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Abstract

Results of a theoretical and experimen-
tal study on the buckling and postbuckling
behaviour of curved carbon fibre rein-
forced plastic (CFPR) panels subjected to
shear loading are presented. The theore-
tical investigations were performed using
a newly developed nonlinear finite element
computer program. This program is capable
of calculating linear buckling loads and
nonlinear postbuckling behaviour includ- .
ing snap-through and material failure.
Numerical results are presented showing
the effect of curvature, boundary condi-
tlons and initial geometric imperfections
on the buckling and postbuckling behav-
iour. To verify the applied numerical
method additional tests were carried out.
Tpe experimental results were compared
with theoretical predictions. The compar-
ison revealed a reasonably good correla-
tion between theory and experiment.

1. Introduction

Weight saving is one of the most impor-
tant requirements in aircraft and space-
craft structural design. One way to re-
duce structural weight is the use of new
high strength lightweight materials like
carbon fibre reinforced plastics (CFRP).
In the case of thinwalled primary struc-
tures further weight savings can be ob-
tained using their postbuckling strength.
Typical examples are shear.loaded fuselage
panels which have a considerable load
bearing capacity din the postbuckling
range. Essential requirements for the
utilization of existing postbuckling
strength are the understanding of the
instability phenomenons and informations
about the limit lcad. Thus, theoretical
investigations are necessary taking into
account the effects of large deformation
and material failure.

The buckling and postbuckling behav-
iour of curved composite panels under
compression and of composite plates under
shear load has been examined in a consi-
derable number of publications (e.g. re-
ferences 1.2.3 ), whereas only few papers
relate to curved shear panels. Most of
them deal with the analysis of the linear
buckling load (e.g. ref.% )., Only one
theoretical study of the postbuckling be-
haviour has been presented so far5 . In
this paper HUI and DU examined the ini-
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tial postbuckling behaviour and the imper-
fection~-sensitivity of infinitly long cy-
lindrical composite panels. Experimental
investigations were conducted by WILKINS
and OLSON® . A CFRP-cylinder consisting of
four curved panels was tested. The load
was applied by torsion. As the collaps
load of the panels exceeded only slightly
the buckling load, no informations about
the behaviour in the deep postbuckling
range were obtained. Theoretical studies
on shear panels considering material fail-
ure in the postbuckling range are not
known,

The objective of this paper is to exa~
mine the buckling and postbuckling behav-
iour of cylindrical CFRP panels subjected
to shear loading both theoretically and
experimentally. A numerical method based
on a mixed finite element model is pre-
sented. It is capable of calculating a
nonlinear load~deformation path in the
postbuckling range including bifurcation
and snap-through, detecting material fail-
ure, analysing-the damage accumulation,
and determining the collapse load. As ex-
amples, a series of computations have been
carried out for curved panels having dif-
ferent curvature, different initial im-
perfections, and different boundary con-
ditions. In addition, results of experimen-
tal investigations are presented and com=-
pared with theoretical predictions.

2. Theoretical Study

Numerical method

In this study the buckling and post-
puckling analysis of laminated panels
(see Fig.1) is based on a nonlinear shell
theory of the Kirchhoff-Love type ' . The
applied theory is valid for thin deep
shells subjected to large deformations
but only moderate rotations. A total La-
grangian formulation is used i.e., the
state of the deformed panel is expressed
in terms of the initial state. The nonlin-
ear differential equations of the shell
theory are transformed into a set_o? alge-
braic equations by means of the finite
element method (FEM)8. A mixed variational
principle’ is used to derive a cylindrical
shell element. The major advantage of the
used principle is that simple structured
ejement matrices are obtained and only
¢P-continuity is required? ,
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Figure 1. Cylindrical panel: geometry,
displacements, resultant stresg-
ses and moments.

. For a deformed cylindrical panel the
mixed principle reads
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containing the material properties. The
indices aB,p,A running from 1 to 2
and i running from 1 to 3 indicate the
direction of the mechanical vector quan-
tities (see Fig.1). 6A is the virtual work
and F the middle surface of the undeformed
panel. The vector u contains the displace-
ments u; of the middle surface and § the
the conservative external loads pi . The
state of stress in the panel is defined by
the in-plane stress resultants n%} and the
moments m®R 10, They are Piola-Kirchhoff
quqntlties of the 2. kind. The relation- .
ship between strains and displacements is
defined by the nonlinear operator matrix D:
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9y indicates differentiation with respect
to % . o, are the membran strains and By
the flexural curvatures. The operators 0
and Dy are valid for large deformations
with moderate rotations of the normals

to the middle surface. The matrix ( con-
tains the stiffness properties of a gener-
al laminate. The inplanek coug&ing, and
bending stiffnesses CpBPA, CxPPA "ang
(g®P9N are determined using the classiecal
laminate theory
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E2P?X are the moduli of the single layer
"m"., They depend upon the type of material
and the fibre orientation & In case of
nonlinear material properties (e.g. lami-
na failure), E§POM and C are also func-
tions of the lamina stresses and strains.

relations
are sub-~

Using the strain-displacement
(2), the strains in equation (1)
stituted by the displacements:

GA =

5f(d'0u-1d C"'a)er- focpdr <0 . (1)
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Now the mixed variational principle has
the stress resultants n®" | the moments
m&P | and the displacements u; of the

middle surface as unknown variables.

As the problem described by equation
(4) is highly nonlinear and pathdependend,
an incremental solution strategy is re-
quired. In order to obtain an incremental
formulation, two different states of de-
formation are introduced. In the fundamen-
tal state, denoted by the index L , the
static and kinematic variables of the de-
formed panel are known. Applying a load
increment Af the adjacent state (index L+1)
is obtained. The variables of the adjacent
state can be expressed as

g =lg + ag

(5)
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with the unknown increments ag and au .,



Substituting equation (5) in (%) the in-
cremental virtual work

§oA = 6'a - 5'a (6)

is obtained. Transformed in a symmetric
matrix form the incremental mixed varia-
tional principle reads

5aA = IBA;T(AE+A_P ¢AG)Ang-I6A§TAEdF =0 (7)
F F
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The operator matrix Ap represents the
linear elastic virtual work and Ap the
influence of material nonlinearities. The
geometric nonlinear operator Ag contains
nonlinear terms of the stresses !g and
displacements 'y of the fundamental state.

In order to obtain a set of algebraic
equations from (7), the panel is divided
into finite shell elements. For an arbi-
trary element (e) the incremental varia-
bles az are approximated by

AE(e) - QA"" (8)

where @ contains interpolation functions
and 22®  the kinematic and static varia-
bles of the nodal points. As the opera-
tors in (7) contain only first order de-
rivatives with respect to the coordinates
$% , linear interpolation functions were
chosen. In order to prevent numerical
defects (e.g. locking, oscillating solu-
tions) the functions were modified. The
obtained element has 4 nodes, each with

9 degrees of freedom

T
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The substitution of the approximation (8)
into (7) leads to the following set of
linear algebraic equations valid for a
single element
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A subsequent element assemblage process
creates the global matrices and vectors
of the complete panel
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and leads to the linearized system of al-
gebraic equations for a load increment

[55 + Ky + K, (‘i)] sl = KB = ap . (12)

K represents the tangent to the solution
path at the fundamental state "L". Apply-

ing an incremental load step equation (12)
yields a trial solution for the adjacent
state "L+ "

12 = '2 % (13)

As the load increment is of finite size,
linearization errors occur. These errors
are corrected by an iterative solution
procedure. Since standard solution proce-
dures like the modified Newton-Raphson
method are inefficient in the vicinity of
critical points, an arc-length-method is
used. This iteration technique allows
to trace "snap-through"_ as well as
"snap-back" behaviour 2

To detect points of neutral equilibrum
(bifurcation and limit points) during the
computation of nonlinear solution paths,
equation (13) has to be transformed in an
eigenvalue problem. Provided that the ki-
nematic and static variables of the funda-
mental state "i" depend linearly upon the
applied external load they may be enlarged
by a load factor i:

3 e A% (14)

Using the static stability criterion to-
gether with (14), a linear eigenvalue pro-
blem is obtained from (13)%1

(K« + 2501 )2 -0, (15)

The smallest eigenvalue X = A¢r gives an
approximation for the difference between
the load level of the fundamental state
and that of the nearest critical point.
For A¢r=1 a critical point is reached.
In case of a bifurcation point the eigen-
vector 7 gives the eigenmode of the inter-
secting secondary solution path. To fol-
low this secondary path, a fraction of the
eigenmode is superimposed on the displace-
ment field at the critical load.

To perform a "classical linear buck~
ling analysis, it has to be assumed that
the panel is in an undeformed fundamental
state ( | = 0) with only membrane forces

acting ( 'z = °% =°1 ), This leads to the
linear eigenvalue problem
(K + A CRI]Z =0, (16)

As stated before, material nonlineari-
ties may be included in the numerical ana-
lysis. In the present study the analysis
is limited to nonlinear material behav-
iour which follows from matrix and fibre
failure of single laminas. For each load
increment each lamina is checked at every
nodal point using the following failure
criteria:

Matrix failure ™
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5" 32282 are the current lamina stresses
with respect to the lamina coordinate sys-
tem, The index F denotes the fallure
stresses, T indicates tension and ( com-
pression., If a failure is detected, the
lamina stiffness is reduced at the con-
cerned nodal point according to the fail-
ure mode and the matrix Kp is updated.
Details of the used procedure are reported
in reference

The presented numerical strategies are
incorporated in the finite element compu~
ter code FiPPS, which was developed at the
IFL.

Theoretical results

Using the developed computational pro-
cedure theoretical studles were performed
to examine the influence of curvature,
boundary conditions and geometric imper-
fections on the buckling and postbuckling
behaviour of CFRP shear panels. Some of
the obtained results are presented.

The dimensions, the material proper-
ties and the finite element idealization
(12x12 mesh) of the studied panels are
shown in Figure 2. The shear load was ap-
plied by shearing the panel edges which
are assumed to have infinite rigidity.

For the idealization of deep panels

(a/r » 0,2) a refined element mesh (16x16)
was used. All computations were performed
on an Amdahl 470 V/7 computer.

¥ - angle of shear
$y,

dimensions : material :
a=b =400 mm loy -up {:LS]S
t=25mm E, = 139000 N/mm?
E, = 8990 N/ma?
boundary cond. : Gy = 4640 N/mm?
clomped v,, = 0,35 Nimm?

12

Figure 2. Data and FEM-idealization of
the examined panels.
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Figure 3. Effect of panel curvature on
the relation between the aver-
age shear flow N'2 and the angle
of sheary .

First, the influence of the panel cur-
vature shall be examined. Figure 3 shows a
graph of the average shear flow at the edge

b
N2 o2 L a2(s's0, &) ad
L f o0, )

versus the prescribed angle of shear Y for
a flat, a shallow and a deep panel. N'Zand
¥y are normalized with respect to the cor-
responding values of the classical buck-
ling load of the flat panel, q?noted by
the index ¢r ., The gradient dN'%/dy may be
interpreted as the global shear stiffness
of the panels.

All panels show a 1linear prebuckling
behaviour. The load level of the bifurca-
tion points, located during the nonlinear
computation, are identical with the clas-
sical buckling load. The bifurcation load
increases with decreasing radius of curva-
ture. The initial postbuckling behaviour
of the three panels differs fundamentally.
The N'ay-curve of the flat panel has only
a moderate bend at the bifurcation point,
whereas the shallow panel shows a dynamic
snap~through behaviour. In the case of the
deep panel the load bearing capacity de-
creases without a dynamic snap into a new
stable configuration.



In the deep postbuckling range all
three curves have positiv gradients dN'Z/ay.
That is, curved as well as flat postbuck-
led panels have a load bearing capability.
Nevertheless buckling causes a consider-
able loss in global shear stiffness. The
stiffness reduction is a function of the
curvature. The reduction factor increases
with decreasing radius of curvature.

Figure 4 shows plots of the applied
shear deformation y versus the out-of-plane
deflection ug at the panel centre for
the three panels examined. y is normalized
with respect to yor and u§ to the panel
thickness., In addition, the computed buck~-
ling modes at YA¥cr)fiatps 6 are shown. All
buckling patterns have a dominant buckle
running diagonally across the panel with
the maximum out~of-plane deflection at
the panel centre. In the case of the cur~
ved panels the dominant buckle snaps in
the direction of the concave surface. With
decreasing radius of curvature the buck-
ling mode shapes change slightly. The
orientation of
creases from 45
approximately 60

ghe dominant buckle in-
gor the flat panel to
for the deep one. The
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Figure 4. Effect of panel curvature on the
the relation between the out-of-
plane deflection u§ at the panel
centre and the angle of shear y.

plotted load-central deflection curves
show that no out-of-plane deflections oc~-
cur below the buckling load. At the load
level of the bifurcation points the de-
flections increase suddenly, in case of
the shallow panel in form of a dynamic
snap. In the deep postbuckling range the
rate of increase of the deflection is a
function of the panel curvature. At the
same load level the flat panel has the
smallest out-of-plane deflection, the deep
panel the greatest. The same trend is va-
1id for the rate of increase. In all
three panels the rate of increase de-
clines in the deep postbuckling range.

Initial geometric imperfections may
have a considerable effect on the buckling
behaviour of thin shell structures. Thus,
it is of interest to examine the imperfec-
tion sensitivity of shear loaded curved
panels. Because of its snap-through behav-
iour the shallow panel is chosen as ex-
ample. For the computations symmetric
(1-cos)~functions are used as initial
imperfections. They may be regarded as
approximations to the post-buckling mode
of the perfect panel.

Figure 5 shows plots of the normalized
angle of shear versus the out-of-plane

central deflection for several imperfec-
tion amplitudes (uj)pax. Applying a small
(Ué)mux= 1% t ),

imperfection amplitude (

S“_W?‘cr

Lk

3-

o | BIFURCATION
POINT

s

Figure 5. Effect of geometric imperfec-
tions on the relation be'gweenc
the out-of-plane deflection ujg
at the panel centre and the
angle of shear y .
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the bifurcation problem of the perfect pa-
nel ceases to exist. Instead the imperfect
panel has only one nonlinear solution path
but retains its snap-through behaviour.
With increasing imperfection amplitudes
the snap-through behaviour vanishes as
well. For amplitudes greater than 10% of
the panel thickness the deformation behav-
iour becomes nonlinear immediatly after
shear loading is applied. A distinction
between a pre~ and post-buckling state
is no longer possible. In these cases

the information provided by the linear
buckling load is meaningless. The influ-
ence of the geometric imperfections de-~
clines with increasing load. For an angle
of shear y = 6y all load-central de-
flection curves are identical.

Figure 6 shows the average shear flow
N2 versus the prescribed angle of shear ¥
for the studied imperfect panels. Both
variables are normalized with respect to
the corresponding values of the classical
buckling load. The plotted curves confirm
the results of Fig.5 . In the case of pa-
nels with imperfection amplitudes greater
than 0,1t the relation between the aver-
age shear flow and the angle of shear be-~
comes nonlinear well below the bifurca-
tion load of the perfect panel. The tran-
sition from the pre-buckling to the post-
buckling state becomes smoother with in-
creasing imperfection amplitudes.
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Figure 6. Effect of geometric imperfec-
tions on the relation between
the average shear flow N2 ang
the angle of shear Y.
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Figure 7. Effect of boundary conditions
on the.relation between the
average shear flow N'2 and the
angle of shear ¥ .

The effect of different boundary condi-
tions on the relation between the average
gshear flow N2 and the prescribed angle of
shear y 1is shown in Figure 7. Compared are
a clamped and a simply supported shallow
panel. N'2 and y are normalized with re-
spect to the corresponding critical values
(classical buckling load) of the clamped
specimen. Both panels have .a linear pre-
buckling behaviour and a snap-through in
in the initial postbuckling range. They
differ mainly in the buckling load which
is 19% lower in the case of the simply-
supported panel. In the deeper postbuck-
ling range the curves of both panels_are
nearly linear. The gradient of the simply-
supported panel is only slightly smaller
than that of the c¢lamped one. That is,
although the simply-supported edges cause
a loss in load bearing capacity they have
no significant influence on the shear
stiffness in the deep postbuckling range.

Figure B8 shows the load-central deflec-
tion curves of the two panels. As ex-
pected, the simply-supported panel pas the
larger centre deflection. But the diffe-
rences between the curves dec¢rease with
increasing shear loading. For example, at
¥/¥¢r = 8 it has declined to 3%. Obviously
the bending stiffness of the simply-sup-
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Figure 8. Effect of boundary conditions
on the relation between the
out-of-plane deflection u§ at
the panel centre and the angle
of shear y.

ported edges increases in the deep post-
buckling range.

Further computations yield that the
influence of the boundary conditions de-
creases with increasing radius of curva-
ture i.e., curved simply-supported edges
behave like clamped ones.

All results presented are valid for
panels having the same shape parameter
= art as well as identical material
properties and boundary conditions.

3. Experiments

Test specimens

Dimensions and lay-up configurations of
the examined panels are listed in Table 1.
The three curved specimens were identical
with respect to dimensions, material and
fiver-patterns. The flat panel differed
only in curvature. Each test specimen con~
sisted of eight layers of unidirectional
prepreg sheets (913C/T300) and was auto-
clave cured with the vacuum bag technique.
For manufacturing the curved panels a cy-
lindrical shaped graphite/epoxy mold was
used.

Test set-up and procedures

The test set-up used for the experimen-
tal investigations is shown in Figure 9.
The tensile force applied by a Losenhausen
testing machine of 200 kN capacity was
transformed into a shear loading on the
test panels by means of the shear frame
illustrated in Fig. 9. The test specimens
were bolted between four pairs of rigid

- steel edge members. For cylindrical panels

additional fittings were used which filled
the spare between the plane edge members
and the curved shapes of the test speci-
mens. The edge members were pin-jointed at
their ends with the points of rotation
located at the corners of the web. The
frame formed a mechanism which did not
contribute to the load bearing capacitiy
of the system.

To determine the angle of shear of the
loaded panels two .inductive displacement
transducers were attached to the frame
which measured the elongation of the ver-
tical (i.e., tension) and the shortening
of the horizontal (i.e., compression) dia-
gonal. The initial geometric imperfections
and the buckling mode 1in the compression
diagonal were determined by a deflection
transducer which was attached to a car-
riage running on a slideway (see Fig. 9)

FLAT
PANEL SHALLOW PANELS
P2 $2-1 $2-2 $2-3

DIMENSIONS:

a=h mm 400 400

r mm o<} 4000 as S2-1 as Sz-1

t mni 22 22 '

tExP. mm il .M 2,25 2,43
MATERIAL :

T
- 913047300

resin / fibre as P2 lus P2 las P2

lny-up scheme | - [U{45/-45))
GEQM. IMP. .

max.ampt.{uy), J mm] -0,6 -0,45 -0,5 ~0,05

mode - ruppmxsymm. as P2 as P2 as P2
CLASSICAL
BUCKLING LOAD:

1, | deg| 00279 | 00379 - -

N1Z Nmm 32,3 439 - -

* MATERIAL PROPERTIES :

moduli : Ey

16,8 kN/mm?; E, = 7.8 kN/mm’

612

strength: gl = il = 1,54 kN/mm’; o = 0,09 kN/mm’

b KN/mm2 v, =03

o = 0,06 kN/mme ; a¥=01 kN/ma?

Table 1. Geometric data, material proper-
ties and calculated classical
buckling loads of the test panels.
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x-y recorder

plot of measured
deflections in the
compression diagonal

test specimen
( 400mm x 400mm )

tensile force

centre of rotation

rigid edge member

inductive
displacement transducer

sliding carriage
with deflection transducer
and position indicator

slideway

Figure 9. Test set-up.

and connected to a x-y recorder. Strain
gauge rosettes positioned on both sur-
faces of the specimens were used to meas-
ure normal and shear strains at three
points ( 8'= 32 = 200 mm; 9$'= 300 mm,

92 = 200 mm; 9§'= §2 = 67 mm),

Incremental loading was applied to the
shear frame until failure occured or the
maximum load of the testing machine was
reached. At each load increment the angle
of shear, the buckling mode and the
strains were determined. Prior to testing
of each panel measurements of the initial
geometric imperfections in the compres-
sion diagonal were conducted.

Experimental results and comparison
with theoretical predictions

Some results of the experimental in-
vestigations are shown in Figures 10-13.
The measured values are compared with
numerical solutions. For the flat panel
P2 and the shallow panel S2-1 both a
classical linear buckling analysis and a
geometric nonlinear analysis were per-
formed. In addition the postbuckling be-
haviour of the curved panel was analysed
considering the effect of material fail-
ure. A 12x12 element mesh was used for all
calculations. The shear load was applied
according to Fig. 2 and clamped boundary
conditions were assumed. The panel dimen-
sions and the material properties used are

927

shown in Table 1. The initial geometric
imperfections of the test specimens were
approximated by symmetric (1-cos)-func-
tions.

Figure 10 shows the measured out-of-
plane centre deflections u§ of the four
test specimens plotted versus the angle
of shear ¥y . y 1is normalized with respect
to the corresponding value of the computed
classical buckling load of the flat panel
P2 (see Table 1). Despite the small cur-
vature of the cylindrical panels consider-
able differences appear in the deforma-
tion behaviour of the flat and curved
specimens. At small angles of shear the
centre deflections of the curved panels
inerease more rapid than that of the flat
one. In the deep postbuckling range the
curved specimens have about 40% larger
centre deflections. This tendency is in
accordance with the results of the theo-
retical study (see Fig. 4). With the
curved panels no snap-through behaviour
was observed during the tests. This fact
is confirmed by this figure as all speci-
mens show a smooth transition to the post-
buckling range. Therefore a defined exper-
imental buckling load can hardly be deter-
mined. The nonlinear deformation behaviour
starting from the beginning of the loading
process is caused by geometric and other
imperfections, as for example risidual
stresses, local differences of material
properties and slight asymmetries of the
laminate (for the effect of geometric im-
perfections see Fig. 5).
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Figure 10. Measured and calculated out-
of-plane deflections u§ at
the panel centre versus the
angle of shear ¥y .

The comparison between the three
curved panels yields that the greatest
differences between their measured deflec
tion curves are to be found at small an-
gles of shear i.e., shear loads. This may
be explained by the fact that these pan-
els, although owing an identical lay-up
scheme, have slightly different geometric
imperfections and dimensions caused by
the manufacturing process. As shown in
Fig. 5, particularly the geometric im-
perfections have a considerable effect on
the deflection behaviour in the vicinity
of the theoretical buckling load. In the
deep postbuckling range the differences
between the test results of the three
curved panels decrease.

The theoretically predicted response
of P2 and S2 obtained by a geometrical
nonlinear calculation is in good agree-
ment with the test results. Local differ-
ences in deflections, especially at the
beginning of the loading process, are due
to the fact that the input data used for
the calculations are approximations (geo-
metric imperfections) or mean values (di-
mensions, material properties). Also a
linear stress-strain relation of the
graphit/epoxy material was assumed.

In Figure 11 the measured and cal-
culated flexural curvatures fyy and By at
the point 8 = 300 mm; 92= 100 mm on the
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Pigure 11, Measured and calculated bending

strains fyy, Ay versus the
angle of sheary .

compression diagonal of the curved panels
S2 is plotted versus the angle of shear.
¥ is normalized to the corresponding value
of the classical buckling load. The meas=-
ured strains confirm the results obtained
by Fig. 10 that caused by imperfections
bending occurs immediately when load is
applied and therefore an experimental
buckling load can hardly be determined.
The calculated strain curves are in good
agreement with the measured ones. Pre-
sumably the differences at high loads are
caused by idealization errors in the cal-
culation (e.g. course element mesh, as-
sumed linear stress-strain behaviour).

In Figure 12 theoretical results ob-
tained from a geometric nonlinear analy-
sis and a nonlinear computation consider-
ing the effect of material failure are
compared to the test results for the
panel S2-1. The figure shows the centre
deflections u§ versus the angle of
shear y . uj3 is normalized to the panel
thickness and y to the correspon- .
ding value of the classical buckling
load. The nonlinear failure analysis
yields a first ply failure (FPF) well
above the theoretical buckling load
( ¥ = 8,7 ¥cr ). This first ply failure
is a matrix failure in the top ply at
the tension corners. At y = 15,8 y
the first fibre failure occurs. The com-
parison of the two calculated deflection
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Figure 12. Out-of-plane deflections ug
at the panel centre versus the
angle of shear Y (spec. S2-1);
predicted failure loads.

curves shows that neither matrix nor

fibre failures have a considerable effect
on the deflection behaviour of the panel.
Only at high load levels the deflection
increases slightly. This predicted res-
ponse is in accordance with the experimen-
tal results. The measured deflection

curve shows no significant discontinui-
ties or changes in increase. The predic-
ted collapse of the panel occurs at 80%

of the experimentally obtained angle of
shear. This difference is due to several
factors, such as material imperfections,
the effect of the used element mesh on

the "smeared crack" area and the reliabi-
lity of the used failure criterias. Never-
theless the theoretical result may be
regarded as a good estimation.

In Figure 13 the calculated damage
zones at the theoretical collaps load are
depicted for the 8 layers of the panel.
The figure shows that material failure
occurs mainly in areas with maximum cur-
vature. Matrix failure happens mainly in
the -45° layers in which the global ten-
sion load acts normal to the fibres. Fibre
breakage is limited to the corners of the
tension diagonal. The comparison with the
test specimen reveals that the positions
of fibre failure are in good agreement
with the location of the crack leading to
the panel collapse.
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Figure 13. Predicted damage zones at the
theoretical collaps load of
specimen S2-1.
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4. Conclusion

The buckling and postbuckling behaviour
of curved carbon fibre reinforced plastic
shear panels was examined both theoreti-
cally and experimentally.

After developing a mixed finite element
computer program, linear buckling loads
and nonlinear postbuckling paths were
computed for some cylindrical panel con-
figurations. From these examples the fol-
lowing conclusions may be summarized:

Curved shear loaded CFRP panels as well
as composite plates have a load bearing
capability in the postbuckled state. The
buckling load as well as the initial ang
the deep postbuckling behaviour are in-
fluenced mainly by the panel curvature.
With decreasing radius of curvature the
buckling load (i.e., bifurcation load)
increases, whereas the global shear stiff-
ness decreases in the deep postbuckling
range. Identical shear deformation as-
sumed, curved panels have larger out-of-
plane deflections than flat ones.

Initial geometric imperfections result
in a nonlinear panel response starting
immediately when the shear load is ap-
plied. With increasing shear loading the
effect of initial imperfections on the
postbuckling behaviour declines.

Perfect simply-supported curved panels
have lower bifurcation loads than clamped
ones. The differences in the postbuckling
behaviour between clamped and simply-sup-
ported panels decrease with increasing
shear loading.

In order to verify the theoretical re-
sults, flat and shallow cylindrical CFRP
panels were tested. The experiments con-
firmed that curved postbuckled panels have
a considerable load carrying capacity and
larger out-of-plane deflections than iden-
tical flat panels. The nonlinear load-de-
formation behaviour of the test specimens
was analysed using the developed numerical
method. The computed deformations, strains
and failure maps showed a good correlation
with the experimental resuits. The compa-
rison verified the ability of the computer
program to predict the nonlinear buckling
behaviour of curved laminated shear panels
with reasonable accuracy.
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