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Abstract

De-icing and anti-icing fluids protect an aircraft from
ice, snow or frost accumulation. These fluids, how-
ever, may have adverse effects on the aircraft aero-
dynamics, thought to be caused by the boundary layer
thickening due to the formation of surface waves. In
this paper two aspects of this problem are dealt with.

The incompressible time-dependent boundary-layer
flow has been calculated using a finite-volume for-
mulation. The truncated definition of the stream
function was used to simplify the governing equa-
tions. A computational grid was generated utilizing
the similarity transformations. The method was
validated and used to determine the effect of solid
wall roughness. It has been found that the addition of

solid wall roughness results in a substantial thickening

of the boundary layer.

Furthermore, the linear hydrodynamic stability of the
flow of a gas over a non-Newtonian power-law fluid
has been investigated using the theory of small
perturbations. A virtual interface was introduced to
take care of the boundary conditions at infinity. The
resulting set of equations was solved using Chebyshev
polynomials and the QZ-algorithm. For a non-New-
tonian power-law liquid sheared by a Newtonian gas
two unstable mode were obtained, i.e the Blasius
mode and the interfacial mode. The energy distri-
butions throughout the layers were investigated to
determine the origin of the instability.

Introduction

Since 1930, it has been general practice to use water-
glycol mixtures to protect an aircraft on the ground
from ice, snow or frost accumulation. However, in
the mid-1980’s it appeared that the (non-Newtonian)
fluids used to de-/anti-ice the aircraft might have an
adverse effect on the aircraft aerodynamics during
take-off. The presence of these fluids results in a lift
loss, a drag increase and a decrease of the stall angle.
Experimental investigations®“® have shown - that
during take-off, before the fluid is finally blown off

the surface, the fluid surface roughens, i.e. waves are
formed. It was hypothesized that the boundary-layer
thickened due to the surface roughness in a manner
similar to the effect due to solid wall roughness. The
flow configuration is shown in Figure 1.
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Figure 1: The flow configuration

In order to have a simple, cost-effective aerodynamic
acceptance test for de-/anti-icing fluids in a small
cooled wind tunnel, it was proposed to substitute the
upper surface of the airfoil by a flat surface. Ex-
periments were performed to determine the cor-
relation between the lift loss on a three-dimensional
wing and the flow over a flat surface®. For deter-
mining the time-dependent air boundary-layer thick-
ness, a method based on the wind-tunnel blockage
method was used.

This paper deals with two aspects which are of
interest for the problem of boundary-layer thickening
due to the formation of waves on a (non-Newtonian)
liquid subjected to an airflow. In the first part a

“method will be discussed to calculate the time-depen-

dent boundary-layer over a flat plate. A turbulence
model was incorporated to enable calculations of a
turbulent boundary-layer and investigate the effect of
wall roughness. The second part of the paper deals
with the linear hydrodynamic stability analysis of a
non-Newtonian power-law fluid sheared by a gas
flow. This analysis is performed in order to deter-
mine whether or not instabilities will arise at the gas-
liquid interface.
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Computational method for a gas boundary-layer

From experimental investigations it has been con-
cluded that the adverse aerodynamic effects of de-
/anti-icing fluids are mainly due to the thickening of
the boundary-layer caused by the occurrence of
surface waves. To mvestigate this phenomenon a cell-
vertex finite-volume method was used to solve the
two-dimensional unsteady boundary-layer equations.
The method used is a modification of the method of
Loyd and Murman® for solving the two-dimensional
steady compressible boundary-layer equations. An
algebraic turbulence model was incorporated to
investigate the effect of wall roughness.

Governing equations

The governing equations for the unsteady two-dimen-
sional incompressible boundary-layer are Prandtl’s
boundary-layer equations. The continuity and momen-
tum equations for an arbitrary control volume S
(boundary 3S) in integral form are

fudy-fvdx=0
a8 as
3"’7 1 [ udS+£u2dy-iuvdx=-i%dy-ﬁdx

respectively, where x is the arclength along and y is

the distance normal to the surface. u(x,y,?) and

v(x,y,t) are the tangential and normal (mean) velocity

components, p(x,t) is the given static pressure, p is

the density and 7(x,y,?) is the shear stress defined by
du

1=ua_y

with p=p,+pu,. Here u, and p, are the molecular
viscosity and the turbulent viscosity, respectively.

Stream function formulation
A stream function y(x,y,?) is introduced such that
the continuity equation is satisfied, i.e.

@v)=3%,-3¥)

— " s

% 1))

Since gridlines are perpendicular to the surface at
each streamwise station, dx=0 along gridlines in the
direction normal to the wall. In that case the con-
tinuity equation may be replaced by the truncated
definition of the stream function

dy=

X=consiant

When this definition is applied at each streamwise
station, one obtains the following set of equations
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where it has been used that
u*dy-uvdx=udy

Non-dimensionalization

All variables are non-dimensionalized using the free
stream quantities U,, p,, and some characteristic
length L, i.e.

u’=_l.']_‘: v’=.i.]%
pl:n,pUi Wz-‘—’%: lep,;li
M= p'll‘l:L B Rle m'= p:lL]‘,L o =-£:

The form of the non-dimensional governing equations
is identical to that of the dimensional equations. Note
that the Reynolds number is contained in the dimen-
sionless viscosity. For convenience the primes are

‘dropped and henceforth reference is made to the non-

dimensional form only.

Turbulence model

For the turbulent boundary-layer flow the algebraic
eddy viscosity formulation of Cebeci and Smith was
used™®, This model represents a zero-equation
closure, i.e. the turbulent shear stress is evaluated
through a set of algebraic equations. The eddy
viscosity is given by a two-layer model, in which the
turbulent viscosity in the inner region is based on
Van Driest’s approach, and in the outer region on a
velocity defect approach (non-dimensional formu-
lation)
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where L, is the mixing length, §" is the kinematic
displacement thickness, v,, is an intermittency factor,
« is a function of the Reynolds number, and Fy,,,(v,)
is the Klebanoff intermittency function. y, is the
distance from the wall at which the turbulent viscosity
of the inner region equals that of the outer region.



The mixing length L, is proportional to the distance
y from the wall, L=«y, where « is

-2
k=k(1-e %)

which incorporates the Van Driest modification for
the mixing length, where the Von Kdrmdn constant «,
equals 0.4 and A is the Van Driest damping para-
meter given by

A=A"L
N

r}
where A =26, and

N=/1-11.8P" ,

v, Ue
U 3

du, p,

P-= -
dx p,

and the friction velocity U, is

Here the subscripts w and e indicate that the property
should be taken at the solid wall and at the edge of
the boundary layer, respectively.

The above formulae, used with- «=0.0168 give
accurate results for high Reynolds numbers. For

U8
Re,=—>_ <5000
14

(]

one should use

1+m,
a=a0
1+7
where
Re,
r=m1-exp(-0.243/7,-0.2982)] , 7z, - e

and 7,=0.55 and «,=0.0168. Here § denotes the
momentum thickness.

In order to incorporate surface roughness in the
turbulence model, the distance y from the wall may
be modified as y+ Ay where Ay is a function of an
equivalent sand-grain roughness k. In terms of
dimensionless quantities k,* and Ay*, one has
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Ay*=0.9 l:,/k; —k;e"‘], 5<k; <70

Ay*=0.7(k])°%, 70 <k, <2000

In order to account for the transitional flow region,
the intermittency distribution of Chen and Thyson
was used, i.e.

v? ¢ dt
=1-exp | ~———Re; ¥(x-x) [ &
Yo p[ =Rer ,,)J ]

r ,Ul

where x, and Re, are the location of the onset of
transition and the transition Reynolds number, respec-
tively. The empirical factor G, exerts a major in-
fluence on the length of the transition region.
Throughout all calculations its value was fixed at
1200.

Grid generation

The grid is constructed using similarity principles.
The outer edge of the grid is chosen to be propor-
tional to the incompressible momentum thickness
0..(x), since in most laminar and turbulent flows that
quantity is proportional to the boundary layer thick-
ness®. For non-similar flows it may be assumed that
the streamwise changes are small, and thus the flow
is locally similar. Thus 0,,(x) is calculated using a
locally similar approximation.

In the transition region the grid is modified to create
a smooth transition from the laminar to the turbulent
region.

Initial and boundary conditions

The value of the stream function at the solid wall
follows from the definition of the stream function.
Integrating this definition from station i-1 to station
i, one obtains

¢i=¢i—l

As initial and inflow condition a sixth-degree poly-
nomial approximation of the Blasius velocity profile
was taken for the tangential velocity, i.e.

UL=2m -5y +6m) 21,

o

=1, I
6

The normal velocity was taken to be zero at all



points. Using equation (1) the stream function can be
calculated: at all points of an axial station by inte-
gration.

Discretization and time stepping
A second-order cell-vertex finite-volume discre-

tization was adopted. The momentum fluxes through
a given cell are calculated by a quadratic represen-
tation of the state variables at adjacent nodes.

A five-stage Runge-Kutta scheme (o, =1/4, a,=1/6,
o;=3/8, a,=1/2 and ;=1 = CFL,,=2/2) which is
second-order accurate in At, was used to advance the
momentum equation in time.

Results

Using the techniques described in the preceding
paragraphs, calculations of the flow over a flat plate
have been performed to validate the computational
method and to investigate the effect of solid-wall
roughness.

The length of the flat plate was taken to be 0.5m.
The inflow boundary was taken at x=0.02m. The
computational grid consisted of 25 stations of 40
nodes each. The laminar calculation has been per-
formed on-a ’laminar’ grid, all turbulent calculations
have been performed on a *turbulent’ grid (see Figure
2).
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Figure 2: The *turbulent’ computational grid

The gas used was air at a temperature of 0°C , so
that p=1.29kgm?® and pu=17.1x10%kgm’s*. The
reference length was 1m, and the free stream velo-
city, i.e. the reference velocity, was 60ms’. In case
of a turbulent flow transition occurred at a transition
Reynolds number of Re,= 5x10°.

Figure 3 shows the local skin friction coefficient ¢, as
function of the local Reynolds number Re, for a
laminar flow, a turbulent flow and a turbulent flow
with wall roughness. This figure includes the theoreti-
cal local skin friction coefficient for a laminar flow
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and the one for a turbulent flow

7, _0.0592
1 .2 !
-2-pU- Re’

which is valid for Reynolds numbers between 5x10°
and 1x10". The figure shows good agreement between
the theoretical and numerical results. Furthermore it
can be seen that the wall roughness results in an
increase of the local skin friction.
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Figure 3: ¢, vs Re, (< : laminar; +: turbulent; [1: turbulent, k,
= 5x10*m)

Figure 4 shows the boundary-layer thickness & and
the displacement thickness & for the turbulent boun-
dary-layer with and without wall roughness.
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Figure 4: 8, &' vs x (O, +: turbulent; (1, x: turbulent, k,=
5x10*m)

From this figure it is clear that the boundary-layer
thickens due to solid wall roughness. At x=0.5m the
displacement thickness & is almost doubled due to the
solid wall roughness.



Conclusions

The incompressible time-dependent boundary-layer
flow has been calculated using a finite-volume for-
mulation. Instead of using similarity transformations
to transform the governing equations, explicit use of
these transformations has been made to generate the
computational grid. The governing equations have
been simplified using a truncated definition of the
stream function. For turbulent flows the Cebeci-Smith
turbulence model was used.

The calculated results show good agreement with
theory. The addition of solid wall roughness leads to
boundary-layer thickening.

In the introduction it was stated that the fluid surface
roughens the surface of the airfoil due to the for-
mation of ’instationary’ waves. As the shape of the
waves is not exactly known, it is not possible to
calculate the effect of these waves on the boundary
layer flow. Future research includes the problem of
the wave formation and determining the transient
wave shape.

Linear hydrodynamic stability analysis

The linear hydrodynamic stability analysis has since
long been used as a tool to investigate the initiation of
instabilities in a flow. Recent articles on this subject
are by Miesen & Boersma® and by Yih(?,

The case of a non-Newtonian power-law liquid
sheared by a Newtonian gas was investigated by
Ozgen™. In the next paragraphs the equations gover-
ning the stability of the flow of a Newtonian fluid on
top of a non-Newtonian power-law fluid will be
derived as well as the conditions to be imposed at the
Newtonian/non-Newtonian interface.

Furthermore, the stability of a model flow will be
investigated, where “also the perturbation energy
distribution will be considered.

The governing equations

For the two-dimensional flow over a horizontal plate
of an incompressible, non-Newtonian power-law
fluid, the governing Navier-Stokes equations are, in
Cartesian coordinates

ou av
‘ox ay
du 0u 0 10p 130 10T,
at ax dy pax P ox pay
av av _1dp, 107, 161‘

E “= ay pay pax pay

where u(x,y,t) and v(x,y,t) are the velocities in the x-

and y-direction, respectively, p(x,y,t) denotes the
pressure, p is the density [kgm?] and g is the gravi-
tational acceleration [m’']. The non-Newtonian
stress tensor 7(x,y,t) is given by

n-1
e REER I
ax dy ox ay

where k denotes the dimensional consistency constant
in the power-law [kgs*?m™], n the power-law index
and e the rate-of-strain tensor. For a Newtonian fluid
n equals 1 and k=p.

The linear hydrodynamic stability theory assumes that
the motion of a fluid can be decomposed into a

primary flow component (O(e’)) and a secondary flow
component (O(€')), i.e.

u(x,y, D) =l(x,y,t) +eii(x,y, 1)+ O(e?)
V(X,Y,8) =9(x,y,8) +e9(x,y,1) +O(€)
P(x’y’t) =p(x,y,) +€ﬁ(x,y,t) +O(€2)

Primary flow

Upon assuming an infinite region in the x-direction
and a steady primary flow, the primary velocity
components in the x- and y-direction can only be a
function of y. For a steady flow bounded at one side
by a solid wall it follows that

axy,=20y)  xy,H)=0  p(x.y,H)=p(x.y)

It can be shown that the following analysis also holds
for flows with a primary velocity profile that varies
slightly with x and which has a small non-zero y-

component of the velocity, so-called nearly parallel
flows®.

Secondary flow
Substitution of the series expansion and using the

primary flow solution yields for the O(e’) terms:

aa av -0
ax ay
~ n-1 ~
_+‘21f+‘du 12£+2.If.i .‘22. _a_u
ot 3 dy pdx pox||ady ox
L k2| dn) 0n 00
p dy dy ay ax 7))



av 29 av__19p ko oa v
o ox pay pax ay ax
+2£1[ @) ]
pdy| |dy dy

These equations are non-dimensionalized using a
reference density p,,, a reference velocity U,,; and a
reference length L,

Introducing a perturbation stream function according
to

oy _ay 3
@,v)= (—, Bx) €))

implicitly satisfies the continuity equation. It is
assumed that the stream function can be written as
the sum of Fourier modes, as is the pressure. Be-
cause the equations governing the secondary flow are
linear, only one Fourier mode needs to be con-
sidered, which can be expressed as

W2.0,PEY,0) =) A)) el @
where i*=-1. The (always positive) non-dimensional
wave number ¢« is defined by

L
27T >0
[+ 4 T)\

where X\ is the dimensional wave length. The complex
wave speed is c=c,+ic,, where ¢, and ¢, are the real
and imaginary part of the non-dimensional complex
wave speed, respectively. A flow is said to be stable,
if for all wave numbers the imaginary part of the
complex wave speed is negative. In all other cases,
the flow is said to be (linearly) unstable. It should be
noted that by introducing the Fourier series in this
manner (o real, ¢ complex), one investigates the
temporal linear instability problem.

Upon substitution of equations (3) and (4) in equa-
tions (2), one obtains

(-0’ +ﬁ'¢=%f

,o,R [nqS”’ +(n-2)a2¢’] 5)
_lamRn (n-1) [ ] [¢// +a2¢]
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(-0’ =~ —l;f !

’“’”[(n 2)¢" +noi’e)
_2 iam (n-l) ﬁ” ¢/
7|

where a prime indicates differentiation with respect to
y. The Reynolds number Re, the density ratio r and
the viscosity ratio m are defined by

= p rejll re}nf
Koo
r=P.
p ref

rtf ﬂ/
”’ ref

respectively, where p,,, is a reference viscosity.
Elimination of f, i.e. the pressure term, from these
equations yields the Orr-Sommerfeld equation for a
non-Newtonian power-law fluid

Re

©)

¢tv_2a2¢ll +a4¢ lalfner [( C)(¢” _a2¢) o ¢]
)
g
LoD [{n(n-Z) [.’Z,_/_] 2+n [fi] +4a} ¢ }
n 4 o

7D |:2(n-2) [i’:_] a2¢':|
n u

H(n-1) [{(-'_] +(n—2)[ ] }a2¢]

For n=1 this equation reduces to the classical Orr-
Sommerfeld equation for the stability of a steady
parallel flow.

A non-Newtonian power-law fluid sheared by a gas
Consider two parallel horizontal fluid layers on top of

each other with the lower fluid bounded by a fixed
wall and the upper fluid stretching to infinity (Figure
5).

The upper (Newtoman, n=1) fluid has a stream
function ¢ and will be referred to with subscript 1,
and the lower (non-Newtonian) fluid has a stream
function x and will be referred to with subscript 2. In
the upper fluid the velocity profile will assumed to be



! virtual interface
y=y,
2
' .
erface  y=0
1
lid wall  y=
7777 o r=y

IS S

Figure §: The flow configuration

the (nearly parallel) Blasius velocity profile. It is
assumed that the mean thickness of lower layer is
constant. In that case the O(e’) equations have a
solution which is linear for all n if the pressuré
gradient in the x-direction is zero. All quantities are
non-dimensionalized using the free stream properties
of the upper fluid, i.e. p,.,=p;, K, =p;, U,;=U, and
L,~L" being the length scale of the Blasius solution

i
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with x a dimensional location along the flat plate.
For this situation one obtains the following set of
Orr-Sommerfeld equations

$*-20°" +o'p-iaRel(8, ~O)\¢" ~o’p)-1! ¢]-0

[nx*+2(n-2)0x"

+na’x|- ia:er[(ﬂfC)(x” -azx)] =0

for the upper fluid and the lower fluid, respectively.
The density ratio r, the Reynolds number Re and the
viscosity ratio m are

p

p,U.L™

’y

n-1
U,
Fﬁ;]

respectively. In order to solve this set of fourth-order
linear partial differential equations four boundary and
four interface conditions are needed, which will be
derived in the next paragraphs.

Re

k

m=_"_
My
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Solid wall boundary conditions
The solid wall boundary conditions follow from the

no-slip condition, i.e.

(@,9)(x,y,,1)=(0,0)

where y, denotes the non-dimensional y-coordinate of
the solid wall. Substitution of the series expansion
and the stream function definition results in the
following two conditions

x(,)=0
x'(,)=0

Interface conditions

The distance between the actual location of the
interface and that of the primary interface between
the two fluids is indicated by n(x,t), where 9(x,?) is
expressed as the following series expansion

y=1(x,t)=€fj(x,0) +O(€’)

In this expansion it has been assumed that the inter-
face in the primary solution coincides with the line
y=0, see Figure 5.

The location of the interface is described by

D(y-n(x,)
Dt

an(x,0) _ dn(x,r) -0
at ax

=y-

Substitution of the series expansions, the stream
function definition, results upon non-dimensionalizing
in

$0) iaeren

D= 210y

The dimensional interface conditions at y=7(x,?) are:
a. Continuity of tangential velocity

IIu(x"”(x’t)’t) ]] =0

b. Continuity of normal velocity

|[v(x,1;(x,t),t) ]] =0

c. Continuity of tangential stress

[sCen(x,0,01 =0

d. Continuity of normal stress

[s,xnxn,0 ] +eK=0

Here, ¢ is the surface tension [Nm'] and K the



curvature of the interface. The dimensional stress
components s, and 5, can be derived from the non-
Newtonian power-law stress tensor using the normal
and tangent unit vectors along the interface. They are
found to be

I n-1
2 2 2|
5= 2k 2 .a._u + ﬂta_‘.’ +2 2
leg? | | O dy ox ay
ov

(1 2\| ou v
'2'(1 m) [-a—y "'-a—x- ] +2"l,a—y:|

[ n-1
, 2 2 2| T
5, ==p+ % 2 25‘. + ﬂ+ﬂ +2 .a_v.
1+q2 [ | O dy ox ay
[ (ou_av 2\ dv
i ﬂx[—a‘y""'a—x'] "’(1 7’:)53;]

Substitution of the series expansion for p, u and v and
the location of the interface n(x,t), the definition for
the stream function, results upon non-dimensio-
nalizing and collecting O(e) terms in

a. Continuity of tangential velocity

~

¥ OX'©= 2]l -4/ )] )

b. Continuity of normal velocity
$(0)-x(0)=0 ®)
c. Continuity of tangential stress
8" (0)+a?(0) ~nmlx" (0)+o™x(0))=0 ©
d. Continuity of normal stress
minx" (0)+(n-4)ax’ (0)]
8" (0)-30%¢'(0)]
siaRer](c-0(0))x' (0)+&(0)x(O)] (10)

-iaRe{(c-a(O))qs/(O)m{ (0)¢(0)]

=iaRe c?g()())) [Freo?we]

where the Weber number We and the Froude number
Fr are defined by

We=—9
p,UIL"

Fr=L"l50)-710)]

s U,

respectively. Note that in deriving these equations it
was used that

8,(0)=12,(0) =4(0)

which follows from the condition on the O(e’) con-
tinuity of the tangential velocity. Because of the zero
pressure gradient in the x-direction, the second
derivative of the primary flow equals zero at both
sides of the interface. The normal stress equation was
derived using equation (5). Note that the resulting
normal stress interface condition differs from the one
used by Ozgen®.

Boundary conditions at infinity
At infinity we have the conditions that the pertur-

bation velocities should approach zero. Thus we find

o(y)>0, y>oo
(30, y»»

where ¢ is replaced by $.

Observation of the gas layer Blasius velocity profile
indicates that above a certain location this profile has
a nearly’ constant x-component of the velocity and a
small y-component of the velocity. This location will
be called the virtual interface, denoted by y,. There-
fore, one may assume that above this location the
Orr-Sommerfeld equation reduces to

PV -[a?+y]®" +aPy*P =0

with

vV =ot+icRe(1-¢), R(Y)>0

This linear ordinary differential equation can be
solved analytically using the boundary conditions at
infinity, resulting in

1P(}’) =Ce ~a(y-y) +De -y

where y, is the non-dimensional location of the virtual
interface®.

This method gives rise to the following four interface
conditions at the virtual interface

(y)-9()=0
¥ (y)-¢'()=0



& ()" (7)=0
q)lll (y,) _¢/// (yl) =0

These conditions can easily be derived from equations
(7)-(10) assuming m=1, n=1, r=1, Fr=0 and
We=0. The two ’extra’ interface conditions are used
to determine the two constants C and D.

Energy distribution
The energy distribution of the disturbances through-

out the layers may be computed by adding the equa-
tions which are obtained by multiplying the x-momen-
tum equation of the secondary flow by the secondary
flow velocity component in the x-direction and the y-
momentum equation by the secondary flow velocity
component in the y-direction, and averaging this
equation over one wave-length A.

For a non-Newtonian liquid one obtains

‘fiE ~RS+PR+DI

where E is the perturbation kinetic energy given by

1 2
_X‘[[a +P)dx

RS the rate of perturbation energy transfer from the
primary flow to the secondary flow via the Reynolds
stress

1da
Ndy

RS= 1[ —avldx

PR the pressure term given by

R= ap ,.0p
)\r,{[u +v_]dx

and DI the rate of viscous dissipation given by

A
_m %
DI= )\Rerl[( n)u_x._ +mza_y_]dx
A
merllnv— +2- n)v._.]dx
m(n 1) - _da . .oV
er 1[( 4, ( )(nua—y+nu§;+2\7__)]dx

where m, r and Re are defined according to equation
(10).
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Numerical solution

The method to solve the above set of two linear
fourth-order differential equations including boundary
conditions is described by Miesen & Boersma®. In
this method the stream functions ¢ and x are decom-
posed in a series of N+1 -Chebyshev polynomials

(T.2)

N N
x@=Y a,T () ¢@ =2_; b, T (2)
me0 m

which are orthogonal on the interval [-1,1]. Here a,,
and b, are arbitrary complex constants. Employing a
coordinate transformation in both layers to define the
equation on the interval [-1,1], substituting the
Chebyshev polynomials, imposing the equations at N-
3 collocation points (the maxima of the Chebyshev
polynomials) in both layers and applying the six
boundary and four interface conditions, one gets a
generalized matrix eigenvalue problem

Ax=cBx

where x=lay,....,ay,b,,....,by,C,D], A and B are
(2N+4)-matrices and ¢ is the complex eigenvalue or
wave speed. It should be noted that the equation
describing continuity of tangential velocity was used
to linearize the normal stress interface condition in c.
The QZ-algorithm has been used to compute the
2N+4 eigenvalues of the system. Prior to applying
this algorithm, all rows of B containing only zeros
are eliminated to avoid the introduction of infinite
eigenvalues and to improve the accuracy of the
computed eigenvalues.

Results

The case of a non-Newtonian power-law liquid
sheared by a Newtonian gas ™(case: 4108200a) was
used to perform the calculations. The effects of the
surface tension and gravity have not been taken into
account in the present calculations.

As can be seen from Figure 6, which shows | cy-cy|
as function of the number of Chebyshev polynomials
N, the method shows exponential convergence. Here
¢, is the largest eigenvalue obtained with k¥ Chebyshev
polynomials. For further calculations a number of 40
Chebyshev polynomials in both layers was judged
adequate.

In the calculations two unstable modes were ob-
served. The first mode is the so-called Blasius mode
(see Figure 7 and 8), as it coincides with the curve
obtained for pure Blasius flow. This mode is stable
for a Reynolds number Re;. below the critical Rey-
nolds number of the Blasius boundary-layer flow.
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The second mode is called the interfacial mode (see
Figure 9 and 10). As this mode is absent in the
Blasius boundary-layer flow, it is concluded that this
mode originates from the presence of the liquid layer.
For all Reynolds number Re;. observed this mode has
always unstable wave-numbers.

773

2e-05 T

1.5e-05

le-05 + T

€ 5e-06 +

0

-5e-06 -

-le-05
0.01

Figure 9: ¢; vs o (Interfacial mode): y,=10, y,=0.86, Re.
»=1000, m=101908.3, n=0.82, r=1400, Fr=0, We=0 and

N=40

0.1
a

1

2e-05

1.5e-05 -

le-05 -

Cr 5e-06 -

0

-5e-06 [

-le-05

I

0.01

0.1

(27
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To investigate the Blasius mode further, the energy
distribution of the secondary flow throughout the field
was plotted in Figure 11 (Blasius flow) and Figure 12
(Blasius mode in two layer flow).

Both figures show that the energy distributions within
the gas boundary-layer are similar. As the rate of
change of kinetic energy is positive throughout the
entire layer the mode is unstable. The instability is
mainly caused by the action of the Reynolds stresses.
Viscous dissipation has a stabilizing effect, the action
of pressure, however, can have a stabilizing or a
destabilizing effect depending on the y-location.

Conclusions

The linear hydrodynamic stability of the flow of a gas
over a non-Newtonian power-law fluid has been
investigated using the theory of small perturbations.
The governing equations as well as the interface
conditions have been derived. To take care of the
boundary conditions at infinity a virtual interface has
been introduced. A method using Chebyshev polyno-
mials and the QZ-algorithm has been used to solve
the resulting set of equations.

For the flow of air over an anti-icing fluid two
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Figure 12: Energy distribution for Blasius mode: y,=10,
y,=0.86, «=0.2, Re,.=1000, m=101908.3, n=0.82, r=1400,
Fr=0, We=0 and N=40

unstable modes were obtained, i.e. the Blasius mode
and the interfacial mode. The energy distribution of
the perturbations was used to detect the origin of the
instability. It was found that the Blasius instability
was mainly caused by the action of the Reynolds
stresses.

Instead of looking at the temporal instability one may
also look at the spatial instability. This type of
instability will be subject of future investigation for
the present flow configuration. Furthermore attention
will have to be paid to the non-linear growing phase
following the initial linear phase.
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