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Abstract

The potential for real-time aircraft control via the con-
trol law obtained by the application of the “optimality-
condition” is investigated. This optimality-based control
law possesses simplicity and yet preserves the original struc-
ture of the highly complex, nonlinear, optimal control.
The technique is applied to aircraft trajectory optimiza-
tion, in particular, the minimum-time-to-climb and the
minimum-time-to-turn problems. Robustness is also stud-
ied via simulations with respect to various initial state dis-
turbances and plant/aerodynamic modelling uncertainties.
The results indicate that the optimality-based control law
exhibits excellent natural robustness in terms of meeting
the final flight conditions when a certain “correction” term
is included. The open-loop solutions are also given for
comparison purposes.

Introduction

With the advancement in high-speed computers, in-
terest has grown considerably in obtaining a whole range
of aircraft optimal control laws for real-time aircraft con-
trol. The optimal control problem is usually solved by
applying the first-order necessary conditions to the vari-
ational Hamiltonian. However, the difficulty inherent in
solving the resulting nonlinear two-point boundary-value
problem (TPBVP) has prevented the extensive use of this
technique as design tool to acquire and implement such
optimal flight control laws. To circumvent these math-
ematical and computational difficulties, several reduced-
order techniques have been proposed. Two well-known
techniques are the energy-state approximation!=® and sin-
gular perturbations.0-1®

In the energy-state approximation, energy replaces the
velocity and altitude as the state. By assuming small
flight path angle and angle of attack, additional simpli-
‘fication in modelling complexity is achieved. Bryson, et
al,! have applied this technique successfully to the classical
minimum-time-to-climb problem. Other authors have had
similar success applying this technique to aircraft turns®~*
and minimum-fuel®=? problems. Because of its reduced
order, this approach is suitable for quick aircraft perfor-
mance estimation and is attractive for on-board real-time
display of trajectory information. In many cases, closed-
form solutions are possible. The main disadvantage to this
technique is that in allowing the kinetic and the potential
energies to trade back and forth in zero time at a given en-
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ergy level, discontinuities in velocity and altitude histories
occur. An alternate approach is the use of singular per-
turbation techniques introduced by Kelley.'®=1% In these
approaches, the system dynamics are separated into slow
and fast modes, and the solution of a higher-order problem
is approximated by the solution of a series of lower-order
problems. These methods have been shown by many au-
thors to be effective and eflicient in the computation of air-
craft optimal trajectories. For example, Weston, et al,’3
applied it to the climb-dash intercept mission in two di-
mensions, while Calise!, Visser, et al,'® and Sheu, et al,'®
have had equal success in three-dimensional interception
problems. Ardemal!®~!% used it to treat aircraft pursuit-
evasion and maneuverability problems.

Recently, another technique has been proposed by Lu.?®
He suggested applying the maximum principle and the in-
formation yielded by the necessary conditions to aid in
parameterizing optimal feedback control laws. Here, the
costate variables were parameterized instead of the con-
trol function. He successfully tested this approach to the
problems of robot arm and aeroglider control. In this pa-
per, we extend his idea to obtain optimal control laws for
several aircraft maneuvers. We investigate the application
of the “optimality condition” to develop a real-time con-
trol law for minimum-time-to-climb and minimum-time-
to-turn problems. This optimality-based control law has
the property of being simple and yet preserves the state
structure information of the original optimal control. In
general, the proposed control law is not linear. A brief
background on the development of the optimality-based
control law is given, and its application to the above prob-
lems are presented. For comparison purposes, we have
included the open-loop solutions.

Optimality-Based Control Law Development

Consider the following class of free-end-time optimal
control problems. The goal is to determine u(¢) € U which
minimizes the performance index

J = ¢[a(ty)] + /: L{z,u,t)dt 1

subject to

."c=f(:c,u,t) (2)
with z(¢,) given, as well as some specified z;(ts) where
i=1, .., g Here, z € R" is the state; u € R™ is the
control; U is the class of piecewise continuous controls;
t is the time; L, f € C? are known functions of their
arguments, and ty is the terminal time.

The optimal control problem is solved by using the vari-
ational Hamiltonian,??




H(z,u,\t) = L{z,u,t)+ AT f(z,u,t) (3)

where the costate variables A € R™ are continuously differ-
entiable functions of time. Application of the first-order
necessary conditions results in

State Equations and Specified Initial and Final States

& = H; = f(ac,u,t) (4)
z(te) = 2° (5)
zi(ty) = 25 ((=1,..09) (6)

Costate Fquations and Transversality Conditions
A= —HT
v, t=1,..,¢q
A t — 1y ’. ¥
(f) { d’zj!t:tfy J=1l4¢,..un

Optimality Condition

Terminal Time Condition

(¢Z+H)|t=t, = 0 (10)
where v € R? is the undetermined multiplier vector as-
sociated with the specified terminal states. Eqns. (4)-(10)
constitute a two-point boundary value problem. To obtain
an approximate optimal control law, Lu®® suggests solving
the optimality conditions for the control u* as a function
of state and costate variables, and then instead of parame-
terizing the control u(t), he now parameterizes the costate
variables. This approach has been tested successfully in
two examples. In this control law development, we extend
the technique a step further and parameterize the coef-
ficients of the states instead of the costates alone. As a
hypothetical example, suppose after applying the optimal-
ity condition, we obtain

:\\:—8132 + Ag(t)d)g(t)
Now instead of the costates, the coefficients of the states
are parameterized; that is, we can propose a nonlinear
control law of the form

a*(z,a,t) = a1 (1)2d(t) + a()za(t) + as(t)zal(t)

w (2, A1) = M (£)a(t) + (11)

(12)

The a;(t)’s are now the new control functions to be de-
termined via parameter optimization techniques. Often
times, the optimality condition results in a highly com-
plex structure for the control which involves not only the
costate variables but also the atmospheric properties and
aerodynamic characteristics of the aircraft. The advantage
of this approach is that all these terms can be implicitly
included in the a;(t)'s. It is not difficult to make such
engineering judgements since the structure of the optimal
control obtained via the optimality condition would serve
as a guide. The resulting optimality-based control law
(OBCL) possesses simplicity and yet retains the original
state structure of the optimality condition which may or
may not be linear in nature. It is expected that this OBCL
would exhibit robustness with regard to initial state dis-
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turbances and plant/aerodynamic modelling uncertainties
when compared to the open-loop solution. If it does not,
a further bonus is that an intuitive term could be added
to the OBCL to enhance its robustness; for example, we
can add k(t)f(z) to Eqn. (12) to obtain

*(z,a,t) = ay(t)23(t) + ag(t)z2(t) + as(t)za(t)
+k(t)f ()

Although there is no theory to justify this term, we will
show that this is indeed practical and posssible numeri-
cally. As a note, our primary goal is to obtain the sim-
plest feedback controls needed to achieve a specific pur-
pose. Sequential quadratic programming (SQP)?! is cho-
sen to solve the resulting optimal control problem with
the fixed-structure control law @* replacing u*. This non-
linear programming method is computationally accurate
and inexpensive, and in addition, its flexibility allows for
performance indices and constraint changes with little re-
programming. In this technique, interpolated control func-
tions, @;(t), based on a fixed number of control points are
determined. Optimization then takes place over this set of
control points rather than the entire control history.

(13)

Choice of Initial a(t)’s

A question arises immediately about how one chooses
an initial set of control points for a;(t) for the optimization
process. Due to an infinite range available, many combi-
nations are possible. Although no standard procedure of
selecting the initial guess for a(2) is available, it still can be
done and with a careful selection the optimization process
will easily converge to a solution. In our technique, the ini-
tial control points are selected based on the result of the
open-loop solution. We first make an engineering judge-
ment to weight each term in the proposed control law. The
values of the control points for each term are then chosen
accordingly, and given the optimal states from the open-
loop solution, the closed-loop control is calculated. If the
value of the closed-loop control matches approximately the
optimal open-loop control, these control points will be re-
tained and used as the starting guess for the closed-loop
optimization process. The advantage of this selection pro-
cess is that one has complete control of distributing the
values of the control points for the a;(t).

Numerical Examples

We are applying this approach to aircraft trajectory
optimization. As a preliminary study, the classical point-
mass aircraft minimum-time-to-climb in a vertical plane
and a constant altitude minimum-time-to-turn problem
are considered. Data for the aircraft maximum thrust,
T(V,h), and the aerodynamic coefficients are taken from
an early representation of the F-4 fighter aircraft.! We are
using analytical representations of these data prepared by
Ong.?® In Appendices I and II, the development of the
“optimality-based” control laws are given. In this section,
numerical simulations based on the proposed control laws
obtained in the appendices for specific flight conditions
are studied. We discuss first the results of the minimum-
time-to-climb problem, and in the minimum-time-to-turn
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Figure 1: Open-loop and optimality-based optimal flight
profile comparisons

problem we show that by adding a “correction” term in
the OBCL the robustness can be enhanced significantly.

Minimum-Time-To-Climb Solutions

In this problem, we want the aircraft to fly from an
initial state of V(0) = 830 ft/s (M = 0.8), v(0) = 0°,
R(0) = 20000 ft, z(0) = 0, and m(0) = 1088 slugs to a
final state of V(t;) = 968.1 {t/s (M = 1), A(¢;) = 65600
ft, and =(t;) = 300000 ft in minimum time; ¥({;) and
m(ty) are free. Eleven equally-spaced control points were
used for both a(t) in the OBCL solution and u(t) in the
open-loop solution.

In Fig. 1, the optimal climb trajectories obtained using
the proposed optimality-based control law & = a(t)/V are
compared to the optimal open-loop solution. Note that
these two optimal trajectories are virtually identical. The
aircraft first flies at almost a constant altitude to gain
speed, and near the end of the flight it executes a zoom-
climb maneuver. The optimal flight time for the open-loop
solution is #,; = 209.1 s, while that for the optimality-based
control law is ¢, = 209.5 s. This is not surprising because
parameterizing the control function a(t) to cbtain o(t) is
equivalent to parameterizing the a(t) directly. However,
the advantage here is that the proposed control law in-
corporates velocity feedback while the other does not. We
expect that both the angle of attack histories for the open-
loop and the optimality-based control law should also be
nearly identical. This is the case as shown in Fig. 2. We
note that the high angle of attack history near the end of
the flight is a result of the zoom-climb maneuver. We an-
ticipate the proposed control law to be more robust than
the open-loop solution in the presence of external distur-
bances. This robustness will be investigated in the pres-
ence of two initial state disturbances: 1) +5% in initial ve-
locity, and ii) +5° in initial flight path angle. Robustness
in the presence of plant uncertainties is not investigated,
but will be studied in the minimum-time-to-turn problem.

In Fig. 3, the robustness of our optimality-based con-
trol law compared to the open-loop solution in the presence
of the initial velocity perturbation is given. It is encourag-
ing to see that the perturbed solutions for both the closed-
loop and open-loop do not deviate greatly from the nom-
inal solutions, but compared to the open-loop perturbed
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Figure 2: Open-loop and optimality-based optimal angle
of attack history comparisons
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Figure 3: Energy diagram with initial velocity perturba-
tion
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Figure 4: Energy diagram with initial flight path angle
perturbation

trajectory, the closed-loop deviations is smaller. This can
be explained by virtue of the fact that the angle of attack
control in the optimality-based control law has velocity
state feedback. Thus, any perturbation in the velocity
will be accounted for in the angle of attack.

In Fig. 4, the robustness of both the open-loop and the
optimality-based control law solutions in the presence of
initial flight path angle perturbation is given. Unlike the
initial velocity perturbation case, both solutions deviate
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much more from the nominal solution. In fact, the closed-
loop solution surprisingly deviates more from the nominal
solution than those for the open-loop solution. This can
be explained by the fact that the flight path angle does
not appear in the proposed control law, and because of
this any perturbation in the flight path angle will not be
accounted for in the control law. In an ad hoc way, if we
include the flight path angle in the proposed control law,
this deviation could be reduced. This idea of including
more feedback states is demonstrated in the minimum-

time-to-turn problem.

Minimum-Time-To-Turn Solutions

In this problem, we would like the aircraft to make
a 180° turn and return to its original position, but with
a different final velocity; that is, we want to fly from an
initial state of V(0) = 1355.9 ft/s, ¥(0) = 0°, z(0)
y(0) = 0 ft, and m(0) = 1088 slugs to a final state of
V(t;) = 1210.2 ft/s, (t;) = 180°, and =z(t;) = y(t;) = 0
ft. The final mass is free, and the altitude for the turn is
50000 ft. The proposed two optimality-based control laws
i) B* = ay(t)/V and i) g* = a1 (t)/V + VaT+y?/az are
tested against the open-loop solutions. The reason for the
additional term in the optimality-based control law II will
become clear when the results are discussed.

As in the case of the minimum-time-to-climb problem,
eleven equally-spaced control points are employed. Fig. 5
shows the optimal flight profiles for the open-loop and
optimality-based control law I and II (OBCL-I, OBCL-
II). It is apparent that the optimal trajectories are nearly
identical. This comes as no surprise since the problem is
the same for all three cases except for the control approx-
imations. As a result, the optimal flight times are also
identical: t% = 253.3 sec.

Thus far, the proposed OBCL-1 and II perform as well
as the optimal open-loop solution assuming a perfect sys-

tem and no external disturbances. Athough there is no
theory to back-up our claim, we would like to show that
these optimality-based control laws also exhibit excellent
robustness with regard to initial state disturbances and
plant/aerodynamic modelling uncertainties. The next two
sections address the robustness issue.
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Figure 6: Trajectory comparisons with +5% initial veloc-
ity perturbation
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Presence of Initial State Disturbances

In this section, we investigate the robustness of each
control law in the presence of 1)+5% of initial velocity, ii)
+5° of initial heading angle, and iii) £1000 ft of initial
down- and cross-range distance perturbations. To save
space, only the plots for the initial velocity disturbances
are given as shown in Figs. 6 and 7. Table 1 shows the
final state values compared to the desired final states in
the presence of the other initial state disturbances.

The advantage of the correction term in OBCL-II now
becomes clear. In Fig. 6, note that the open-loop solution
out performs significantly OBCL-I. However, by adding
the correction term as in OBCL-II, it now performs bet-
ter, i.e., its robustness is enhanced which in turn allows
the perturbed trajectory to follow closely the nominal solu-
tion. This additional term involves down- and cross-range
as feedback states, and it allows OBCL-II to possess nat-
ural robustness. The intuitive justification for this natural
robustness is as follows. When the aircraft strays “out-

side” the nominal trajectory, the correction term increases
in value. This increases the bank angle which aids the
aircraft in returning to it nominal solution. The reverse is
true as shown in Fig. 7 in the presence of —5% initial veloc-
ity perturbation. In this case, the aircraft strays “inside”




Table 1: Final states values due to initial state disturbances

Optimality-based control law I, 1T Open-loop
Uncertainties Vi, ft Yy, deg | wp it | yg, It Vi, It | oy, deg | zf, £t | yy, 8
Nominal 1210.2 180 0 0 1210.2 ) 180 0 0
+5% init vel 1599.6, 1306.3 | 124.8, 190.4 | 42420, -877 | 166086, -6285| 1386.3 | 165.6 | -8493 | 42386
—5% init vel -, 1140.3 - ,168.2 - ,-938 -, 5881 | 1108.0 | 197.0 | 14207 | -36725
+5° heading 1210.2, 1210.2 | 185.0,185.0 | 0 , O 0, 0 1210.2 | 185.0 0 0
—5° heading 1210.2, 1210.2 | 176.0,175.0| 0 , O 0, 0 1210.2 | 175.0 0 0
+1000 ft dwn-rnge || 1210.2, 1205.7 | 180.0, 181.9 | 1000, 1067 0 ,-3400]f 1210.2 | 180.0 | 1000 0
—1000 ft dwn-rnge || 1210.2, 1215.6 | 180.0, 178.7 | -1000, -902 0 ,-3256| 1210.2 | 180.0 | -1000 0
+1000 ft crss-rnge |} 1210.2, 1209.1 ] 180.0, 180.1 | 0 , 672 1000, -113 |f 1210.2 | 180.0 0 1000
—1000 ft crss-rnge || 1210.2,1211.4 | 180.0,179.3 } 0 ,-672 | -1000, 100 | 1210.2 | 180.0 0 -1000

the nominal solution leading to smaller down- and cross-
range values. As a result, the correction term is smaller
which leads to a shallower bank angle to allow the aircraft
to return to its nominal solution. No trajectory is given for
the original optimality-based control law I in the presence
of —5% initial velocity perturbation because as the per-
turbed trajectory progresses, the velocity drops so much
that constant altitude flight cannot be maintained. This
again shows the significant contribution of the correction
term.

In Table 1, the values of the final states as a result
of the initial state disturbances are given. The perturba-
tions in the initial velocity state appear to result in the
most significant deviations from the nominal final states.
One reason for this is that velocity plays a major role in
the problem formulation; that is, it affects the dynamic
pressure, thrust, drag, and lift, all of which are pertinent
quantities in the equations of motion. The initial head-
ing angle perturbation does not affect the velocity, down-,
and cross-range final states for both the two proposed con-
trol laws and the open-loop solutions. It merely shifts the

final heading angle by the amount of the initial perturba-
tion. Similar effects can be seen in the final state of the
OBCL-I and open-loop solutions for initial perturbations
of the down- and cross-range, i.e., the perturbation affects
its own final states but not others. This is not true for
OBCL-IL Its final states are affected by these perturba-
tions. The reason for this occurrence lies in the structure
of the control law which includes down- and cross-range as
feedback states. Nonetheless, the deviations are small.

With Plant/Aerodynamic Modeling Uncertainties

Thus far, robustness is enhanced in the presence of
state disturbances. In this section, we investigate robust-
ness in the presence of plant/aerodynamic modelling un-
certainties. Only the OBCL-II will be tested against the
open-loop solution since OBCL-I has been shown not to
perform better than either of the other two. We assume
the following plant/aerodynamic modelling uncertainties:
i) actual thrust is 95% of maximum thrust, ii) actual spe-
cific fuel consumption is 5% more than the specified value
of 1600 s, iii) actual lift is 5% less than the available lift,
and iv) actual drag is 5% more than the original value.

In Fig. 8 , we show the robustness of our optimality-
based control law II due to these uncertainties, and in
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Fig. 9, the results for the open-loop case are given. From
these figures, it is clear that the proposed control law per-
forms far better than the open-loop solution. In Table 2,
we note that the average deviation of the final states of
the perturbed trajectories of OBCL-II from the nominal
trajectory are 78 ft/s for the velocity, 3° for heading an-
gle, 4613 ft for down-range, and 5319 ft for cross-range.
Except for the final velocity deviation, these values are
significantly lower than those for the open-loop solution of
62 ft/s, 8°, 8284 ft, and 18443 ft, respectively. The uncer-
tainty in drag appears to influence the trajectory most in
both cases. It is followed by thrust, lift, and specific fuel
consumption in order of importance.

Conclusions

This study demonstrates the potential of the applica-
tion of the “optimality-condition” to obtain optimality-
based control laws for real-time aircraft control. The pro-
posed control laws possess simplicity and yet retain most of
the information present in the original, more complex, op-
timality condition control laws. In general, these control
laws are nonlinear. In the minimum-time-to-turn prob-
lems, it was found that by including a “correction” term in
the proposed optimality-based control law, its robustness
is enhanced significantly in terms of meeting the specified
final state conditions in the presence of initial state dis-
turbances or plant/aerodynamic modelling uncertainties.
Without this term, the control law did not perform bet-
ter than the optimal open-loop control. This technique of
enhancing robustness has not been introduced previously,
and is first applied here. An important observation from
this study is that perturbations in the velocity produce
the biggest impact in the deviations from the nominal tra-
jectory. In the presence of plant/aerodynamics modelling
uncertainties, drag perturbations contribute most.
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Appendix I

Minimum-Time-To-Climb Problem

The governing equations of motion for the minimum-

time-to-climb problem (see Fig. 10 for nomenclature), as-

suming motion over a flat nonrotating earth, are:?*

mV Tcosa — D — mgsiny (14)
mV4y = Tsina+ L — mgcosy (15)
h = Vsiny (16)
& = Vcosy (1
Woo L (18)

cg
where V, v, h, z, and m are the velocity, flight path angle,
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Figure 10: Geometry and nomenclature for minimum-
time-to-climb problem

altitude, down-range, and aircraft mass, respectively. The
angle of attack, «, is the control.

The aerodynamic forces, lift (L) and drag (D), are
given by

¢SCL = ¢SCp,a
¢SCp = ¢S(Cp, +1Cr.a*)

(19)
(20)

L =
D p—
where g = 3p(h)V? is the dynamic pressure, S is the aero-
dynamic reference area, Cr, is the lift coefficient slope,
Cp, is the zero-lift drag coeflicient, and 7 is the efficiency
factor (0 € 7 < 1). In general Cra, Cp,, and 7 are func-
tions of Mach number. T is the maximum thrust. It de-
pends on speed, V, and altitude, h. A standard exponen-
tial atmosphere model is used, i.e.,*

(21)

where p, = 2.54 x 1073 slug/ft® and by = 2.73 x 10* ft.
The performance index to be minimizedis J = ff dt. Thus,
omitting the angle of attack inequality constraints and the
effects of angle of attack that come through the aerody-
namic drag and lift, the variational Hamiltonian is

Tcosa— D —mgsiny

Av
' ™m
Tsina+ L —mgcosy

mV
+ MVsingy + A Vcosy — /\mg (22)

+

Applying the optimality condition, we obtain

T T
H, = —)\U;n— sina + /\.,W cosa=0  (23)
Solving (23) explicitly for o, we get
—1_ ()
* _ 1 2l
a™(t) = tan (/\U(t)V(t)) (24)

From the structure of the above optimal control, we pro-




posed the following “optimality-based” control law

a(t)

#(Via(t) = ~;

(29)

Note that we have modified the structure of the angle
of attack control somewhat; that is, the arc tangent form
in the control law is omitted to avoid numerical sensitivity
since the velocity could become small in the optimization
process. The a(t) are then determined optimally by using
the nonlinear programming method SQP.

zero lift axis

Figure 11: Geometry and nomenclature for minimum-
time-to-turn problem

Appendix 11

Minimum-Time-To-Turn Problem

The standard point-mass equations of motion over a
flat, nonrotating earth are:?! (see Fig. 11 for geometry and
nomenclature)

mV = Tcosa—D (26)
mVip = (Tsina+ L)sinp 1
¢ = Vecosy (28)
g = Vsiny (29)
m = _z (30)

cg

where V, v, 2, y, and m are the velocity, heading angle,
down-range, cross range, and mass respectively. The bank
angle, u, is the control. The aerodynamic drag and lift are
D = ¢5(Cpo + 1Crac?) and L = ¢SCpqq, respectively. If
we assume small angle of attack, i.e.,cosa =1, sina =~ q,
and T'sin o < L, the angle of attack needed to maintain a
constant altitude turn, determined from the vertical force
balance (I'sina + L) cos g = myg, is

mgsec
—_— 31
qSCLa ( )

Using these assumptions and Eqn. (31), we can reduce
Eqns. (26) and (27) to

«

mV

¥

T—DO—DLsec2,u
gtanp
Vv

(32)
(33)
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where D, = Cpog¢S and Dy, = nm?g?/Cr,qS. The perfor-
mance index to be minimize is J = f§ dt. Before forming
the variational Hamiltonian, we would like to note that
the numerical method we use allow us to provide an upper
and lower limit on the bank angle. Thus, neglecting the
constraints on bank angle, the variational Hamiltonian is

T —D,— Dpsec?u
m

gtan
|4

+ A Vsing — )\mz
cg

Ay + Ay + AV cosyp

(34)

Applying the optimality condition, we obtain

2\, Dp sing g 1 _
Hy = - cos? 1ﬁVcosz’,uzo (35)

m
Solving Eqn. (35) explicitly for p, we get

Aymyg

-1
tan o DLV

(36)
(37)

w(t)
From the structure of the above optimal control, we pro-
pose the following two “optimality-based” control laws.

Optimality-based control law I

ag (t)
|4

E(Via(t)) = (38)

Optimality-based control law I

N Vet + 920 (39)

azg

a1(2)
\%

Note that we have modified the structure of the bank
angle control somewhat; that is, the arc tangent form in
the original optimal control is omitted mainly to avoid
numerical problem that might surface should bank angle
reaches 90°. The arc tangent structure may be regarded
as implicitly included in aq(¢). The mass may also be as-
sumed to be imbedded in a;(t) since we do not expect

p*(l‘, Y ‘/, al(t)a (12) =

large mass variation. For the second proposed control law,
we have added an additional term. This is equivalent to
adding kf(V, ¢, z,y, m) where k = 1/az and f(V,9,z,y,m)
J22(t) + y2(t). We shall show from the numerical re-
sults that this term allows OBCL-II to possess natural
robustness.




