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ABSTRACT

Recent development of two unsteady supersonic
methods for wing-body configurations are presented. These
methaods are the surface panel method (SPM) and the bundled
triplet method (BTM). Both are based on the Harmonic
Gradient Model, Extensive comparisons of computed results
obtained from these two methods show good correlations with
existing data. Cases compared range from the NACA and the
NASA wing-body configurations to the NLR/F-5 wing with
extemal stores to cylindrical flutter and to the Lockheed generic
fighter (LGF). A two-model study of the LGF shows the
insufficiency of the lifting surface model for a complete aircraft
representation, which warrants a realistic wing-body model for
accurate predictions of stability derivatives and flutter.

A computer program has been developed to integrate the
use of the SPM and the BTM efficiently so that a complete
aircraft with external stores can be treated effectively. For
supersonic acroelastic analyses, the computer program gives
results that are accurate and cost effective, thus rendering it very
favorable for industry applications.

INTRODUCTION

After over four decades of supersonic flight, it appears
that few satisfactory methods exist for accurate predictions of
supersonic unsteady airloads for realistic wing-body
configurations, For computations of wing-body interference
aerodynamics, the Doublet Lattice method!2 has been
sufficiently developed to account for subsonic aeroelastic
applications. By contrast, the development of its supersonic
counterpart is restricted to the wing-alone3-10 or the body-
alone!1-13 configurations thus far.

Despite the importance of supersonic wing-body
aerodynamics, only limited development can be found in the
past. Earlier analytical work of Ward and Nielsonl4.15 for
steady flow and of Miles, Adam-Sears and Ashley, et al.16-18
for unsteady flow have laid theoretical foundations in this area.
Computational methods for the wing-body combinations for the
steady linear subsonic/supersonic aerodynamics has been
adequately developed by Woodward (USSAERO19) and the
Boeing group (PANAIR20). For unsteady flow computations, a
low-order panel method for wing-body combinations has been
previously formulated by Morino et al.;2! however, the paper
did not provide sufficient validation to prove the method's
applicability.

Apart from the aeroelastic problems on the airframe
iteself, the problem of the wing-external store interaction is of no
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less importance. During the maneuver phase of a fighter
aircraft, the latter type of interaction will change the unsteady
airload and can also alter the flutter characteristics of the wing-
tail drastically. In particular, problems such as underwing
pylon/store and tip missile/wing interference are among the more
critical problems in aircraft flutter. Although some progress has

been made in this area,22:23 the methods employed are not
adequate to handle the supersonic aeroelastic problems.

In this paper, we present our recent development of two
supersonic panel methods for unsteady treatments of arbitrary
wing-body configurations including external-store systems.
Both methods are based on our developed Harmonic Gradient
model (HGM) for lifting surfaces? and for elastic bodies!1-13,
The first method uses the surface source panels for body
representation and doublet panels for lifting surface
representation. This method is termed the surface panel method
(SPM),24 which can be considered as the unsteady
generalization of the USSAERO method, with the exception of
the wing thickness effect. The second method uses a bundle of
lines with low-order singularity to replace the SPM for handling
sufficiently slender bodies. This method is termed the Bundled
Triplet Method (BTM)?25 because lines of combined sources and
doublets are employed to account for the generalized asymmetric
bodies. The merit of BTM is that it renders no numerical
leakage on the body surface and hence the solutions obtained
asymptote to the slender body limit. Due to the nature of surface
panel formulation, the SPM could not yield the slender body
limit but it has the advantage of ease of applications to arbitrary
wing-body configurations. At any rate, both methods are
completely general in terms of the input wing-body geometry,
mode shape and reduced frequency. Hence, they could
complement each other effectively for aerodynamic and flutter
calculations for a complete aircraft including external stores.

In what follows, extensive comparison of our computed
results show good correlation with existing data which validate
these methods. Cases of comparison range from asymmetric
bodies to NLR/F-5 wing with external stores and to Lockheed
generic fighters.

WING-BODY FORMULATION

The perturbed supersonic potential for a wing-body can
be expressed as

o =J' J.oHdédanJ‘J‘X%%—dédn )
Ag Ay
where ¢ and A are the surface source strength and the surface

doublet strength on the body surface, Ap and the wing surface
Aw, respectively. The Kernel function here is defined as
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where p = kM/B, k is the reduced frequency, M is the
freestream Mach number, R is the hyperbolic distance

between the singularity point x and the field point xgand & = xq
- X.

On the wing-body surface, the unsteady source and
doublet strengths can be determined according to the tangency

condition,
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where Fw = hwy + ik hw is the conventional thin wing
downwash, and Fg = Fp(n, ug, hp; kM, 1) is a complicated
body downwash formula involving the mean flow velocity ug,

body thickness T, etc.11 The inverse of the square matrix on the

LHS of Eq (3) is the Aerodynamic Influence Coefficient matrix,
known as AIC.
The pressure coefficients for the body reads
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is the steady mean flow pressure coefficient and Cp, = - 28] is
the unsteady flow pressure coefficient. Explicit expression of
So = Sp(u; M, ¥) and J; = J|(R, g, ug, Uy, k) can be found in

Ref. 12, where v is the specific heat ratio. Decoupled from the
mean flow, the unsteady pressure coefficient for thin wings is
simply:
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HARMONIC GRADIENT METHOD

Space launch vehicles such as Saturn IB, where the body
length is large, are required to scale up the reduced frequency
range over 1.0. (See Refs. 12 and 13). The composite wings
or tails of aircraft also have higher natural frequencies than those
of the isotropic counterpart. To date, accurate aerodynamic
prediction in the higher reduced frequency range is of particular
concern for aeroelastic analysis.

To achieve computation accuracy and effectiveness in the
high-reduced frequency and/or low Mach number domains, it is
essential to render the source and the doublet solutions
uniformly valid in the complete k-and M domain. This can be
simply achieved by modeling the source/doublet solutions to
remain spatially harmonic in the mean flow direction. In so

doing, the panel size Aj is regulated and made compatible with
the compressible reduced frequency p. This is known as the
Harmgnic Gradient (H-G) Model established in Refs. 11, 12
and 13.

Application of the H-G model to Eq (1) amounts to

stating that in the interval A&}
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o = a(l -e'“‘g)

for the source panel and

A= (bE+d) it

for the doublet panel (see Figure 1).

Owing to this model, optimal number of panels can be
achieved, and yet it is least affected by the given reduced
frequency and the Mach number.

Since the first publication of the Harmonic Gradient
Method (HGM) for lifting surfaces in 1983, the method has
been further advanced to a version based on an acceleration
potential formulation. In fact, it is this advanced version that
provides the basis for the present wing-body scheme.
Throughout the last five years, this advanced version of HGM
has been improved several times, properly documented and
made compatible with NASTRAN for flutter applications. To
date, the improved version of the documented code of HGM is
known as the ZONAS1 code among the industrial users.
However, in what follows, we shall refer to the whole improved
work as HGM for simplicity.

(5a)

(5b)

BUNDLED TRIPLET METHOD

The surface panel method (SPM) described in the
formulation has been fully developed for arbitrary wing-body
configurations in Ref. 25 (see Fig. 2). This work can be
considered as the generalization of Woodward's work
(USSAERO19) into the unsteady domain,

However, during the course of this development we
found that the SPM in general would not provide a correct
numerical limit when the body thickness approaches that of a

slender body, say T < 5%. This would prevent us from
accurate treatments of slender missiles or stores. Furthermore,
when multiple underwing stores are considered, the total panel
number for SPM would increase substantially. 1t is realized that
some sort of line doublet method must be developed in parallel
so that it will complement SPM for acrodynamic computations
of aircraft with stores.

We have now developed a new method using a bundle of
combined low-order singularities to replace the surface panel
method for handling sufficiently slender bodies. This method is
termed Bundled Triplet Method (BTM24). (It should be noted
that the BTM is equally capable of handling both thick or slender
bodies). To be exact, the low-order singularities used are lines
of sources and doublets. The generalized triplet potential is thus
defined as

Op = j a, HdE +U bm“a‘a'l;.l dfs) cos6p,
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where ap, is the line source strength, and by, and ¢, are the line

doublet strengths in the sector 8, < 0 < 0y,,1 (see Fig. 2).
The discretized unknown strengths 2y, bim and cjy are related

to the triplet potential ¢y, by a least square matrix. In so doing,

O;m can be solved through the tangency conditions.

When ay, and cyy, are set to zero, BTM is reduced to the
line doublet method (also known as the HPP method, (see Refs.
11 and 12 and Figs. 3 and 4) as a special case. Hence, BTM
can effectively handle axisymmetric as well as asymmetric
bodies of arbitrary shapes including slope discontinuities. When



in combined use with SPM, it is seen that BTM can be equally
applicable to wing-body combinations (Fig. 5). In terms of
computing time, BTM could be many times faster than the SPM;
also, less panel number is required for BTM for the same body.
In the case of a smoothed axisymmetric body, for example, only
twenty panels are needed for HPP whereas five to ten times
more panels are needed for SPM.

COMPUTED RESULTS

The results presented herein are selected from various
sources from our computed data file. The legends used in the
figures and for which the method is used therefore require
clarification. The list below is provided to the reader for this
purpose.

Method Reference Figures
HGM (ZONAS1) 9 6, 7-11, 24
BT™™ 24 12, 14-18, 19
SPM 25 13, 20, 21, 22

Nonplanar Canard/Wing Configuration

Figure 6 presents the lifting distributions for a
canard/wing configuration at various span locations. Due to the
low value of the given Mach number, M = 1.145891

(corresponding to Mach angle p = 60°), all edges are subsonic
except the wing trailing edge. As can be seen in Fig. 6, good
agreement is found in all spanwise stations between the present
results and those obtained by USSAERO and both methods
capture the subsonic (near sonic) trailing edge and supersonic
trailing edge behavior for canard and wing, respectively.

Lockheed Generic Fighter

Figure 7 shows the Lockheed generic fighter (LGF)
configuration together with its local and global coordinates.
Figure 8 shows the panel arrangement for the LGF in which
four subsystems are defined according to the ZONAS51 code. A
total of 228 panels are used to model this configuration. It is
noted that the fuselage of LGF is being modeled by a lifting
surface (Subsystem 1).

Figures 9a, 10a and 1la present the steady lifting

pressure distributions ACp at M = 1.2 as computed by HGM
and USSAERO on the modeled fuselage, the canard, and the
wing, and the fin, respectively. While all leading edges are
subsonic, the canard has a nearly-sonic subsonic trailing edge,
both the wing and the fin have supersonic trailing edges. Good
agreement with USSAERO is found for all the spanwise
sections considered and both methods confirm the proper edge
behaviors.

Unsteady pressure distributions, real and imaginary
ACy's of all subsystems are shown in Figs. 9b, 10b and 11b.
The complete aircraft is pitching about a pitching axis located at
51.65% of the fuselage length aft the apex at a reduced
frequency of 1.0.

Asymmetric Bodies

. The BTM is used to compute all cases in this category,
In Figs. 12a and 12b, the steady pressure distributions are
presented for two conical bodies with considerable asymmetry at
Mach number M = 2.0 and at mean angle of attack o = 0°.

Since the flowfields are conical and symmetrical about
the meridian plane, only the circumferential C, pressures on half
of the body are presented (0 < 8 < 180°). Because of the
steeper variation in the given body curvature of Fig. 12b, a
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bundie of 36 triplet lines is distributed in equal circumferential
intervals for a full body. The body geometry in Fig., 12a has
relatively smooth curvature variations; hence, only 18 triplet
lines are used to account for a full body. It can be seen that the
present computed result is in good agreement with Devan's
results using a finite difference method?6 and the USSAERO
results.19 Typically, we use 40 panels in the circumferential
direction in the USSAERO program. In the x-direction, 5
equally spaced segments are used for both the USSAERO and
the BTM Codes. For the latter this amounts to a total of 100 to
200 panels and equal numbers of control points to be evaluated.
Because the evaluation scheme of the present kernel is much
simpler, the CPU time required is about one tenth of that needed
in the USSAERO code.

Elliptic Cones

Fig. 13 presented below is computed using SPM
whereas Figs. 14 through 18 are computed by BTM. Fig. 13
presents pressure distribution of an elliptic cone (o = 6°) at
steady mean angles of attack, ag = 0°, 3° and 6°. The present
computed results are compared with those of USTORE code,27
USSAERO code,19 and the measured data.28 It should be noted
that the present method practically recovers the results of
USSAERO code. This is expected since the present method is
based on the surface-panel method (SPM) which contains the
USSAERO formulation as a special case for k = 0. A parallel
checking on the same case has been conducted using the line-
doublet method (HPP method!2). Our preliminary finding
indicates that the present SPM is superior to HPP method when
ellipticity ratio, a/b is below 1/3.

In Figs. 14, 15 and 16, a series of studies on the effects
of ellipticity ratio, a/b (defined as the minor axis to major axis
ratio), on the static and dynamic stability derivatives are
presented for a family of elliptic cones. The pitching axis is
placed at the cone apex and a freestream Mach number M = 3.0
is given for all cases. Both Cn, and CMm, decrease with
increasing ellipticity. Good agreement is found in Figs. 14 and
15 between the present results and those of USSAERO. This
trend is expected since reducing the ellipticity ratio implies the
elliptic cone is further collapsed into a low-aspect-ratio delta
wing configuration. The damping-in-pitch normal force and
moment coefficient versus ellipticity ratio are shown in Fig. 16.
whereas no available data are found for comparison. When the
pitching axis is placed at apex, the present results indicate that a
delta wing-like body (a < b) tends to be more unstable than a
circular cone (a = b) statically as well as dynamically.

In Figs. 17 and 18, the in-phase and the out-of-phase
pressure coefficients for the same elliptic cone family in first-
mode bending oscillations at a reduced frequency k = 1.0 are
shown. In Fig. 17, the unsteady pressures are plotted along the

x-axis in the meridian plane (6 = 0) whereas in Fig. 18, along

the azimuthal angle 0 at the base section (x = 1). When the
ellipticity ratio approaches one, all results check with those
obtained by the HPP method for a right circular cone.13 While
the dependency on ellipticity ratio is relatively insensitive for the
pressures along the x-axis, strong dependency is shown along
the azimuthal direction.

Cylindrical Panel Flutter

In order to validate the BTM method in the high-
frequency domain, supersonic cylindrical flutter cases (Fig. 19)
are selected for comparison with existing theories (Refs. 29 and
30).

A bundle of triplet lines are arranged according to a
cosine distribution both in the circumferential (0 < 8 < 2%) and
in the axial directions (0 < x < 1). The cylindrical panel is first
evenly divided into n intervals in the circumferential direction,
say n = 5. Within each interval, eight control points are used,



given a total of 40 control points. In the axial direction, 25
points are used forall n's. The real and imaginary part of the
generalized forces on the cylindrical panel are presented in Figs.
9b and 9c for the freestream Mach number M, = V2 and the
reduced frequencies k = 0 and 1.0.

It is seen that good agreement is found between the
present results in terms of generalized forces Q;q and those of
Dowell and Widnall29 and of Platzer et al.30 up to n = 5 for both
reduced frequencies.

Steady Wing-Body Interference

Longitudinal loadings (C, d/dp,,) over a 10% thick
body of revolution with and without a tapered wing (AR = 4.0
and Tapered Ratio = 0.6) are presented in Fig, 20.

The force coefficient C,, is defined as

n
CG-L[cam
0

where d and dpp,, represent the diameter and maximum diameter
of the body, respectively.

No interference effect is noted in the first 40% of the
body length, as expected. A bump-like loading along 40% to
85% body length is observed as a result of the presence of the
tapered wing. In addition, lifting pressure distribution along the
wing chord is also plotted at the 20% semi-spanwise location,
Good agreement is found in the present computed results with
those measured in Ref 31. Thus, the steady aerodynamic option
of the Surface Panel method is validated by means of this
present interference example.

NACA Wing-Body

Fig. 21b presents the computed lift curve slopes, CL o

for the body only, wing only and the wing-body cases. It is
seen that the wing only case (a delta wing as shown in Fig. 21a)
produces the highest lift slope as expected, whereas, in contrast,
the body only case produces relatively insignificant lift slope
throughout the Mach number range considered. Notice that the
present Cp,, value is based on the wing surface area. Typical

CL, for bodies uses the based area. A conversion formula
reads:
Wing Area
(CLu)present = | Body Base Area (Cl_u)body

The present wing-body result tends to underpredict the
CL,, slightly. However, the damping-in-pitch moments at the

pitching axis location 0.35 ¢ and 0.45 c, as shown in Figs. 21¢
and 21d, indicate slight overprediction of our wing-body results,
while the wing-only results are in better agreement with the
measured data.

. It should be noted that the slight overprediction of the
damping moments by the present method in comparison with the
measured data could be subject to a number of factors. These
include the aeroelastic effect of the wind tunnel model as well as
the induced viscous effects as pointed out previously in Ref. 32.

Other computed cases of delta-wing body, unswept- and
swept- wing body combinations are also found in good
agreement with the measured data. These comparisons can be
found in Refs. 24 and 25, in which the computations were
performed using SPM and BTM respectively.

NLR Underwing Store

In Fig. 22a, a NLR wind-tunnel test configuration
constructed with a F-5 wing plus an underwing store is modeled
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by 112 body panels representing the missile body, 72 wing
panels the F-5 wing, 6 panels the pylon, 10 panels the launcher,
and 24 panels the four aft fins. The complete configuration is in
pitching oscillation about 50% root chord at a circular frequency

= 20 Hertz and at freestream Mach number M = 1.35.
Figure 22b shows the computed in-phase and the out-of-

phase unsteady pressure distributions (one-half of the real AC,

and imaginary ACp, respectively) in three spanwise locations for
a clean wing and for the same wing with an underwing-store.
The NLR measured data for the latter are also presented here for
comparison.33 In the outboard spanwise location, up to 10%

difference in the computed ACp's appear to be unsmoothed,
which could be caused by the uncertainties occurring in the test.

The computed imaginary ACp's in general show a close trend to
that obtained by the measurement.

In Fig. 22c¢, the integrated spanwise unsteady normal
forces and pitching moments along the F-5 wing under the
influence of the complete underwing store system are plotted
against those of the clean wing case according to the computed
results and the test data.

The unsteady force and moment coefficients in this
figure are defined as:

The sectional normal force:

1

1
C,i=+ J' AC,d (x/c)
6
The sectional pitching moment:

1
Coi = 2 J' A C, (x/c - 0.25) d (x/c)
0

where c is the local chord length.

It is seen that the computed forces and moments predict
the same trend as the measured data showing a finite
discontinuity across the pylon location. The computed results
tend to overestimate the in-phase forces and moments and
underestimate the out-of-phase forces and moments in
comparison with the measured data.

However, these discrepancies may be caused by the
uncertainties in the measured unsteady data as mentioned in Ref.
33. Meanwhile NLR also provided the measured quasi-steady
data, which is supposedly more reliable for the in-phase forces.
Better agreement in trend between the quasi-steady data and the
computed results is found for this case.

NLR Wing-with-Tip Missile

In Fig. 23a another NLR wind-tunnel test configuration
constructed with F-5 wing with tip missile is modeled by 72
wing panels for the F-5 wing, 14 panels for the pylon, 16 panels
for the four canard fins, 24 panels for the four aft fins, and 112
body panels for the missile body. This configuration was tested
under the same conditions as those provided for the NLR
Underwing Store cases.

Similar to Fig. 22b, the computed results of unsteady

pressure distributions ACps are plotted, for a clean wing and for
the same wing with tip-missiles, against three spanwise
locations. It is seen that at the outboard location (97.1%), the
real ACp, for the wing with tip-missile exceeds twice that of the
clean wing value. As expected the tip-missile influence on the
wing pressure gradually lessens as the spanwise location
approaches to 18.1% The measured real ACp's in the present

case also appear to be unsmoothed. However, the present
results predict the same trend as that obtained by



measurement.33 Overall, the local influence of the tip-missile on
the wing pressure is substantial as compared with that of the
underwing store on the wing.

The unsteady spanwise normal forms and pitching
moments for a clean F-5 wing and the complete Wing-with-tip
Missile are plotted along the semispan in Fig. 23c.

The results obtained for the clean wing and the Wing-
with-tip Missile cases depart from each other at 60% semi-span
toward the wing tip. This is expected since the influence domain
of the tip missile to the wing is bounded by the forward Mach
cone emanating from the missile apex.

Similar to Fig. 22¢, the computed results in the present
case tend to overpredict the in-phase forces and moments and
underpredict the out-of-phase forces and moments in
comparison with the measured data. Again, these discrepancies
may be caused by the uncertainties in the measurement as
mentioned in Ref. 33. Better agreement in trends can be
observed between the more reliable NLR quasi-steady data and
the present results.

Wing Flutter Study

Flutter chafacteristics of a swept delta (swept angle A =

70°) mounted on a body of revolution has been studied by
NASA Langley Research Center using the HGM method
(ZONAS1 Code). As shown in Figs. 24a and 24b, the body is
assumed to be rigid and flexible for cases A and B, respectively.
Seven modes on the wing are assumed for case A, whereas three
free-free modes on the body and four modes on the wing are
assumed for case B. All wing modes are selected from the
dominant flutter modes used by Hanson and Levey.34

Cases at four Mach numbers (M = .8, 1.2, 2.5, 3.0) are
computed as shown in Figs. 24c¢ and 244 for the rigid body and
the flexible body cases, respectively. Three supersonic codes
are used for computations; these are indicated by PISTON
(piston theory, e.g., Ref. 35), ACUNN (Atlee Cunningham,
Refs. 3 and 4) and ZONA (actually ZONAS1/HGM, Ref. 9). In
Fig. 24c, it is seen that ZONA compared well with those of
PISTON at two higher Mach numbers 2.5 and 3.0 and with
ACUNN at M = 1.2, while ACUNN over- and underestimates
these values at the higher Mach numbers. On the other hand, the
test results by Hanson and Levey shown from M = .8 to 1.2 are
obtained under a different condition where the wing under
consideration is mounted on a flat wing tunnel wall. The
verification of the test data therefore awaits further generation of
computed results.

Flutter points obtained by three codes agree well in Fig.
244 for the flexible body case. Note that ZONA generated
consistently the most conservative boundary. All codes predict a
jump in the flutter boundaries at M = 2.5. Presumably, it is
caused by the mechanism of flutter-mode switching at this Mach
number.

Several simplifications are noted for these calculations.
First, all dynamic pressures of flutter Q (in psi) are computed
based on a fixed speed of sound, namely a = 1000 ft/sec.
Second, the wing-body effects are included only structurally but
not aerodynamically in these studies, since the three codes used
are confined to treatments of lifting surfaces only.

Wing-Body Model of LGF

Here, the case of the Lockheed Generic Fighter (LGF) is
revisited. In constrast to the lifting-surface model (Model A)
presented earlier, a realistic wing-body model (Model B) has
been presently developed according to the SPM in Ref. 24. In
Fig. 25, Model A is basically the same configuration shown in
Figs. 7 and 8; Model B is constructed by replacing the lifting-
surface "fuselage” with an elliptic cone-cylinder body of
equivalent width and one-quarter of the width as its height.

In Tables 1a, 1b and lc, the stability derivatives are
computed for three Mach numbers (M = 1.2, 1.35 and 1.5) for
the configurations performing rigid pitching oscillations. A
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breakdown on each of the configuration components is also
included. The stability derivatives therein are defined as
follows:

_ Re@Q))
L.~ §

Re(Q,,)
My ST
Im@Q,,)
Lt %" TSk

Im@Q,,)
Stk

C

CM& + CMq =
where S is the reference area S = 187.
€ is the mean aerodynamic chordT = 10.377
= -%J—c- is the reduced frequency,

k is taken as 0.05 in the present analysis.

Q12,22 are the 12 and 22 components of the
computed 2 x 2 generalized forces matrix with two rigid body
modes. The first mode is the plunging mode and the second is
the pitching mode about the pitching axis located at

% ~ 1.67668.
Several observations can be made from the obtained

stability derivatives. First,atM = 1.5 (Table 1c) CL, of Model
B (CLy)B = 3.029, compares well with the test value (CLg)test =
3.048. The lifting surface model yields a value of (CLy)a =

3.376, indicating more than 10% lift is generated excessively
due to an inappropriate modeling of the fuselage. Second,
longer damping moment is obtained for Model B at a lower
Mach number (M = 1.2) whereas it levels off to a slightly lower
value than those of Model A at M = 1.35 and 1.5, In particular,
the damping moments for the fin show a loss of damping atM =
1.2 for Model B, but a negative damping value for Model A, i.e.
Cmgy + CMq) A = - .379. Apparently, the lifting surface model
totally fails to predict such an instability of the fin,

These observations indicate that a realistic model such as
Model B is mandatory for accurate prediction of unsteady forces
and moments. It is expected that the lifting surface model would
be unsatisfactory for this purpose as well as for that of flutter
predictions. ‘

CONCLUSION

Two methods for unsteady supersonic computations of
wing-body configurations are presented. It is suggested that the
surface panel method (SPM) and the bundled triplet method
(BTM) should be in combined use for effective predictions of
unsteady aerodynamics for complex aircraft configurations.
Extensive comparison of our computed results show good
correlation with existing data which validate our methods.
Comparison examples include asymmetric bodies, NACA Wing-

-body NLR/F-5 wing with external stores and Lockheed Generic

Fighter (LGF) configurations. ) )

Two-model study of the LGF shows the insufficiency of
the lifting surface model for aircraft which warrants a realistic
wing-body representation for accurate flutter predictions.

In view of the present development, we believe that an
integrated three-dimensional unsteady supersonic method for
arbitrary wing-body configurations is finally at hand. It is
apparent that the present method could pair with the Doublet
Lattice method to perform unified supersonic/subsonic analyses
for realistic aircraft.

A production computer code has also been developed
whose capabilities include: handling arbitrary configurations



with multiple external stores, aircraft components defined in
subsystems, line/surface spline logics, full frequency range
input, automated paneling scheme, etc. The program is
designed to handle a wide range of aeroelastic computations.
With these features, the program provides an accurate and
effective tool for supersonic aeroelastic analyses which suggest
immediate industrial applications.
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LOCAL COORDINATES
(Zero Dihedral)

X Y
Fuselage Sta. Buttline

Al 0
Bl 3.8 1.05
[~} 9.328 1.05
D; 13.183 N
Bl 23,983 10.49
n 28.779 10.49
61 2.7 3.1
3 33.686 3.1
11 33.686 0.0
Canard
A2 0.0 0.0
32 7,992 5,34
C2 8.815 5.344
D2 5.22¢ 0.0
Pin
A3 0.0 0.0
B3 5.838 6.413
[ox] 1.188 6.413
D3 4.734 0.0

GLOBAL COORDINATES OF ORIGINS OF LOCAL AXES AND SURPACE ATTITUDES

X \ z Dihedral Incidence
Fuselage-Ving 0.0 0.0 <0.14 0.0 Deg 0.0 Deg
Canard 3.508 0.0 0.56 0.0 9.0
Fin 27.394 1,926 .0.14 70.% 0.0
Fig. 7 Lockheed Generic Fighter Configuration.
WING
SUBSYSTEM 2
Sy, v
BSYSTEM 3
FUSELAGE FIN
SUBSYSTEM ] SUBSYSTEM 4

Fig. 8 Panel Arrangement for the LGF Configuration.
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Fig. 17 In-phase and Out-of-phase Pressure Coefficient for Elliptic Cones in First
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Fig. 21¢c Damping-in-pitch Moment
Coefficients for an AR = 2.0
Wing-Body Combinations about
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Fig. 22a Paneling Model for the Under-Wing Store Configuration:
Northrop F-5 Wing plus Under-Wing Pylon, Launcher,
Missile Body with Fore and Aft Fins.
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Fig. 22b Unsteady Pressure Distributions of the Clean
F-5 Wing and the Under-Wing Store Configuration
at Mo, = 1.35 and Reduced Frequency k = 0.1.
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Fig. 22¢ Unsteady Spanwise Normal Force and Pitching Moment for
the Clean F-5 Wing and the Under-Wing Store Configuration
at Mo, = 1.35 and Reduced Frequency k = 0.1.
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Fig. 23a Paneling Model for the Wing with the Tip Missile
Configuration: Northrop F-5 Wing plus Launcher,
Missile Body with Fore and Aft Fins.
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Fig. 23b Unsteady Pressure Distributions of the Clean F-§ Wing
and the Complete Wing-with-Tip Missile Configuration
at Moo = 1.35 and Reduced Frequency k = 0.1.
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A. Lifting Surfaces

B. Wing-Body

7
-t Y
FEEP 7T

=7

-

Fig. 25 (a) Model A of LGF: Lifting Surface Model.
(b) Model B of LGF: Wing-Body Model.

TABLE 1. Stability Derivative Comparisons for Models A and B at LGF

() M=12
Cle ChMo, Clg * Clg ChMg * Clg
A B A B A B A B
>Fuselage .949 919 - -.242 .046 2417 4.438  -1.462 -4.576
Wing 1.839 1.691 -.894 -815 1.189 1.235 -.597 -.673
Canard 715 630 .600 506 -.780 -.566 -.663 -.466
Fin 139 274 -.192 -390 285 -1.083 -379 1.600
Total 3.640  3.440 -728  -.651 3.112 4.025 -3.102 -4.126
(b) M =135
CLa CM, CrLg +CLy CM, +CLqg
A B A B A B A B
Fuselage 948 .966 -239 -.288 2201 1796 -1.432 -1.343
Wing 1.783 1.697 -.838 -.802 .908 .993 -.523 -.584
Canard .646 593 .543 485 -.693 -574 -.591 -475
Fin 121 123 -.167 -170 27 .104 -.359 -.142
Total 3.497  3.383 -702 -773 2687 2318 -2905 -2.548
(c) M=1.50
CLy CmMy Crg+ % CMy + C[_,q
A B A B A B A B
Fuselage 939 .655 -236  -.012 1.982 1503 -1372 -1.337
Wing 1.745 1.705 -.818 -.828 547 604 -350  -.347
Canard .593 560 .501 460 -637 -554 -.547  -.461
Fin .101 .107 -.140  -.148 247 124 -.327 -.170
Total 3.376 ~ 3.029 -.694  -.527 2.139° 1.668 -2.597 -2.319
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