ICAS-96-0.3

ADVANCED ON-BOARD COMPUTING AND DATA PROCESSING:
A PRIMARY CONDITION FOR THE FUNCTIONALITY OF MODERN HIGH PERFORMANCE
AIRCRAFT

Dr. H. Scheidt
Dr. H. Rapp
Daimler-Benz Aerospace
Military Aircraft
P.O. Box 80 11 60
D-81663 Manchen

Abstract

Recent developments in the area of civil and military
aircraft like the Eurofighter EF 2000 are characterized
by an increasing significance of digital avionic and
flight control systems. Moreover these systems are
highly interconnected between each other and with
other aircraft subsystems.

The functionality of these aircraft is now mainly
supported or even ftotally provided by software
implemented in freely programmable real time
computers linked by high speed data bus systems.
Thus, highly unstable and manoeuvrable
configurations like the X-31 experimental aircraft,
terrain data based automatic low level flight or
"carefree handling” in any aircraft configuration are
achieved.

These advancements require a new understanding of
the man-machine interface: Functionality and
information have to be made available to the crew in
an appropriate manner depending on the flight
situation i. e. the mission phase or threat situation.
This leads to new developments in the area of crew
assistance systems.

Increasing complexity has a strong influence on the
processes to develop these systems. The system
integration task more and more becomes a software
development process. System complexity requires
new management methods and means of
communication between development engineers as
well as advanced methodologies for certification and
documentation. Until today many open questions
remain with regard to test and certification of flight
safety critical software.

Copyright © 1996 by the AIAA and ICAS. Allrights reserved.

1. Introduction

For decades the share taken by equipment in civil
and military aircraft has been increasing steadily. At
the same time, the use of digital avionics and flight
control systems has improved the functionality,
flexibility, operabilty and safety of aircraft
significantly. This development includes freely
programmable and distributed real-time computers,
the move from electro-mechanical systems to
software intensive systems as well as the trend to
higher integration. Military aircraft has been a pace
setter for this development. Let us consider the
following example. Since the basic version of the
Tornado aircraft went into service in the German Air
Force in 1978 the freely programmable computing
power has increased with a factor 100.
Simultaneously the number of computers, loadable
directly on the aircraft increased from 1 to 6. At the
beginning of the development we were thinking 8k
words would be enough.

In a similar fashion the introduction of data bus
systems induced a network of integrated avionic sub-
systems as well as in a next step, links between
avionics, flight control and general systems. As a
consequence, the amount of information available to
the cockpit crew increased tremendously. Therefore,
to reduce crew workload future crew assistance
systems must provide sound mission-oriented on-
board preprocessing, consolidation and finally,
appropriate representation of the relevant information
in the cockpit.

System functions and system performance are
becoming increasingly dependent on information
processing and real-time software. To guarantee a
safe aircraft operation under all conditions, the real-
time software has to provide different functionalities,

LV

to automate processes and to perform complex error
detection and error recovery mechanisms.

The increase in system functionality implemented in
software as well as in networking is not only a matter
of quantity but also a matter of quality. That means,
this increase resulted not only in more complex
avionic and flight control systems, but also in more
complex system development processes. Growing
cost components for avionics and longer development
cycles reflect this trend; about 30% of the Fly-Away
costs for modern fighter aircraft are covered by
avionics.

The change from fixed, function based links of
individual equipment to integrated networks of
avionics, flight control and general systems, linked
together by high speed data bus systems and
corresponding software, has increased tremendously
the overall functionality of aircraft and has made
functions available like highly unstable aircraft
configurations, terrain-data based automatic low level
flight or "Carefree Handling" with different aircratft
configurations. These characteristics are not
achievable solely by aerodynamics and intelligent
sensors.

On the other hand, this high level of integration has
enforced new procedures for system design and
integration as well as for the software development
process in view of feasibility and safety.

System integration as a process, which combines
individual components of the aircraft to a whole
system, will become more and more a software
development process. As a consequence, verification
and validation of software, especially safety critical
software, as well as provable test strategies become
especially important. The intangible product software
puts new requirements on the development process
regarding management, traceability, methods and
techniques. Whereas on the hardware side well
known procedures for documentation and
communication of the progress of the project (like
Drawing Office Instructions) exist, tracking progress in
a software development project, especially for
complex systems, is very difficult. It is also true, that
the development of a new aircraft with a high degree
of interconnection between individual components -
including the airframe structure - enforces overall
design at the very beginning. Moreover, this linkage
has a feedback on the organisation of the overall
development process.

Based on the above mentioned development trends,
in the course of this paper more details will be given

about the connection between data processing and
system integration processes, between automation of
missions and operations as well as new technological
approaches overcoming bottlenecks and problem
areas.

2. System lntegration and Information
Processing

In particular in Europe, work share is an important
characteristic of civil and military aircraft products.
That means, that aerospace companies from different
nations and their suppliers are working together. In
this context, common methods and appropriate
agreed procedures are important parts of the
development process. This is particularly true for
software development and testing. In the following
present procedures will be discussed.

2.1 Development Model

The principal elements of the system development
model for military aircraft, like translating customer
requirements into a design concept, implementing
and testing up to the delivery to the customer are
depicted in Figure 1. Starting from the customer
requirements, which summarize the essential ideas
for the capability of the aircraft, a system design
concept will be developed, prescribing the technical
parts of the product aircraft. The development of
the airframe structure, which is not an issue of this
paper, is part of the process "structure”. The process
"functionality" includes the development of the
characteristics, which are required by the aircraft
functions and which are mainly defined by the
equipment of the aircraft. Examples are all-weather
navigation and approach capability and combat
capabilities for military aircraft.

The link between the "airframe structure” and the
"functionality” has been getting tighter in time. Both
process models, "airframe structure” and
"functionality”, should be derived from the overall
system design and will end in the integration of the
airframe structure and the avionics with the
subsequent flight test.

The development of the aircraft systems, their
software and their integration is part of the process
model "functionality”. The system integration process
starts with the system requirements, derived from
the weapon system specification. Moreover, these
requirements are the basis for the subsystem
specification (avionics, flight control...). The
subsystem specifications again form the basis for the
definition of the equipment, which build the
subsystems as well as the basis for the software

LVvI

requirements, which determine the equipment
software. The equipment itself will be provided by the
supplier industry. Usually, the software development
is divided into two categories: one is called
equipment specific software, e.g. software, which is
a fixed part of the equipment, representing a special
item of functionality (for example radar or inertial
navigation) and which is dedicated to a specific
embedded processor. Another category is the system
software, which is part of a freely programmable real-
time computer, performing mission tasks like
navigation, moding, mission planning, resource
management and tactical flight guidance. The
development of system software will usually be
provided by the airframe company itself. System
software includes many aircraft and mission specific
elements and is subject to many changes to adapt
the weapon system to changing requirements.

In a next step, individual components - hardware and
software - will be combined to a running system and
will be extensively tested. This is the heart of the
system development process. in particular, systems
have to be verified and validated. System verification
includes the demonstration of the system functions,
in accordance with the system requirements in an
almost realistic system environment, which is realized
by appropriate simulations, capable to stimulate
physical values and perform data recording and
analysing. The system validation will be performed in
the intended operational environment, e.g. in flight
test, and it contains the proof of the operational
customer requirements. By the end of the flight test,
the aircraft is ready to go into service.

It should be mentioned, that the on-board computing
system, hardware and software and the test and
verification system will be developed in parallel.

Onthe technical level, the development of the system
is accompanied by intensive simulations (Figure 2),

trade-off studies, risk analysis, architectural
considerations, real-time aspects and rigorous
configuration control. In case of multinational

programs all these processes have to be discussed,
agreed and implemented by all partners, where key
activities will usually be delegated into international
teams.

Experiences in various international co-operation
programmes have shown, that the high amount of
integration and degree of connectivity in modern
aircraft as well as the necessary iterations in the
course of the development process must have an
organisational impact on the development teams.

An example for the necessary tight coupling between
the development of the airframe structure and the
avionics may be the connection between
aerodynamically induced structured oscillations,
location of gyros as primary sensors of the flight
control system and the dimension of the digital notch
filters within the flight controlier. Furthermore, this
example shows that it is necessary to start from the
very beginning with teams and to give them the
responsibility for the overall system design up to
flight testing.

2.2 Development of System Software

System software, defined as software, which is
implemented in freely programmable computers and
which implements essential system functions, today
also includes the software of the flight control
computers. But, due to its safety-critical aspects, a
modified development process has to be used for
the flight control software. In the following, the flight
control system of the EF 2000 is considered as a
recent example for the kind of functionality which is
implemented in software today.

The EF 2000 is a single seat military aircraft for the
air defense role under all weather conditions. The
required performance characteristics for overall
mission accomplishment and manoeuvring include

- minimum turn-radius

- high turn-rates (sub- and supersonic)

- high climb-rates

- high acceleration
capabilities

- maximum agility (quick and precise change
of aircraft flight parameters).

and deceleration

These can only be accomplished with an
aerodynamic instable Delta-Canard-Configuration. An
advanced Fly-By-Wire flight controli system
guarantees the necessary artificial stabilisation
throughout the full flight envelope. This CCV (Control
Configured Vehicle) concept delegates the whole
and solely authority for the manoeuvring devices to
the flight control system.

The basic functions of the aircraft consist of
satisfactory re-stabilisation throughout the full
envelope (Stability Augmentation) as well as the
creation of acceptable aircraft behaviour based on
pilots steering commands (Command Augmentation).
An essential part of the flight control system are the
Carefree Manoeuvring Functions. These are
implemented to allow the pilot the almost unlimited
use of his controls for all aircraft configurations and

LVl

avoid safety-critical uncontrolled flight conditions by
controlling the limits of aircraft parameters at the
same time. This includes:

. safety-critical uncontrolled flight conditions

- avoidance of stalls and spins

- limitation of vertical acceleration based on
aircraft configuration and actual grossweight

- limitation of g-onset

- manoeuvring within the flight envelope

The realisation of these functions is based on formal
fault requirements, which prescribe the behaviour of
the system in case of fault and after successful fault
recovery. Basic electronic requirements including the
‘sensors are:

- no primary fault will lead to degradation of
system performance .

- after a secondary fault still satisfactory
control must be possible.

These considerations were the basis for the
quadruplex structure of the EF 2000 flight control
system. The flight control system is a channel
oriented system, where each channel contains all
safety-critical functions. The channels are electrically
fully decoupled. The communication between the
channels, which is necessary for fauit supervision and
data consolidation is defined by optical decoupled
data buses between the four flight control computers.
The signai comparison of redundant information is the
basis for fault detection and fault identification.

The heart of the flight control system is build out of
four flight control computers, identically in hardware
and software, with a multi-processor structure based
on a standard microprocessor. Their main tasks are
the processing of control laws, air data and I/0 data.
These computers build a closed control circuit with
primary and secondary control surfaces.

In accordance with the above mentioned tasks of the
flight control system the whole software of the flight
control computer is safety-critical. Interference of the
pilot with the flight control circuit and the assessment
of its effects are not possible to accomplish in real-
time. As result, the structure of the software, the
development mode! and the test procedures used
exhibit some special characteristics. The avionics,
flight control and general systems software of the EF
2000 aircraft was generally developed in the high
level language Ada. Ada as a standardized language
was chosen 1o reduce the efforts in software
maintenance and software updating later on when
the aircraft will be in service. Moreover, further

standardisation issues, like the definition of a
common type of processor for all equipment and a
guideline for common software development methods
and tools were implemented. All supplier companies
were involved in this process.

The development of the software for the flight
control computer induced the definition of a subset of
Ada and an approach adjusted to safety-critical
aspects, which guarantee that

- fully logical and physical separation of
software modules is realized

- the development process is strictly
deterministic

- the interpretation on source code level is
unambiguous

- the integrity of the compiling process is
ensured.

The software development is accompanied by
extensive error tree analysis and intensive verification
and testing activities. This includes the determination
of all possible error configurations of the system and
their effects, the tracking of the requirements through
all software components, independent code
investigations, static and dynamic modelling as well
as extensive ground tests in a Flight Control Rig.
This Rig contains additional components of the flight
control system, in which all forces acting against the
structure of the aircraft can be simulated and which
allows checking system behaviour under error
conditions.

The development and updating of real-time software
for different aircraft models, here shown for the EF
2000 flight contro! system, in time has led to indepth
experiences and to continuous improvements of the
development process. Meanwhile it has become
clear, that the widespread view that software is
easier to change than hardware, is not always true.
Technically, changes in software are often easy to
realize, but they could enforce considerable efforts
regarding the subsequent verification, validation and
certification of the software. Considering all
accompanying activities (configuration control,
document development and processing, change of
flight manuals and training procedures, customer
training e.t.c.), the effort for software changes, at
least regarding safety-critical, technical real-time
systems is comparable to hardware changes.
Software changes are essentially based on the
following factors:

- unclear, ‘inconsistent and incomplete
software requirements

Lvi

- errors. in the definition of technical facts, as
the basis for the software requirements

- tight schedules and therefore the tendency to
shift detailed software requirements and real-
time considerations into late stages of the
programme

- changes of customer requirements

- restrictions due to system and hardware,
which prevent the implementation of
regirements in the form envisaged

- errors in coding.

While errors in coding ("Bugs") usually are reiatively
easy to repair (but often result in new errors), the
adaptation of the software requirements is a much
more costly process. From that point of view it is very
important, to define precise software requirements in
early stages of the programme, e.g. during an
intensive requirement engineering stage. Herewith the
expected behaviour of the system will be modelled by
simulations, experimental prototyping and dynamic
system modelling. The software requirements will be
defined iteratively in the course of this process. This
is an area where much can be gained by further
improvements.

Unlike hardware, where product status may be
determined by direct inspection, the maturity of
software is not directly assessable.

To make the software development process more
transparent and better controllable, new methods and
assessment criteria have to be defined for this
process. In particular for the release and certification
process of software it is common to use the
representation of errors over time , supposing that
a horizontal trace of the curve shall mean, that the
software is errorfree to a large extent. Usually this
curve is determined by a fixed test scenario, that
means that changing the test conditions leads to
drastic jumps in the trace of this curve. Critical for this
process is the test coverage for the particular test
scenario which is difficult to quantify.

The amount of software already developed for a fixed
functionality can give only roughly predictions on the
delivery date and on the correctness of the whole
software package, because different software
modules might have different degrees of complexity
and consequently different test requirements.

Finally, it is very difficult to fix the memory size and
the throughput of the used embedded computers at
the beginning of the development process. The
experience has shown that the above mentioned
changes in software requirements and uncompleted

software design at the point of procurement of the
computing equipment lead to increased computing
equipment sizes. The foreseen reserve capacities
and an early risk assessment may partly limit these
risks. Presently these features are not completely
predictable. A better solution becomes feasible
realizing scalable muiti-processor architectures.
These issues are discussed in more detail later on
in the course of the paper. :

To make the development risks more predictable and
the development processes more transparent, above
examples have shown that new assessment
procedures should be introduced or existing ones
improved. Furthermore, there is a need for improved
communication structures including communication
media, for the introduction of complexity measures
and metrics regarding complex real-time software as
well as early prototyping stages. Moreover, the
development model should support an evolutionary
growth of the system until its full functionality is
reached. This approach will be accompanied by
foreseen iterative steps. Herewith, the quality of
anticipation of the development process within the
overall planning determines decisively the degree of
transparency of the overall development process.

The underlying structure of the international co-
operation and the management of the whole
development process are at least as important as
technical aspects of the software development. Let
us for example consider the development contract for
the EF 2000 aircraft. The aim of this contract has
been to develop a technically superior fighter aircraft
within restricted budget, to guarantee compliance
with national interests, workshare as well as to
perform technology transfer between the nations.
These aims are not free of contradictions.
Participation of all partners in each system means for
example that for the flight control system 23
different companies were developing parts of the
software for the FCS. Nevertheless, they have
produced the software based on the requirements
developed within a single multinational joint team.
The development process itself is an iterative
process. Consequently, within international
programmes having a sophisticated workshare an
increase of the effort for the software management
and for the agreement procedures among
participating companies has to be accepted.

This approach is against experience also. It says, in
orderto minimize time and costs the responsibility of
specification, implementation and testing of the
software of a particular system or subsystem should
be left in one hand.

LIX

Rapidly growing aircraft functionality due to software
requires from all participants an expansion of
intellectual and communication capabilities. This
means, that besides general knowledge regarding
classical aircraft disciplines, as for example equipment
systems, flight control or avionics, additional
knowledge inthe areas of data processing, software-
engineering, verification methods and validation
procedures is required.

As a result, in addition to specialised technical
engineers, "general managers" or "system
integrators” with a general background are needed.

This specific kind of engineer is precious and
consequently very hard to find within the companies.
Indeed, it seems to be, that they hold the real key
know-how, namely the "system integration
capability".

Former experiments, to cultivate these special
"systemn integrators” did not have the expected
success. One reason could be that real project
experience is a key factor in this process. In fact,
this also could raise a problem in the future: Too little
projects and as a consequence too few people with
the know-how required.

2.3 System Test and Validation

The testing of software based aircraft systems
comprises software integration tests,
hardware/software tests, equipment tests, subsystem
tests, system tests and tests in the aircraft itself. Due
to safety and certification requirements this process is
very expensive with regard to time, personnel and
technical infrastructure. In order to optimize the
processes and the available test equipment, the
Military Aircraft Division of Dasa uses since several
years a stepwise test concept with project specific
modifications for different aircraft programs.

This concept is characterized by a structured
sequence of test phases where the test object is
subject to different test requirements and test phases.
Stage A tests investigate modules of autonomous
software functions and of operational flight programs
within each single computer. These tests shall
demonstrate that the implemented software contains
the required functions.

Stage B tests are partial integration tests. They are
performed with all computers, all software and all
connections necessary for the functions of a
multicomputer system. Whereas stage A tests can be
performed in principle on a single general purpose

computer, stage B tests are using aircraft equipment
with a minimum of hardware environment. These
tests are intended to demonstrate that the system
software as a whole performs as required.

Stage C tests are the system integration tests and
comprise all software and all equipment of the
system involved. Software and equipment are tied
together in an integration rig, e.g. the flight control rig
for EF 2000. These rigs allow for the investigation of
all interactions between the components of a system
and for all external stimulations (signals, loads etc.).
These tests shall demonstrate that the system
delivers the required performance with the real
aircraft hardware and that all fault conditions are
covered. The results of these tests clear the way for
the flight test to be performed in stage D. In this
stage the whole system is tested and validated in the
intended operational environment.

This process offers a high degree of transparency for
the development engineers, the approval authorities
and the final user of the aircraft. In case of
equipment or software failures fast correction cycles
are possible. Most software failures are discovered in
early test phases where the effort for correction and
retesting is relatively low.

Flight safety crtical software requires additional
measures in order to guarantee failure free
performance, the integrity of the system and the
required functions. In addition to the tests already
described code walk through, static and dynamic
code analyses and standardized conformity checks
are performed. The support of the software
development process by appropriate methods and
tools is essential.

Experience has shown that software specifications,
verification concepts and test procedures should be
developed together early in the development cycle.
Late known test and demonstration necessities mean
time delays. The definition of test and verification
concepts early on helps to avoid poorly defined
specifications and to determine the effort for test and
integration.

Flight safety critical software in particular imposes the
question of the necessary test coverage for flight test
approval. The number of possible states of compiex
systems is too large to test all possible system states
and their environment conditions completely. In
practice the experience of the system and software
engineers decides about test effort, tool support and
coverage.

LX

Obviously there is a need for test strategies
containing the demonstration of the completeness of
the coverage of all essential system functions. In
addition test redundancies should more easily
emerge. Steps in this direction are still in the research
phase. It can be seen however that these strategies
and therefore automatic software tests are closely
related to formal software specifications. These formal
specifications offer the possibility to demonstrate the
completeness of the specifications early in the
development cycle and to define suitable test cases.
These formal approaches are the most reliable ones,
but complex systems offer difficulties with regard to
applicability, efficiency and performance. Therefore
today emphasis is still put on formal development
processes rather than the product "safe software”.
Since safety critical software will find its way in more
applications in the future and is expensive to develop,
these approaches will be investigated more
intensively in the future.

3.Automation

The current capabilities of sensors and computers
allow for the automation for certain mission phases
and operational procedures. Many examples are
known in the civil and in the military aviation up to
complete automatic systems like drones or missiles.

There are however distinct differences between the
automation goals of civil and military systems.
Common to both areas is crew workload reduction.
Beyond this survivability and mission effectiveness in
complex fight and threat scenarios are of paramount
importance for military systems. Decision support,
reduction of routine duties and the identification of
alternative solutions are additional elements.

On the other hand, complex and fast changing tactical
scenarios require high performance levels with regard
to sensor data fusion, extraction of target data and
identification of options. Therefore the limits of
computer performance, software effort and verification
capability are easily reached.

Certain mission phases have been automated
relatively early, TORNADO low level flight for
example. A next step in this direction has been the
LATAN (Low Allitude Terrain And Navigation)
experimental programme. The terrain following radar
of the TORNADO aircraft had been substituted in this
programme by a terrain following system based on
stored terrain and elevation data. The objective was
to demonstrate low level missions independent from
an active radar and its radiation which could lead to
the detection of the aircraft. LATAN basically consists

of a computer with stored terrain data and uses the
radar altimeter data to determine the terrain profile
overflown. The actual position of the aircraft is then
derived from the comparison between the stored and
the measured terrain profile and leads to a change of
the flight vector via the flight control system if
necessary. The terrain data memory can be
expanded for the automation of other functions.
Applications in the civil-area are possible as well.

Passenger aircraft however are flying along fixed
routes, are subjected to the laws of economy and
direct operating costs and are guided from controllers
on the ground. Since these basic factors underwent
only slight changes in the course of the years, the
development of civil aircraft has been rather
evolutionary in nature. New variants are derived from
standard models rather than from revolutionary new
approaches. Therefore experiences frem
development and operation of in service aircraft can
be used to a large extent for new systems.
Automation is more consequential since it is possible
to advance step by step from one aircraft generation
to the next. Since routes, airports, approaches and
departures are fixed to a large extent automation can
be driven quite far.

"Crew Assistant” is one of the concepts where these
objectives are investigated currently. The comparison
between tasks and human capabilities (Fig. 3)
already gives some hints which functions can or
should be automated. With appropriate data bases,
information processing and decision support
functions on board of the aircraft it seems to be
possible to present to the crew the relevant
information only and to automate several processes.

Advanced information processing capabilities are
also useful for extended test and diagnosis
capabilities. Improved fault localisation processes on
the basis of all available information and intelligent
expert systems lead to reductions of false alarm
rates and turn-around times, since precise
informations about faulty parts are available even
before the aircraft has landed.

4. Future Aspects

4.1 System Prototyping

Experiences from various development programs
have shown that electronic systems in aircraft can no
longer be dealt with in terms of size, weight and
cooling power. It is also no longer sufficient to
discuss or to specify isolated criteria such as

LXI

detection ranges or bandwiths. The process of system
definition finally leading to equipment and software
specifications must include early on an analysis of the
complex and interacting real time effects of integrated
avionic and flight control systems.

Since user requirements quite often are not specific
enough or can lead to misunderstandings in particular
at the beginning of a new program, effective
communication means for the dialogue between
users, system and software engineers have to be
found in order to derive well defined specifications.

With these goals in mind Dasa’s Military Aircraft
Division in Ottobrunn installed within the last years a
facility called "System Prototyping Rig" which fulfills a
similar function as wind tunnels for the airframe
development. The main objectives of system
prototyping can be described as follows:

- Empirical investigations of new system archi-
tectures and their interaction phenomena in
real time

- Feasibility studies including the rapid proto-
typing of software

- Optimization of the man-machine interface

- Investigations of new equipment in a realistic
system environment

- Definition and evaluation of critical real time
algorithms (e. g. sensor fusion)

- Investigation of data transfer processes be-
tween real or simulated equipment.

From these objectives the actual set up of the system
prototyping rig is derived. It mainly consists of micro
computers, graphics workstations, mission computers
and aircraft equipment and comprises various
displays and a full functioning cockpit. The hardware
can be interconnected in very flexible ways via
different data bus systems and allows for the
representation of different avionic system
configurations. The software installed provides aircraft
models, sensor simulations, the development
environment for all computers and a powerful test
system.

Aircraft components and the realistic system
environment allow for accurate estimations of the
development risk in early phases of the development
whereas pure simulations are either very expensive or
limited to specific areas. System prototyping is

typically performed in parallel to the specification
process and supports critical early design decisions.

This approach represents a "front end investment” in
order to reduce technical risks, to deliver the required
quality of the product and to derive trustworthy time
schedules and budgets for the whole development
process. With regard to software development it
should be noted that time spans for coding and
testing can be predicted fairly good whereas the time
to derive unambiguous software specifications and to
remove remaining errors was much more difficult to
take into account in many programs.

This process is related to the total quality
management approach with regard to risk orientation
at the systems level, user involvement and
continuous process improvement as essential
elements.

Additionally prototyping as a system simulation has
to be integrated more in the system development
process. In the future prototyping results will form the
basis for automatic software code and test case
generation in order to reduce significantly time and
effort spent for the system development.

4.2 Modular Avionic Structures

Current avionic systems can be characterized as a
set of loosely coupled subsystems (equipment)
confined to realize exclusive, predetermined functions
and connected via relatively low speed data busses.
Standardization occurs at a very high level, that is at
the level of the interconnections of the Line
Replaceable Units (LRU’s) building the functions.
Each equipment requires its own maintenance
concept and offers only limited room for growth. New
systems therefore require new equipment
developments and are expensive due to low
production runs and the unavailability of shared
ressources.

Farther reaching requirements such as situational
awareness and cockpit automation as well as
software reuse, adaptability to new operational
requirements, maintenance free operation over
longer time spans and reduction of life cycle costs
are difficult to realize with current avionic
architectures.

Advancements in technology, in paricular in the
areas of microelectronics, fault tolerance and
software have enabled the avionics and aircraft
industry to develop new design concepts which result

LXi

in highly integrated digital avionics under software
control. This approach, generally known as "Modular
Avionics”, is centered around an open systems
architecture based on powerful computers with an
operating system that allows independent processing
of application software while maintaining robust
partitioning between the software modules for even
the most critical functions. These computers or
processing modules are housed in a rack or cabinet
together with several other hardware modules such
as mass memory modules and power conditioning
modules and are interconnected via standardized high
speed data networks. The modules itself obey
standardized form factors and interfaces and
therefore represent an open avionic systems
architecture with room for additional developments by
different manufacturers. The interface to the outside
world such as transducers, sensors, actuators,
displays, controls and radio frequency units is handled
by standard high speed optronic links. This type of
system architecture allows for new levels of fault
tolerance by the reconfiguration of tasks among the
different modules.

Reconfiguration mechanisms also allow for the
maximum use of processing power in each mission
phase since not all system resources are necessary
in all phases of the mission. Updates are relatively
easy since the architecture is scalable and new tasks
are realized by reconfiguration or additional
processing modules. Shared development costs,
larger production runs, lower unit costs and reduced
maintenance costs should lead to lower life cycle
costs.

These concepts are supported in Europe by
initiatives like EUCLID CEPA 4 and ASAAC Phase Il
and are already in an advanced stage in the US. it
can be expected that these new architectures will
influence the development of all new avionic systems
beyond the year 2000.

System Development Model

PDR

Functional Allocated
I Baseline Baseline
Operationai 1 :

Baseline

Subsystem
Rent's
Analysis

Oparational
. Concepts

System

Concepts Regl's

Analysis
Customer

System
Software
Reqt's
Analysis

Soltware
Development

~

Product
Baseline

CDR

Subsystem Product
Baseline

' Equipment.
Testing

System
integration/
Testing

Flight
Testing

D

L partial
* Integration

.B

Service

Customer

. Software
i Tegling.

R

* Multi-Stage TestingJ

LXI

Phases Facilities

Simulator

Tactical Requirements

System / Subsystem’
Y Definitlof

o
Proto¥ysplng Rig

Software

Equipment
Development

Software
Development ‘ Integration Rigs

System Integration

System Integration Rigs
y Flightgr st ¢

In - Service Phase Simulations
Fig. 2
"HUMAN SYSTEM" CAPABILITIES
TASK ADVANTAGES DISADVANTAGES
BRegulator Actions i
o highly adaptive o small bandwidth
. .) o low speed
continuous generation o fault tolerant o few states
of commands according o nonlinear o high deviations
to A/C states
Bule based actions
0 adaptive o low speed
decisions made o priority based o small logical depth
according to previously o fault tolerant o workload dependent
learned rules
now! i o ultra high amount of | o fuzzy knowledge
knowledge o experience dependent
decision made according o self adapting o workload dependent
to rules which are created o fault tolerant o high influence of
during actions by applying O superior pattern unconcious knowledge
knowledge matching
o online learning

Fig. 3

LXIV

