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Abstract
An efficient approximate method of‘
the Euler equation solution is developed.

The present method makes it possible to
accelerate the airfoil flow calculation 19
to 20 times as compared to the direct
Euler equation solution and its speed 1is
practically the same as the speed of the
potential equation solution methods. The
method needs only minor modifications of
the existent numerical methods for the
soluticon of the potential equation. The
comparison of the results with the direct
Fuler equation solution shows a
satisfactory agreement both for the
distributed and total aerodynamic
characteristics up to the formation of
strong shock waves when the potential flow
model gives essentially wrong results.

I. Introduction

Ideal gas flows are governed by the

Euler equations which include the
equations of mass, momentum and energy
conservation. In the absence of shock

waves 1in case of a uniform freestream flow
over a body it is potential - and governed
by a single equation for the velocity
potential. The gasdynamic variables in
this case are determined from aligebraic
expressions for isentropic flows based on
known velocity. The use of the potential
model is a significant simplification and
the numerical solution of the potential
eqguation needs considerably less time than
the solution of the Euler equations.

In the presence of shock waves the
flow behind a shock becomes neither
irrotational nor potential. The appearance
of vorticity is due to an increase in
entropy at the shocks in accordance with
the Crocco equation. However, because the
entropy variation is of the third order of
magnitude relative to the shock strength,
the vorticity in case of weak shocks may
be neglected and the flow may be
considered to be potential evervwhere. The
resultant equation for the potential
function can be effectively solved with
the aid of the widely used relaxation
methods.

However, as the shock strength
the assumption of the flow potentiality
becomes increasingly less justified and
the results obtained with the potential
model agree increasingly worse with those
obtained by the Euler equation solution.
In airfoil flow problems it is especially
obvious in the presence of nonzero 1lift:
the 1ift coefficient may differ for these
cases by a factor of three or more, the
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pressure distribution and the wave drag
are absolutely different. Usually for the
potential model the shock wave on the
upper surface is located more downstream
and 1is stronger than for the Euler
solution. Different modifications of the
potential model were proposed in order to

take into account of the ggﬁropy jump
across the shock waves These
approaches 1improve agreement with the
Euler equation solution but they are

approximate and the Euler equations are
essentially not solved. s
The Clebsch transformation in vyields

the system of equations equivalent to the

Euler equations that includes the
continuity and energy egquations and two
additional equations of transfer. It was

proposed to solve this system numerically
or to wuse an approximate analytical
solution of one of the equations of
transfer. The accelerated Euler equation
solution method was developed on the basis
of this approach that retains all the
positive features of the potential model.

The present paper discusses some
shortcomings of the method developed in".
A new method of the approximate Euler
equation solution is proposed based on the
Clepsch transformation. In essence, the
present approach requires the solution of
the potential equation with modified
density. The entropy field behind shocks
is determined by the calculation of
streamline forms and from the condition of
the entropy conservation along the
streamlines. The conditions at normal
shock waves are accurately satisfied in
the present method.

I1. Governing eguations

and numerical method

Consider a transonic iscenergetic
ideal gas flow and let the velocity vector
be written in the following form

V =98 + AVu (1)
that is as a sum of the potential part &
and the part AVu that provides for nonzero
vorticity. The functions x and g are
selected so that the Euler equations
should be satisfied. In case of the
potential flow, AVu must be egual to zero.
This velocity vector presentation is
reffered to as the Clebsch transformation.

The Euler equations describing this flow
may be written in the following form:
- the continuity egquation
v(el) =0 (2)
— the Crocco equgtion
Vxd=-2v9s (3)




— the Bernoulli equation

z -2 e—1 T 2 - )
a = Mw + 5 (1 V') = f (M00 o) (1)
Here p is the density, « = vrot V the
vorticity vector. a the speed ?f sound. o
)

the specific heat ratio, S = p—— In(p o

p the pressure, Mm the

All the quantities are
relative to the
pressure and density

1

the entropy, free

stream Mach number.
nondimensionalized
free—stream velocity.

(s0 the entropy in the free-stream flow
and in the entire flow field except for
the flow behind shocks is equal to zero).
The equation (3) results from the
Bernoulli and momentum equations and
replaces the latter in the Euler

egquations. In accordance with (1)
w o= VA x Yy
and (3) takes the form

U ox 90w = 90 (V Yu) — wu (U wn) =
2
- 2 g3
P4
Let as vet undetermined function A be A~ =
S then we shall obtain

Y8 (V Ju) - Yu (V 95) = - %i 75
Since the entropy is conserved along the
streamlines then
V9s =0 (53
and hence 2
Vop = - (6)
Substitution of (1) with x = S5 into the

continuity equation (2) vields
V(e V8) = — V(p S Vu) (7)

In accordance with the entropy definition
the density 1s equal to

o = o> (M; a%y **
and the speed of sound a is related to the
flow velocity by the Bernoulli egquation
(4).

1

The equation (7) contains a source
term in the right-hand side. This may
explain the fact that the nonconservative
schemes for the numerical potential
equation solution, when the shocks are
sources of mass, in some cases gives a
better agreement with the Euler solutions
than the conservative schemes where the
mass is conserved.

Integration of the equations of
transfer (5) and (6) requires the
specification of initial conditions at the
shock wave. Since the shock 1is close to
the normal shock in a transonic flow about
an airfoil, the initial wvalues of the
entropy may be obtained from the relation
at the normal shock, namely

. 1 2 _ox-1
5= [1“ [a—l feh u+1} *
) x—1 2 -
+ »# 1n (m'f’mMﬁ%]

number immediately
If the function & 1is

where Msh is the Mach
ahead of the shock.

continuous across the shock, as 1n the
potential flow, the condition u = const
must be satisfied along the shock, which
provides the conservation of the velocity

component tangential to the shock. s
The above approach was developed in
and applied to the construction of a fast
Fuler equation solution method. The
algorithm of the method 1is as follows.
1) The entropy is assumed to Dbe =zeroc 1in
the entire flow field; 2) the equation (7}
is solved by using the conservative
finite—difference scheme; 3} the shock
locations and the entropy jumps at them
are determined; 4) the equations (5) and
(6) are soclved and the functions S and W
are determined; 5) the steps 2-4 are
repeated until the convergence is
achieved. It was proposed to obtain the
solution of the eguation (6) in~ either by
a direct numerical integration or
approximately, by assuming that
au 2 -1 _
'a—)z—“(”Mco);W_@.

The numerical integration of (6)
the subsequent differentiation of the
function ¢ leads to some difficulties. Let
us introduce a local orthogonal
curvilinear coordinate system (s,n) fixed
to the streamlines, where s 1s the arc
length along a streamline and n 1is the
distance normal to it. The metric tensgr
components are egqual to gss = (1 + Kn)~,

and

gm = 1, where K is the streamline
curvature. In this coordinate system eq.
(6) may be written as
_ Ou 2 -1
Mo = 5= = (M) \ (12)
where M is the local Mach number. Hence

the g value unrestictly grows along the
streamlines because the right-—-hand side of
(18) tends far downstream to a finite
nonzero value (being different for various

that un = 9K

Let us show T
n

also tends to infinity far downstream
along the streamlines past the shock. In
accordance with (4) an eguality may Dbe
written

streamlines) .

_ M2+ (»-1) 8V
2 an
(s,n) may Dbe

8 9 _ 9 -1
Sgin=gme = — =l (M) V)

The vorticity in coordinates
written as
av

w == 35 KV (11)
and

Bun _ M 24 (2—1)

35 - (w +KV) (12)

Far downstream the right—-hand side of (12)
tends to a finite nonzero value different
for various streamlines past the shock,
which results in an unrestricted growth of
un along these streamlines.
Thus the function I
derivative normal to the
unrestrictly grows along the

and its
streamline
streaml ines

past the shock, and the character of this
growth is different for various
streamlines. This fact makes the use of
this solution extremely difficult 1in the
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velocity approximation in the form of (1)
as was proposed in

In the present paper it is proposed
to use the vector — — instead of Vu 1in
*®
(1), where A~ = 5 in accordance with (1@},
e.qg.
V=9 -5 (a)* ¥ (13)
An estimation of the errors of such
velocity presentation is given Dbelow. It
follows from (13) that
A= (a)IS x V] - 8 (M)t D -
- = VM x V)
The substitution of this exXpression 1into
(3) vields 2
\7;<$=—%vs—s,ue1vlz)" (U % ] —
- g (V% IM Z5 1 (14)
Comparing (3) and (14) we obtain that the

sum of the second and the third terms in
the right-hand side of (14) is an error of
the Crocco equation due to the velocity
representation (13). As 5 is of the third
order of magnitude with respect to the
shock strength, the second term has higher
order of magnitude than the leading term
having the order of magnitude of « and the
second term may be neglected. Let us
assess the third term:

2 2
L R V. SR A
“ Vv Y
In the (s,n) coordinate system we have
oMZ ¥ = - % 2av? XY
an
and
Vox WM U= - (0 < K1 ozav® L
where X 1is the unit vector in the

z—direction normal to the flow plane.
Using (11) we obtain an assessment of the
absolute value of the third term in (14)
in the form

S 19« oux ] - 24

2 #V
Again, the product of Sw may be neglected.
The term with the curvature K is formally
of the leading order of magnitude, but, as
a rule, the streamline curvature
downstream the shock is small enough and
this term is also small.

The flow velocity representation (13)
allows wus to simply modify the known
transonic potential methods in order to
account for the vorticity downstream the

(w + KV)

shock. It follows from (13) that
145 (xM*)

It is obvious that this representation is
erroneous in the vicinity of the points,
where V = M = @, at the trailing edge, for
example. But the numerical results given
below showed that these errors doesn't
have a global effect on the results.

The Bernoulli equation may be written
in the form

-2 x=1

2 w=1 3 _
Vi(1-5=8) - VIVe| + S(M “+—=) =8 (16)
Substituting (8) and (15) into (2) we
eventually obtain

V[pt. e o wz] -0 (17)
1+8 (M)
A
where o, = (M; a$)* 1 is the density
calculated by the 1isentropic relation.
Thus, the approximate solution of the

Euler equations is reduced to the solution
of (17) that has the structure of the

potential egquation V(8 &) with the
modified density
5 =0, e 11+ 5 )t (18)

and may be effectively solved by the
relaxation schemes. Note that the density
modifications are vrequired only behind
shocks. The entropy values are determined
by the calculation of streamlines and by
the use of the condition of the entropy
conservation along the streamlines. The
velocity value 1is calculated from (16)
using known values of 5 and [¥&} at any
particular point. This approximate method
of the Euler -equation calculation is
practically as fast as the potential
methods and enables a better approximation
to the Euler equations than the potential
model, because 1t takes into account the
nonzero vorticity downstream the shocks.
Moreover, this method accurately satisfies

the Rankin—-Hugoniot relations at normal
shocks. Actually the mass and total
enthalpy are conserved across the shocks
and the entropy Jump is directly
calculated from the Rankin-Hugoniot
conditions for normal shocks. The method

1s approximate because the Crocco egquation
contains some additional terms which may
be neglected, as mentioned above.
The pressure (referred to Py ) is
obtained from
*
p = e S %)t (19)
The determination of the function @
from (17) requires the statement of the
boundary conditions. For the isentropic
flow those conditions are zero normal
velocity condition at the airfoil
boundary, Kutta-Joukovsky condition for
the circulation determination, fixed
asymptotic behavior of the potential at
infinity and the condition of the flow
continuity at the body streamline behind
the airfoil. In the nonisentropic flow the
pressure at infinity is constant. In this
case, the velocity at infinity is wvarious
for different streamlines passed across
the shock. At the body streamline behind
the airfoil the pressure is continuous and
the velocity is discontinuous. That is why
the boundary conditions for the equation
(17) require an additional investigation.
The function @ in accordance with (15)

must satisfy the usual condition g% = 0.
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et us find out the boundary conditions
for ® at infainity and at the body
streamline behind the airfoil. Further

should be assessed the difference of the

pressure from the wvalue calculated Dby
isentropic relations when S = @. Regarding
S as a small parameter and retaining only

the first order terms we can obtain from
(19) the following exXpression:
#M
p—pi=—p£(8+—v—1’AV) (22)
where AV = V — Vi = 0(S), and subscript i

corresponds to the isentropic valueszfor )
= @. Let us show that |¥&| » 1 + 0(S ) for

along any direction.
in accordance with (15) we have

r = ¥ x2+y2 R
Actually,
|v8| ~ [98,] = AV + V, 8 ()™ 4 0(5%)

pressure to be
1.e. P = p; for

If we require the
homogeneous at infinity,

r » o, from (20) we shall obtain

|va| = |93,] + 0(5°)
for r » ® and the value |V&|] is constant
at dinfinity in the first order with

respect to S as for the isentropic case.
The representation (15) also provides
the continuity of the vector V& in the
first order with respect to S along the
body streamline behind the airfoil.
Generally speaking, velocity, density and
entropy are discontinuous and pressure 1S

continuous along this streamline. It
follows from (19) and the pressure
continuity condition that
MMZ
Sp = — p_ (85 + —B &V) + 0(85%)
P m Vm
where &ép, &V and &S are the small jumps of
corresponding values at the body
streamline behind the airfoil, and the

subscript m marks the values by respect to

which an expansion 1s pertformed (mean
values at the body streaml!linemay be used
for these parameters, for example). From
(15) we can obtain

VZ
5198 = sV + —2 85 + 0(85°%) =

uM;

M 2 2
= —VE &p +0(88%) = 0(857)
m

Hence, the pressure continuity enables the
|¥8| continuity in the first order (and,
consequently, the continuity of the vector
¥& in the same order, because the velocity
vector is tangential to the streamline).
So, the boundary conditions for the
boundary-value problem for the function 2
are formulated similarly to the conditions
in isentropic flows. It was also assumed
that the asymptotic expression for &
includes a term proportional to the
circulation as in case of the 1sentropic
model, and the Kutta-Joukovsky condition
was used to determine the circulation.
Hence, the problem formulated coincides

problem.
namely:

with the potential «c¢alculation
Only two modifications are needed,
1)the entropy determination behind shocks
and 2)the density modification in this
region. The numerical method must be
conservative, because the additional
sources of mass in nonconservative schemes
may significantly change the sclution.

On the basis of the present method, a
numerical code of the transonic airfoil
calculation was developed. The algorithm
was the following: 1)the entropy is set to
zero in the entire flow field; 2Z2)a number
of iterations of the numerical solution of

(17) are performed by wusing the finite
difference scheme from ; 3)shock locations
and strengths are determined and entropy
Jjumps across the shocks are calculated;
4)streamline forms are calculated:
5)Yentropy values at mesh nodes are
determined by linear interpolation;

6)modified density values at the mesh cell
centers are determined by (18) and
velocity values are calculated by (16);
7y¥the items 2-6 are repeated until the
convergence 1s reached.

The mesh was constructed
conformal mapping of the flow field

by &
onto

the unit circle. The pressure was
determined by (19). The aerodynamic <force
and pitching moment coefficients were

obtained by pressure integration over the
airfoil contour.

111 Results

The results obtained with the present
method (grid 8©x16) were compared with the
AGARD test cases given in {method No.9
from grid 3206x64). Figs. 1 to 3 show
some of these comparisons. In Fig.l a
result obtained with the potential model
is also shown. This result was obtained
with the same code, when the entropy was
set to zero in the entire flow field. For
other test cases 1t turned out to be
impossible to carry out the potential
calculations because of the divergence
problems: the shocks were too strong and
too close to the trailing edge. Fig.l
presents the results for the NACA©912
airfoil at M = 0.8, @ = 1.25 . The result

obtained by the present method is in good
agreement with the Euler equation solution
both for the pressure distribution and for
the total characteristics. In this case.
the Mach number ahead of the shock at its
foot 1s equal to Msh = 1.38. The result
obtained by the potential model is

_absolutely wrong.

The result§ for the same airfoil at
Mm= 2.85, a =1 are shown in Fig.2. The

Mach number ahead of the shock at its foot

is equal to Msh = 1.45. Finally, Fig.3
shows the results for the RAE2822 airfoil
In this case the Mach

at M =0.75, a = 3
0

number ahead of the shock is equal to Msh
= 1.5. In both last cases, the agreement
of the results is satisfactory.
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Figure 1 =
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Figure 4 - Wave drag vs
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Figure 2 =
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Figure 3 -

RAEZ2822 airfoil.
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Figure 5 = Shock location and Mach

before shock for NACAOOLIZ airfoil at
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Figure 6 - Total aerodynamic
characteristics vs Mach numb?r for
NACAQO12 airfoil at a = 1.25 .,
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Figdre 7 - Shock location and Mach number
before shock for NACAO(312 airfoil at o =
1.25 .
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Figs.4 and 5 show the results of the
NACAB®1l2 calculations for a = 0 and
various free stream Mach numbers. The wave
drag coefficient Cp, Mach number ahead of
the shock at its foot Msh and shock
location xsh are presented. It can be seen
that the wave drag coefficient values
become different starting from M00 = 0.8

which corresponds to the Mach number ahead
of the shock at its foot Msh = 1.25
(Fig.5). The inclusion of +the entropyvy
variation in the present method results in
a decrease in the wave drag, the Mach
number ahead of the shock Msh, and in an
upstream movement of the shock. The wave
drag values agree well with the results of
the Euler solutions .

Figs.6 and 7 present the similar
results for the NACA®O®l2 airfoil at a =
1.25 and various free—stream Mach
numbers. In this case, a noticeable
difference Dbetween the present method
results and the potential model begins at
Mmk 0.76 (Fig.6) which corresponds to the

Mach number ahead of the shock Msh= 1.3
(Fig.7). The discrepancies 1in the 1lift
coefficient CL are observed even someone
earlier, and at Mm= 2.8 their ratio

amounts to 3.6. The total aerodynamic
characteristics obtained with the present
method agree well with the Euler equation
solution at Mm= 2.8. When calculated by

using the present method the shock becomes
weaker and moves upstream as compared to
the potential equation solutions.

The results given above show that up
to the values of the Mach number ahead of
the shock of Msh = 1.25 to 1.3 the results
obtained with the potential model  are
close to those obtained with the present
method. As the shock strength grows
further, the potential model gives
absolutely wrong results, while the
results obtained with the present method
agree well with the Euler equation
solutions up to the formation of vrather
strong shocks.

Conclusions

The minor modifications of the

potential transonic flow model made it
possible to develop the fast effective
method of the approximate FEuler equation
numerical solution. The modifications

flow density
shocks. and

require a change of the
formulation downstream the
this allows one to take into account the
nonzero vorticity behind the shocks as
compared to the potential model, where the
vorticity is equal to zero. The method is
approximate, because the equations solved
contain some additional terms which are
shown to be small and may be neglected.
The computational time is practically the
same as for the potential model and 10 to

20 times less than that of the direct
Euler equation solution. The comparisons
of the results of transonic airfeil flow




calculations obtainsd by uzing the present
method with the Euler eguation solutions
showed good agreement up to the formation
of rather strong shocks, when the
potential model gives essentially wrong
results.
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