AEROSERVOELASTIC ANALYSIS OF AN AIRCRAFT MODEL INCORPORATING

ICAS-02-6.4.1

THE MINIMUM STATE METHOD FOR APPROXIMATING UNSTEADY
AERODYNAMICS

R.P. Roberts, Stirling Dynamics Ltd., 42 Priory Avenue, Bristol BS9 4BZ, UK,

ABSTRACT

The representation of frequency-dependent unsteady
aerodynamics in aeroelastic analysis has been the subject of
considerable research. The objective is to provide a
convenient method to approximate the frequency dependence
of the aerodynamics for time domain analysis, frequency
response and eigenvalue evaluation (for root locus and flutter).
This cannot be accomplished without a state space or
equivalent formulation. The work reported here uses one of
the existing rational function approximation techniques and
illustrates its application to an aircraft configuration. The
aerodynamics have been approximated using the Minimum
State method developed by Karpel. This relies on fitting the
variation of the real and imaginary parts of the aerodynamics
as calculated from the B and C matrices (UK. notation) for
discrete values of frequency parameter. Additional states are
required in the model to reproduce this variation but, because
of the form of solution, the increase in dimension need only
be of the order of one fifth of the number of states in the
structural dynamic model. This represents a considerable
saving when compared to alternative techniques. The method
of solution for the fits is described and it is shown how the
resulting matrices can be introduced into the state space form
of simple aeroelastic systems.

Eigenvalues and frequency and time responses have
been obtained for the aeroelastic system to validate these fits,
and some assessment is made of the effect of varying the
accuracy of the approximations. Where possible the results
are compared with a “baseline” response from current
procedures. Time responses are compared with values
synthesized using an interpolated transfer function which
includes the frequency dependent unsteady aerodynamics and
the Fourier coefficients of an input signal. Once a suitable fit
has been determined, the method allows normal linear analysis
methods to be applied without the need for further
interpolation to determine the unsteady aerodynamic forces.
A simple manoeuvre controller for the aircraft has then been
designed. This has been tested against pilot handling qualities
criteria for up-and-away flight and found to be satisfactory.
The results obtained for the aircraft with its control system
using the minimum state method show good correlation with
the results obtained from the Fourier coefficient model.
These validate the method in this application. The only
significant problem encountered was caused by the interaction
of one of the introduced aerodynamic roots with an actuator
root. This was solved by moving the aerodynamic root and
producing a new fit. The final part of the study involved
introducing a rate limit to the actuator and checking its effect
on the performance of the aircraft. It would be difficult and
time consuming to do this using existing methods. It can be
foreseen that this ability to include unsteady aerodynamic
effects in a nonlinear time domain model could be one of the
main benefits of this type of method.

1. INTRODUCTION

The Minimum State method is one of a number of
techniques for representing unsteady aerodynamics in the
form of rational function approximations. These methods use
transfer function fits to data sets generated by unsteady
aerodynamics programs. The fits produce simple differential
equations which can be combined with the existing
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representation of the aircraft to produce an approximation to
the aeroservoelastic behaviour over a range of frequencies.
Such a method was used in the design of the B-52 flutter
suppression system described in Reference 1. Because the
procedure is general the way the aerodynamic data have been
calculated does not affect it. This means that any refinements
introduced at this stage will automatically be approximated by
the fits. Conversely, the weaknesses of the aerodynamics
programs will also be carried over to the final model. The
main advantage of this particular technique is that the number
of states added by the method is small enough to make it a
practical tool in aeroservoelastic analysis.

The reasons that such approximations are needed are
several. It has been shown that the inadequate representation
of unsteady aerodynamic effects in control law design can
lead to the inclusion of instabilities in the final system. An
example of this was the YF-16 “missiles off” instability in roll
described in Reference 2. It was shown in a detailed analysis
(Reference 3) that one of the requirements for predicting the
exact frequency of the instability was a good representation of
the unsteady aerodynamics. If initial estimates of the
unsteady aerodynamics could be included at the design stage
there would be a much better chance of predicting this type
of behaviour and so designing to prevent it. Gust load
alleviation and flutter suppression systems have to respond to
higher frequencies than a basic flight control system (FCS)
and thus need a better representation of frequency dependent
aerodynamics if they are to be analysed accurately. This
could be done using single frequency parameter aerodynamics
but this would give a less satisfactory indication of the
response to different frequéncies than an overall
approximation. With all control systems, checks on
FCS/structural coupling have to be performed across quite a
wide range of frequencies, so again some approximation to the
behaviour of the aerodynamics across this spectrum would be
useful, As well as these control law design applications, the
method can be used for simple flutter analysis. Because of
the fits, only one model need be used to evaluate the roots for
all speeds up to flutter. This obviates the need for iteration
to match the aerodynamics at the frequency and frequency
parameter of flutter and so simplifies the computation
considerably, It can also be applied to structural loading
calculations using the loading equation. Finally, the method
can be used in time domain simulations using numerical
integration. This enables nonlinearities to be introduced into
the control and actuation systems, permitting a more detailed
analysis of complex aeroservoelastic phenomena.

With all these applications there is naturally an initial
overhead in validating the approximations to ensure that they
are sufficiently accurate. This will of course reduce the time
saved, but the method still makes a lot of analysis possible
which would otherwise be extremely laborious.

2. AERODYNAMIC EQUATIONS AND DATA

In order to follow how the approximations are put into
the aircraft model, it is necessary to see the matrices they
replace and how they are used in the aircraft flutter response
equation. This is written (in U.K. notation) as
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[A + pGId + [D + pVBIG + [E + pV2C]q = input function. 2.1
where q is the generalized coordinate vector,
A the structural mass matrix,

D the structural damping matrix,

E the structural stiffness matrix,

G the aerodynamic inertia matrix,

B the aerodynamic damping matrix,
and C the aerodynamic stiffness matrix.

The input function may be one of several - gusts,
control demands, or zero for a flutter solution. As the
aerodynamic inertia matrix has been neglected in all the data
supplied it will not be included in the analysis. Both the B
and C matrices depend on the frequency parameter v. This
variation is best shown by plotting the real and imaginary
parts of the aerodynamics as vectors in the complex plane,
This can be obtained by considering the aerodynamic
matrices. Let

Q, =I[pVBs+pV’Clq

Replacing s by jw and substituting the frequency parameter
v = wt/V, we obtain

Q, =sVC + B(v/Djla 22

The real and imaginary parts can be approximated by
equations in the nondimensional Laplace variable s. These are
then included in the aircraft equations by multiplying through
by pV? and the generalized coordinate vector q.

The data set for this study is representative of a delta
wing fighter aircraft, with aerodynamics for a Mach number
of 0.8. The B and C matrices are given for 17 values of
frequency parameter between 0.001 and 5.0. These were
calculated at British Aerospace (BAe) Military Aircraft
Division using methods based on those described in
Reference 4, with the semi-span as the reference length. The
matrices include rigid heave and pitch degrees of freedom, the
first four wing modes, and two flexible and two rigid control
modes. The fuselage is effectively rigid and only represented
by mass and inertia terms. A modal displacement matrix was
supplied for determining structural deflections.

If the input function to the equation includes gust
terms which vary with frequency parameter then these will
also have to be fitted. As this has not been done in this
work, the formulation will not be detailed here or in
subsequent sections. A further topic that will be omitted is
the application of the method to the loading equation. This is
used to obtain structural loads or other pure outputs of the
system in terms of the generalized coordinate vector, its
derivatives and the input function. The main problem here
would be obtaining consistent ioads as the fits will introduce
discrepancies.

3. METHOD

The technique relies on fitting transfer functions to
the unsteady aerodynamic data. This form of representation
is not really the most appropriate for the subsonic data as
disturbances shed into the flow will affect the later behaviour

point at the origin and a branch cut along the real axis
(Reference 6). However, as noted in Reference 7, rational
functions do produce the most convenient form for analysis
since simple differential equations are the result of the
approximations. Also, whatever the strict mathematical
limitations, this form of approximation has been successfully
used in the design of flutter suppression systems in the past
(Reference 1). The method is based on a variant of Roger’s
approximation (Reference 8) where the equations are cast
slightly differently to reduce the number of additional states
required. The original form would result in the addition of
(m x n) states to the model. However Karpel (Reference 9)
showed how to work back from the desired state space form
of the solution to the approximation method appropriate to
that formulation. This only adds a number of states equal to
the number of denominators in the approximation, This is at
the expense of reducing the accuracy of the fit for a given
number of extra denominator terms and increasing the
complexity of the solution, which now requires iteration.

3.1 State Space Form

The form of the approximation to the unsteady aerodynamics
is

Q(s) = Py + Ps + P,s” + M[sI - R]7'Ns 3.1.1

where M is an (m xn) matrix, R is a diagonal matrix of the
denominator coefficients (nxn) and N is an (nxm)
matrix.

Thus if we substitute for s ( = s£/V ) we obtain
Q(s) m Py + PL(¢/V)s + P(¢/V)’s” + M[(¢/V)sI - RI'N(&/V)s

As [(¢/V)sI - R] is diagonal, its inverse is the reciprocal of
each of the diagonal elements. Hence we can multiply this
term by the external (¢/V) factor and dimensionalize the
equation by mulitiplying through by pV? to obtain

PVEQ(s) ~ pVEP, + ptVP s + pt™P,s% + pVPMISI - (V/OR]'Ns

If we now say X, =[sI- (V/Z)R]'leq and substitute back
into the original flutter equation (Equation 2.1) then

2 . . 2 2 .
[A + pfP,)d + [D + pVEP]q + [E + pV'PJa + pV'MX, = Fu
3.1.2
For the aerodynamic states we have sX, + (V/l)RXA = Nsq

so X, = Nq - (V/ORX, 3.1.3
We can now write the state space equations for the full
aircraft in matrix form as given by Equation 3.1.4 below.

As R has the dimension of the number of denominator
terms in the approximation, only this number of states has
been added to the original model. Thus the size of the
additional “aerodynamic dimension” is independent of the size
of the original model. Hence in general fewer states are
added than with other methods of this type. However for a
specified accuracy the number of states required will still be
dependent on the size of the existing model due to the need to

of the wing (Reference 5). In fact the behaviour of lift produce reasonable fits and the way the solution is
cannot be strictly described by a rational function in the formulated.
Laplace plane since it is a multivalued function with a branch

q 0 I 0 q 0

q = [A + pP, I E « pVIP]  -[A + pEP D 4 pVERT VA + p£P, M q + [A + pf’P)'F [ u :I

X, 0 N ~(V/OR X, 0
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3.2 Method of Solution

Constraints are added to the fits to remove the need
for some of the iteration (Reference 9) and to ensure that the
final solution is closely related to the physical problem
(References 10 and 11). This technique allows a direct
solution for three of the matrices in terms of the others,
Consider the form of the approximation given in Equation
3.1.1. At zero frequency parameter there is no imaginary part
to the aerodynamics so P, must be constrained to equal the
real part of the data. There must also be a direct
correspondence between the pitch column of the € matrix and
the heave column of the B matrix. This means that the rate
of change of the heave column of the imaginary aerodynamics
with v must be set equal to the aerodynamic stiffness in pitch
at zero frequency. For this column, this demands that
3.2.1

[P,1, = [Pyls/2 + [MRTIN],

iz
For the heave column this provides two constraints, the third
being given by forcing the real part to be exact at some other
point. For all other columns of the matrix, the approximation
is required to be exact at some frequency parameter other
than zero. If the other constrained point is at a frequency
parameter of v_ then evaluating the real and imaginary parts
of the approximation we obtain

Qpv) = Py - Py > + My T + RNy ? 322

Qv,) =P - Myl + R*['RNy, 323
As Po is equal to the real part of the data at zero frequency
parameter QR(O) then

P, = [Qz(0) - Qv )l/v? + My I + R’I'IN 324

P, = Qv )/v, + M[r T + R*I'RN 325

Thus P, P, and P, can all be determined for given
matrices M and N. These solutions give the two matrices in
terms of each other so their evaluation requires an iterative
least squares procedure. This involves performing least
squares solutions for the columns of the N matrix and then
using the same technique to give the rows of the M matrix. A
suitable procedure is as follows:

1. Set Py = Qg(0).

2. Set an initial M matrix.

3. Solve for N in terms of M.

4. Solve for M using this value of N.

5. Calculate P, and P, using 3.2.1, 3.2.4 and 3.2.5.
6. Calculate the total approximation error.

7. Repeat steps 3 to 6 to convergence,

This solution is not linearly independent, so that elements
which are difficult to fit can cause a deterioration in the fit
to other elements. Because of the iteration involved, the
solution requires considerably more computer time than for
other similar techniques. However, this one-off cost should
be more than offset by the reduction in run times when using
the final model. More detail on the solution can be found in
References 11 and 12.

3.3 Errors and Weighting

Having seen the form of solution, it is important to
appreciate that weightings may well be needed tc produce a

sensible fit. The form of weighting depends upon what is
required in the end use of the approximation. As the fit
quality can only be gauged with respect to the whole matrix,
elements of small magnitude will effectively be ignored in the
solution if there is no corresponding weighting, since errors in
them will make an insignificant contribution to the overall
error. Unless it is known that the elements are small for the
physical reason that they do not greatly influence the
behaviour of the system, it is dangerous to allow this to
happen. Similarly the magnitude of the coefficients may vary
quite significantly with frequency parameter. Hence, although
the size of the error may remain approximately constant, the
percentage error it represents in the magnitude of the
coefficient may vary considerably with frequency parameter.
These comments are intended to be general because the only
real measure of the quality of the fit is whether the final
model satisfactorily performs the tasks required of it. Thus,
for the design of a flutter suppression system it would be
important to match the behaviour of the unsteady
aerodynamics accurately around the frequency parameter of
the flutter, whereas for a more general FCS/structural
coupling analysis it would be more important to get a fairly
even fit. For this work the weightings have been set to
normalize the error on each point of the aerodynamic matrix.
This was done to remove the magnitude problems mentioned
above and because it was thought to be a good basis for
introducing more refined weightings at a later stage.
Weighting is introduced by adding weighting matrices to the
least squares solutions for the M and N matrices.

4. FITS

Space precludes a detailed discussion of the accuracy
of the fits obtained, but a few remarks would be appropriate.
The method will fit simple vector shapes quite well with
relatively few denominators. Generally, the elements which
cause most problems are those with loops in the variation of
the vector. For a five mode data set, it was found that
removing one such element and replacing it with a simpler
one reduced the sum of the squared errors by 50%. This was
mainly because of the error on that element, but was also due
to the improvement gained in the fits to other elements once
it had been removed. Thus such “difficult to_fit” elements
can have an influence disproportionate to their importance to
the aeroservoelastic problem. Hence there might be
justification for decreasing the weighting on such elements.

In order to solve for the numerator matrices in the
Minimum State method it is necessary to know the values of
the denominator coefficients in the R matrix. This can be
done by specifying their values in advance of the calculation
but the solution obtained will not be an optimum one. As a
result it may be desirable to improve the fit without adding
extra states to the final model by optimizing the fit with
respect to these denominator terms. This is a nonlinear
problem so there is no direct analytical solution. The method
used for this work is the adaptive simplex procedure suggested
by Nelder and Mead in Reference 13, It has been found to
be reliable (Reference 14) and relatively efficient in previous
work (Reference 15). It also requires no gradient calculations,
which helps to reduce the amount of computation required.
To prevent unstable transfer functions being produced, a
barrier function and linear gradient have been placed at a real
value of zero. The main problem is that there are numerous
function evaluations involved in the procedure. This means
that the computing time required to run the optimizer can be
quite high. The Minimum State method also needs
considerable time to iterate for each solution, so the process
can be time consuming. Optimizing the fits produces
somewhat unpredictable improvements to the model. In some
cases the fits are noticeably better but in general the reduction
in error is less than 10%. As might be expected, this depends
largely upon whether substantial improvements can be made
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to the “difficult to fit” elements. The optimizer also requires
quite significantly varying run times. In general it was found
that the more difficult it was to improve a fit, the longer the
run time needed for the program. As yet, no way has been
found of testing whether any significant improvements can be
made without doing the full run. The experience gained thus
far supports the conclusions reached by Karpel that it is
generally more profitable simply to add an extra state to the
fit than to attempt to optimize the denominator coefficients.
As these terms appear as poles of the aeroelastic system, there
is also some benefit to be gained from placing them in a
specific place, rather than allowing them to appear anywhere
in the complex plane.

This study wused three different fits to the
aerodynamics. Two had three denominator terms and one six.
Generally these denominators were spread evenly across the
frequency parameter range of interest but one of the three
denominator approximations had them biased towards the
higher frequency end of the data. This was for reasons which
will be explained later.

5. VALIDATION OF AEROELASTIC MODELS

Several checks were performed on the aerodynamic
models to ensure that they matched the results predicted by
the data. The first of these was a visual inspection of the fits,
simply to ascertain that the approximation method was
producing reasonable variations in each of the elements. More
rigorous comparisons of the results were also made.

5.1 System Roots

The roots of each of the aeroelastic models were
calculated for the conditions of Mach 0.8, sea level for which
the aerodynamic data set is valid. This required an eigenvalue
evaluation of the matrix given in Equation 3.1.4. To provide
a check, circular interpolation and iteration for the frequency
and frequency parameter of the roots were used to calculate
the eigenvalues based on the actual data. The results are
given in Tables 1 to 4, which show that all the fits produce a
good estimate of the root positions. It should be noted that
the roots based on the circular interpolation are not the
“correct” ones but merely results representative of
conventional techniques. :

As another check on the behaviour of the roots, flutter
plots were produced using the aerodynamic models. Again
these were compared with results obtained by an iterative
circular interpolation approach. Figures 1 to 4 illustrate the
results. For the fits based on evenly spaced denominators, the
results tend to agree quite well but the modified three state
model shows noticeably different behaviour for high dynamic
pressures. The calculated flutter speeds are given in Table 5,
confirming the initial impression. The mode with a frequency
of 30 Hz has been omitted from this data. However the
circular interpolation indicates that it goes marginally unstable
at 1555 kts while only the modified three state fit produces
this instability, albeit at the rather low speed of 1349 kts. It
might be that a slightly different interpolation would suggest
that this mode should remain stable.

5.2 Frequency Response

The second validation test was to check the frequency
response of the aircraft heave acceleration to an inboard
control input. The different approximations were run for
conditions on Mach 0.8, sea level. The three fits were once
again compared with results based of circular interpolation of
the aerodynamic data. The overall comparison is shown in
Figure 5, which illustrates how good the match is for all the

models. This is not surprising since the roots of the system
are also well matched for these conditions.

5.3 Time Response

The final check was to run time response simulations
of the Minimum State models and compare them with results
obtained from the original data. The response of the wing tip
leading edge to an inboard control input was investigated as it
showed a noticeable response to many of the modes in the
model. Producing comparable results from the aerodynamic
data was more difficult than in previous cases. It involved
calculating the transfer function using circular interpolation
for the aerodynamics, then taking the Fast Fourier Transform
(FFT) of the input signal and band limiting it to the range of
frequencies contained in the aerodynamic data. These Fourier
coefficients were combined with the transfer function to give
the Fourier coefficients of the output signal. The inverse
FFT was then taken to give the time response. This process is
illustrated schematically in Figure 6.

The frequency limited input signal was injected into
the Minimum State models and the response left to settle into
a periodic form. This was necessary since periodicity is one
of the underlying assumptions of the FFT method. The two
results could then be compared. Space precludes the inclusion
of all the results so only the acceleration has been assessed, as
this is the most interesting. Again, the test conditions were
set to Mach 0.8, sea level. The responses produced by the
different models and methods are given in Figure 7. This
shows that their shape is approximately what would be
expected in all cases, with the six state fit (the most accurate)
being closest both in form and magnitude to the results
produced using circular interpolation. This figure illustrates
that the small differences visible in the frequency responses
do not have a great effect on the time domain responses.

On the basis of this evaluation, it can be seen that all
three of the approximations match the expected behaviour
quite well. The main reservation concerns the accuracy of the
modified three state model at high values of dynamic pressure
but for operation around a design point for which the
aerodynamics were calculated, the other results show that the
fit should be perfectly satisfactory. It would be possible to
perform many more checks but this validation was considered
sufficient for the purposes of this study.

6. DESIGN OF MANOEUVRE CONTROLLER

A block diagram of the control scheme is given in
Figure 8. Most of the main elements required in a
representative controller are present, although some are not
detailed models. Notable by their absence are sensor
dynamics and notch filters. For this work, it was assumed
that the gyro was ideal for the range of frequencies under
consideration, and notch filters were not required because
structural modes did not significantly affect the pitch rate
feedback. This was mainly because the fuselage was assumed
rigid in the data supplied. The actuator was simplified to the
form of a first order lag with a break frequency of 7 Hz.
Only real stiffness terms were associated with it since for time
domain work, a hydraulic simulation of the device would be
needed to include the complex impedance properly. The
sampling frequency was 44 Hz and the anti-aliasing filter was
set for 20 Hz.

The guidelines for acceptable aircraft behaviour were
obtained from Reference 16. This gives limits for frequency
and time domain responses to a pilot input and is based to
some extent on MIL-F-8785. The study only attempted to
comply with the requirements demanded for up-and-away
flight. Because one of the specifications involves the step
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response of the vehicle, the Minimum State models had to be
used as a basis for designing the system. Interpolated data
could be used to check some of the results and ensure that the
numbers produced were reasonable. The controller was only
designed to function at a Mach number of 0.8 at sea level and
no provision was made for gain scheduling with flight
condition. However it was intended only that the process
should give some insight into any problems which might arise
during a more detailed design exercise,

The procedure followed was to increase the frequency
of the short period roots whilst maintaining a reasonable
damping by altering the gains in the proportional plus integral
controller. This was designed to make the aircraft respond
more rapidly to the pilot input. Once a satisfactory response
had been obtained, the lead/lag filter on the input was used to
advance the pitch response and ensure that it still remained
within the desired boundaries. The final step was to take the
full system transfer function between the aircraft pitch
attitude and the demand signal and to use the input gain to
force the gain crossover frequency to occur at 0.3 Hz.
Boundaries obtained from Reference 16 could then be
checked.

This process was first performed using the six state fit,
since this was the most accurate., When the three state fit
with evenly spaced denominator terms was used, it was found
that one of the aerodynamic roots interfered with the actuator
root. Since these roots are not present in the real aircraft but
are rather a mathematical convenience used for fitting the
aerodynamics, it was decided that to avoid this problem a
modified three state model should be wused, with the
denominator terms biased towards the higher frequencies. All
subsequent references to a three state model refer to this
modified case. The responses for the final designs for the
three and six state aerodynamic models to a step pitch rate
demand are shown in Figures 9 and 10. The gain between the
demand and the feedback loop has been set to unity to show
more clearly the amount by which the peak response
overshoots the final steady state response. These illustrate that
there is effectively zero drop-back in the pitch attitude
response and that the peak values of pitch rate and
acceleration occur within the time constraints suggested by
Reference 16. The control anticipation parameter was
calculated for both models and found to be equal to
0.27 rad/s%/g, slightly outside the range suggested in the
reference of between 0.28 and 3.6 rad/sz/g. As the object of
the study was to evaluate unsteady aerodynamic models in
aeroservoelastic systems and not to produce a perfect
controller, this performance was deemed satisfactory. Finally,
the input gain was modified to give a gain crossover
frequency of 0.3 Hz in the pitch attitude response to the pilot
input. The gains required were slightly different, 1.74 for the
six state model and 1.77 for the three state one. This
represents a disparity of 1.7% and is a measure of how much
the aerodynamic approximations differ at this frequency for
these flight conditions. The transfer functions obtained from
the two models are shown in Figures 11 and 12. These also
illustrate the acceptable boundaries for up-and-away flight
given in Reference 16 and show that in both cases the overall
performance just satisfies these criteria. They can be
compared with one generated using interpolated data given in
Figure 13. This required a gain of 1.84 to produce the
desired crossover frequency.

7. TIME DOMAIN RESULTS

As in the case of the pure aeroelastic model, results
from the Minimum State approximations were compared with
those from the original data to check their validity. The time
domain responses have had a steady state pitch rate error
removed to allow for the slightly different conditions between
them and the Fourier transform method. The pitch rate
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responses to different band-limited square wave inputs are
shown in Figure 14 and this confirms that the models are once
again true to the predicted results. In order to demonstrate
the potential of the method, it was decided to introduce an
actuator rate limit to make the system nonlinear. This was
not intended to be representative in terms of magnitude but
was purely for illustrative purposes. For a nonlinearity to be
included in the interpolation method would be difficult and
would require describing functions to be evaluated for each
input amplitude. In contrast, the Minimum State approach
allows the rate limit to be programmed directly into the time
domain simulation.

The effect of the rate limit on the six state model can
be seen by comparing Figures 10 and 15. The latter shows
that the actuator rate reaches a maximum and delays the
growth of the pitch acceleration and pitch rate. It also
introduces a small amount of drop-back to the pitch attitude
response. A transfer function analysis showing the effect of
the rate limit on the response of the actual pitch rate to the
demanded pitch rate is shown in Figure 16. As would be
expected, as the amplitude is increased, the gain and phase
responses drop off at a lower frequency. While this is
basically a low frequency system in which the frequency
dependence of the aerodynamics is less important, similar
effects would need to be modelled for high frequency control
applications.

8, FUTURE WORK

There are several main areas where further work is
required. The first is to apply the method to more data sets
to check for any particular weaknesses. This would include
studies of supersonic conditions, models including more modes
and applications to commercial transport aircraft. As well as
wing modes it would be beneficial to study the effect of
including fuselage flexible modes in the model. For the type
of model developed during this study, it would be useful to
include sensor dynamics, notch filters and comprehensive
actuator simulations to allow for impedance and physical
limits within the actuator. It will also be necessary to study
the interaction of the introduced aerodynamic roots and other
eigenvalues within the control system. This should be aimed
at finding ways of producing good aerodynamic
approximations which will not interfere with the real
dynamics of the control and actuation system. It seems almost
certain that this will require some prior knowledge of the
roots of the control system.

As yet, the gust response of the aircraft has not been
evaluated. This will be important since the aerodynamics in
all modes can be excited over a range of frequencies
determined by the particular gust spectrum applied. In the
civil field where gust responses can determine the maximum
structural design loads, this approximation method would be
particularly wuseful, especially with the increasing trend
towards fly-by-wire systems. It would permit unsteady
aerodynamics to be included in studies of the effects of
control system nonlinearities on the aircraft gust response,
with worst case gusts evaluated by methods such as those
described in References 17 and 18.

Another field which needs consideration is the loading
equation. It does not appear that this method could give
consistent loads throughout an airframe, simply because by
definition the approximations cannot be guaranteed to be
consistent. However it should produce results which are
sufficiently accurate to make these inconsistencies small in
comparison to the magnitudes of the structural loads. Thus it
should certainly be suitable for preliminary design work,

Finally, more experience is needed in applying the
technique and using the results, in order to check for any




problems that might arise. This can only be done by using
different parameters and data sets to calculate the
approximations and then running complete aeroservoelastic
models. Ultimately this could be aimed at automating the
whole procedure to reduce the operator involvement to a
minimum and yet still produce valid approximations.

9. CONCLUSION

Overall, the Minimum State method is a powerful
technique because it adds considerably fewer states to the
final model than other methods whilst still accurately
approximating the variation of the aerodynamics with
frequency parameter. Its main disadvantage is that it needs
significantly longer computer time than other methods to
generate the fits since iteration is required for the solution. It
is sensitive to elements which are difficult to fit in the matrix
and these tend to degrade the overall approximation.
Although this study has illustrated that the introduced states
can cause problems by interacting with other roots in the
aeroservoelastic system, this difficulty will be correspondingly
more severe in other methods where more states have to be
added. This, together with the high dynamic pressure flutter
behaviour of the modified three state model, shows that some
validation of the overall model will be required.

However, once this has been done, it is possible to
perform a wide range of tasks with a single aeroelastic model,
saving both on time and complexity. This model has the
advantage that the states added to represent the unsteady
aerodynamics are no longer the dominant component in the
number of states in the overall model. The simulation used
for this study had at most six aerodynamic states, compared
with twenty structural ones and eleven control system states.
This means that including unsteady aerodynamics in the model
is actually a practicable proposition. The final benefit of the
technique is that it allows control system nonlinearities to be
included in the same model as the unsteady aerodynamics.
This could be extremely useful as many control system
problems have occurred when the response is influenced by
such nonlinearities.
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NOTATION

The following list contains most of the symbols used in the text. Those not
defined here are defined locally. Bold type is used to denote a matrix.

F Input matrix. Q Real part of aerodynamics.
I Identity matrix. q Generalized coordinate vector.
] Complex variable, /-1, R Diagonal denominator matrix.
4 Reference length. S Laplace operator,
M Premultiplying numerator matrix. 5 Nondimensional Laplace operator (= s£/V).
m Number of modes in data. u Input vector.
N Postmultiplying numerator matrix. \'% Velocity (T.A.S., m/s).
n Number of denominators used in fit. XA Aerodynamic state vector.
P Aerodynamic numerator approximation matrices. v Frequency parameter (= wé/V).
Q, Aerodynamic terms in flutter equation. p Density (kg/m®).
Q; Imaginary part of aerodynamics. w Frequency (radians/s).
Real Imaginary Frequency Damping Real Imaginary Frequency Dam;?ing
Part Part (Hz) Ratio Part Part (Hz) Ratio
-42.13 1248 198.63 0.0337 -43.67 1269 202.04 0.0344
-30.35 749.2 119.24 0.0405 -30.59 755.7 120.26 0.0405
-6.507 354.9 56,484 0.0183 -8.199 355.1 56.494 0.0231
-35.85 3024 48.129 0.1177 -38.53 304.2 48.413 0.1257
--------------------------------------------------------- —v=150 e e A X
-11.02 234.1 37.250 0.0471 -10.99 234.2 37.273 0.,0469
-7.979 152.6 24.286 0.0522 -8.066 152.9 24,341 0.0527
-1.954 124.4 19.799 0.0157 -2.602 125.0 19.891 0.0208
-1,783 46.46 7.3949 0.0383 -2.078 46.54 7.4069 0.0446
-2.249 4.233 0.6737 0.4693 -2.158 4,031 0.6416 0.4720
0.000 0.000 0.0000 0.0000 0.000 0.000 0.0000 0.0000
0.000 0.000 0.0000 0.0000 0.000 0.000 0.0000 0.0000
TABLE 1. ROOTS USING INTERPOLATED DATA TABLE 2. ROOTS OF THREE STATE MODEL
Real Imaginary Frequency Damping Real Imaginary Frequency Damping
Part Part (Hz) Ratio Part Part (Hz) Ratio
-44.58 1273 202.64 0.0350 -44.74 1273 202,59 0.0351
-25.80 752.6 119.79 0.0343 -23.83 749.5 119.29 0.0318
-6.526 355.5 56.587 0.0184 -7.525 355.1 56.516 0.0212
-35.60 304.9 48.533 0.1159 -37.18 304.5 48.464 0.1212
------------------------------------------ —v=350 e e e et mmm e m e e U = 5.0
-11.05 2343 37.297 0.0471 -11.13 2343 37.293 0.0474
-8.361 153.0 24,349 0.0546 -7.830 152.5 24.274 0.0513
-2.789 125.1 19.906 0.0223 -2.066 124.2 19.762 0.0166
-2.089 46.58 7.4127 0.0448 -1.915 46.45 7.3935 0.0412
-2.207 4.107 0.6536 0.4734 -2.180 4,007 0.6377 0.4779
0.000 0.000 0.0000 0.0000 0.000 0.000 0.0000 0.0000
0.000 0.000 0.0000 0.0000 0.000 0.000 0.0000 0.0000
TABLE 3. ROOTS OF MODIFIED THREE STATE MODEL TABLE 4, ROOTS OF SIX STATE MODEL
12 Hz Flutter 48 Hz Flutter
Velocity Frequency Velocity Frequency
(kts) (Hz) (kts) (Hz)
Three State 1448 12.3 1458 47.1
Three State (Mod) 1426 12.1 1455 48.6
Six State 1448 12,7 1436 47.6
Interpolation 1446 12.4 1419 472
TABLE 5. FLUTTER SPEEDS AND FREQUENCIES
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