been
obtained after K = 2000 time steps.

SERN nozzle

The last numerical example refers to the
SERN nozzle reported in figures 5, 6. The
supersonic ramp of the nozzle has been de-
signed by using the method of characteris-
tics at design conditions corresponding to
the flight Mach number M = 4.0. The
length of the ramp is 60% of the length of
the ideal fully expanded nozzle.
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Figure 5: SERN nozzle: mesh every 6 (x) and 3 (y)
grid lines

The flow computation is based on different
stagnation conditions for the external air-
flow and the expanding gas; it refers to an
overexpanded configuration corresonding to
the flight Mach number M = 2.0. The total
nozzle inlet conditions, normalized with re-
spect to the total flight condition, are given
by:

P? . =3.06 T? . =6.43

The external pressure is p. = 0.1278. The
calculations have been carried out by con-
sidering perfect gas with constant specific
heat pressure ratio without accounting for
real gas effects.

The flow field is composed of three do-
mains: one is confined by the 2-D nozzle
and the plume boundaries, the other are rep-
resented by the two external regions of su-
personic flow. The interactions between the
external flow and expanding gas give rise to
shear layers wich are treated as moving in-
terfaces. In fig. 5 the computational mesh
relevant to the final configuarion is shown;
the grid lines fit the interfaces and display
the three regions. The contact discontinu-
ities that separate the different domains are
clearly detected in 6 a), where the Mach
number isolines are drawn. In the lower ex-
ternal region an oblique shock wave origi-
nates from the flap trailing edge. It is due
to the mismatch of the static pressure at the
end of the flap and it is weakened by inter-
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acting with the expansion generated by the
outer flap wall.

In the exit region, the internal flow ex-
hibits a oblique shock wave, due to the low
nozzle pressure ratio, wich interacts with the
plume boundary.

Finally the time evolution of the jet con-
tours is shown in fig. 6 b). At the beginning
of the computation (k = 0) two straight
lines are assumed as interfaces separating
the different flow domains. At the stady so-
lution obtained after 9000 time steps, the
shapes that the interafces asuume are very
far from the initial configuration.
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