A PARALLEL ALGORITHM OF AF-2 SCHEME FOR PLANE STEADY TRANSonic POTENTIAL FLOW WITH SMALL TRANSVERSE DISTURBANCE

Shou-ying Li, Qi-wei Liao
National University of Defense Technology, Changsha, CHINA
and
Shi-jun Luo
North-Western Polytechnical University, Xian, CHINA

Abstract

In this paper, a parallel algorithm for implicit approximate-factorization scheme-2 (AF-2) has been developed to solutions of the plane steady transonic potential equation with transverse small disturbance for flows about NACA-0012 airfoil. Multi-pivot elements parallel elimination method for solving a system of equations with tridiagonal coefficients matrix is presented. The computation efficiencies of parallel and serial operation are compared by computation experiment.

The freestream Mach numbers considered are 0.8, 0.85 and 0.9. The angles of attack are 0°, 1°, 2° and 4°. The solutions are obtained on a variable spaced grid with 39×31 x, y points and 22 points along the chord. The x-mesh range is about twenty times the chord itself as is the y-mesh range. The iterations are started from uniform flow.

The conclusions indicate that parallel operation is about sixteen times faster than serial operation.

I. Introduction

Low computation efficiency and slow convergence is still one of the main problems in finite difference computation for transonic flow. The objective of this paper is to investigate a fast and simple computer method with satisfactory precision for solving plane steady transonic potential flow.

The implicit approximate-factorization scheme-2(AF-2) [1] has been proved to give the same stable and reliable convergence as SLOR [2] but faster than SLOR. Good examples are given by ref. [1,3] for plane small disturbance and full potential equation respectively. The precision of full-potential equation is high but its computation is complex. The calculation of small-disturbance equation is simple but its precision is low, espe-

Copyright © 1988 by ICAS and AIAA. All rights reserved.
\[
1 - M^2 = \frac{1 - L^2 - \frac{Y+1}{2} M^2 - \frac{Y+1}{2} M^2 \phi_x^2}{1 - \frac{Y-1}{2} M^2 \phi_x^2 - \frac{Y-1}{2} M^2 \phi_y^2}
\]

(2)

where \(M \) is the local Mach number; \(\alpha_{\infty} \) and \(M_{\infty} \) represent the uniform oncoming velocity and Mach number respectively, \(Y \) is the ratio of specific heats.

The boundary conditions on the airfoil surfaces are

\[
\phi_y(x, \pm 0) = [\alpha_{\infty} \cos \alpha + \phi_x(x, \pm 0)] \frac{dy}{dx} - \frac{\alpha_{\infty} \sin \alpha}{\phi_x(x, \pm 0)}
\]

(3)

where \(\alpha \) is the angle of attack; \(y_+ \) and \(y_- \) represent the upper and lower airfoil surface \(y \)-coordinates respectively. At the blunt leading edge,

\[
\phi_x = - \alpha_{\infty} \cos \alpha
\]

(4)

will be satisfied. The boundary conditions on the trailing vortex surfaces are:

\[
\phi(x, +0) - \phi(x, -0) = \phi(x_+, +0) - \phi(x_+, -0)
\]

(5)

\[
\phi_y(x, +0) = \phi_y(x, -0)
\]

(6)

where \(x_+ \) is the \(x \)-coordinate at the trailing edge of the airfoil. A far-field asymptotic solution [4] is used at the far-field.

The relaxation iteration equations of AF-2 scheme at the subsonic and supersonic points are respectively:

\[
(\sigma \delta x - \delta y) f_{i,j}^{(m)} = \sigma \Lambda \phi_{i,j}^{(m-1)}
\]

(7a)

\[
(\sigma - A_{i,j} \delta x) C_{i,j}^{(m)} = f_{i,j}^{(m)}
\]

(7b)

and

\[
(\sigma \delta x - \delta y) f_{i,j}^{(m)} = \sigma \Lambda \phi_{i,j}^{(m-1)}
\]

(8a)

\[
(\sigma - A_{i,j} \delta x) C_{i,j}^{(m)} = f_{i,j}^{(m)}
\]

(8b)

where

\[
A_{i,j} = (1 - M^2) i_{ij}
\]

\[
L = \begin{cases}
A_{i,j} \delta x + \delta y & \text{for subsonic} \\
A_{i,j} \delta x + \delta y & \text{for supersonic}
\end{cases}
\]

and \(\delta x, \delta y \) are first-order, first forward, and backward difference operators. \(\delta x, \delta y \) and \(\delta y \) are second-order forward and central difference operators respectively. \(C_{i,j}^{(m)} = C_{i,j}^{(m-1)} \) and \(\Lambda \) are acceleration convergence parameter and relaxation parameter respectively. Von-Neumann analysis of the stability (See III) indicate that \(0 < \Lambda < 2 \) and fast convergence can be obtained by circularly using a \(\sigma \)-sequence

\[
\sigma_{k} = \sigma_{k-1} \left(\frac{\sigma_{k-1}}{\sigma_{k}} \right)^{k-1}, \quad k = 1, 2, \ldots, K
\]

where the optimal values of \(\sigma_{k} \), \(\sigma_{k-1} \) and K should be determined by numerical experiments. \(f_{i,j} \) is an intermediate variable, its boundary conditions can be derived as follows:

On upper and lower airfoil surface,

\[
f_y(x, \pm 0) = 0
\]

(9)

On upper and lower surface of trailing vortex

\[
f_y(x, +0) = f_y(x, -0)
\]

(10)

\[
f(x, +0) - f(x, -0) = f(x_+, +0) - f(x_+, -0)
\]

(11)

and at the far-field,

\[
f(x, y) = 0
\]

(12)

Two algebraic systems of equations with tridiagonal coefficient matrix can be obtained by expanding Eq. (7) or Eq. (8) and imbedding boundary conditions.

III. Von-Neumann analysis of stability and convergence

Assume that the coefficient of \(\phi_x \), \(1 - M^2 \), is a constant, thus, set \(A_{i,j} \equiv \Lambda = \text{constant} \). Eq. (7) can be written as:

\[
(\sigma \delta x - \delta y)(\sigma - A_{i,j} \delta x)(\phi_{i,j}^{(m)} - \phi_{i,j}^{(m-1)}) - \sigma \Lambda \phi_{i,j}^{(m-1)} = 0
\]

(13)

The solution of Eq. (13) may be expressed as

\[
\phi(x, y, t) + \epsilon(x, y, t), \quad \phi(x, y, t) \quad \text{is the exact solution and} \quad \epsilon(x, y, t) \quad \text{is the error.}
\]

\(\epsilon(x, y, t) \) also satisfies Eq. (13) and can be represented by

\[
\epsilon(x, y, t) = e^{ax} e^{i \lambda x} e^{ib y}
\]

(14)

where \(i_0 = \sqrt{-1} \), \(a \) and \(b \) are wave number. For the \(m \)-th wave component of the error, \(a = m \pi / \Delta x, \quad m = 0, 1, 2, \ldots, N; \quad b = m \pi / \Delta y, \quad m = 0, 1, 2, \ldots, N \). \(\lambda \) is the function of \(a \) and \(b \), and may be complex number.
Using Eqs. (13) and (14), we can obtain
\[
e^{\lambda t} = \frac{b_1 + (1 - \alpha) a_1}{b_1 + a_1}
\] (15)
where
\[
b_1 = \frac{5}{\Delta x^2} (1 - e^{-i \alpha x}) + \frac{2A}{\Delta x^2} (1 - \cos \beta x) (1 - e^{-i \alpha x})
\] (16)
\[
a_1 = \frac{2A}{\Delta x^2} (1 - \cos \alpha x) + \frac{2}{\Delta x^2} (1 - \cos \beta x)
\] (17)

Stability requires that \(|e^{\lambda t}| \leq 1\). Thus, the linear stability condition of AP-2 scheme at subsonic point can be derived from Eq. (15) as follows:
\[
\Omega \leq \frac{2 Re(b_1)}{\alpha_1}
\] (18)

Set \(\Omega = 2\), optimal \(\beta\) value which minimizes \(|e^{\lambda t}|\) can be obtained from Eq. (15) as follows:
\[
\beta = \sqrt{(1 + \alpha) \left(\frac{2\pi}{L_{\text{max}}} \right)^2}
\] (19)
for the longest wave and
\[
\beta = 2 / \Delta x
\] (20)
for the shortest wave, where \(L_{\text{max}}\) is the longest wave length. Hence, the range of optimal \(\beta\) values is \(0(1) \sim 0(1/\alpha)\) when \(\Omega = 2\).

Making the similar analysis for Eq. (8), we can obtain for transonic points:
\[
e^{\lambda t} = \frac{C_1 + (1 - \alpha) C_2}{C_1 + C_2}
\] (21)
where
\[
C_1 = \frac{5}{\Delta x^2} (1 - e^{-i \alpha x}) + \frac{2A}{\Delta x^2} (1 - \cos \beta x) (1 - e^{-i \alpha x})
\] (22)
\[
C_2 = \frac{2A}{\Delta x^2} (1 - 2 e^{-i \alpha x} + e^{-2i \alpha x}) - \frac{2}{\Delta x^2} (1 - \cos \beta x)
\] (23)

For long-wave components, the stability condition can be obtained from Eq. (21) as follows:
\[
0 \leq \Omega \leq 2
\] (24)

IV. The parallel algorithm of AP-2 scheme

Expanding Eqs. (7a, 8a) and (7b, 8b), we can obtain for \(f\) and \(c\) tridiagonal matrix equations respectively as follows:
\[
-\alpha_{ij} f_{i,j-1}^{(n)} + b_{ij} f_{i,j}^{(n)} - \alpha_{ij} f_{i,j}^{(n)} = k_{ij} + f_{i,j}^{(n)}
\] (25)
\[
\begin{align*}
&j = 2, 3, \ldots, J-1; \\
i = 2, 3, \ldots, I-1.
\end{align*}
\]
and
\[
- \beta_{ij} C_{i,j-1}^{(n)} + \beta_{ij} C_{i,j}^{(n)} - \beta_{ij} C_{i,j}^{(n)} = d_{i,j}
\] (26)
\[
\begin{align*}
&i = 2, 3, \ldots, I-1; \\
&j = 2, 3, \ldots, J-1.
\end{align*}
\]

All of the coefficients in the Eqs. (25) and (26) only depend on known values and are independent of each other, so parallel operation can be organized. Parallel operation can also be organized for solving each tridiagonal matrix equation. The parallel algorithm is as follows:

1. For \(1 \leq i \leq 1-1\), step 1, calculate the following vectors in parallel:
\[
(\rho_{i,2}, \rho_{i,3}, \ldots, \rho_{i,j-1})^T
\]
\[
(\beta_{i,2}, \beta_{i,3}, \ldots, \beta_{i,j-1})^T
\]
\[
(e_{i,2}, e_{i,3}, \ldots, e_{i,j-1})^T
\]
\[
(k_{i,2}, k_{i,3}, \ldots, k_{i,j-1})^T
\]
\[
(g_{i,2}, g_{i,3}, \ldots, g_{i,j-1})^T
\]
2. For \(2 \leq i \leq 1-1\), step 1, make the following cycles a). calculate the vector
\[
(d_{i,2}, d_{i,3}, \ldots, d_{i,j-1})
\]
The calculation formula is
\[
d_{ij} = k_{ij} + f_{i,j}^{(n)}
\]
b). Solving the tridiagonal matrix equations (25) in parallel, we can obtain the vector
\[
(f^{(n)}_{i,2}, f^{(n)}_{i,3}, \ldots, f^{(n)}_{i,j-1})
\]
3. For $2 \leq i \leq I-1$, step 1, calculate the following vectors

$$\begin{align*}
\begin{pmatrix} \bar{a}_{i,2} & \bar{a}_{i,3} & \cdots & \bar{a}_{i,i-1} \end{pmatrix}^T, \\
\begin{pmatrix} \bar{b}_{i,2} & \bar{b}_{i,3} & \cdots & \bar{b}_{i,i-1} \end{pmatrix}^T, \\
\begin{pmatrix} \bar{c}_{i,2} & \bar{c}_{i,3} & \cdots & \bar{c}_{i,i-1} \end{pmatrix}^T, \\
\begin{pmatrix} \bar{d}_{i,2} & \bar{d}_{i,3} & \cdots & \bar{d}_{i,i-1} \end{pmatrix}^T
\end{align*}$$

4. Simultaneously solving all the tridiagonal matrix equations corresponding to formula (26), we can obtain at a time all of the $C_{i,j}^{(a)}$.

In this algorithm, steps 1 and 3 are parallel operation for the coefficients of the Eqs. (25) and (26) respectively. The parallel operations are organized for the internal and boundary points respectively, because the calculation formula of the coefficients of internal and boundary points are different and computer YH-1 can make parallel operation only for the same calculation formula. The vector length for internal points is $(I-2)*(J-4)$. If the vector length is larger than the capability of the computer, we can organize parallel operations piecewise. For boundary points, the vector length is the number of mesh points on which the same computation formulae can be used.

Step 2.b is a parallel operation for the single tridiagonal matrix equation. Multi-pivot elements parallel elimination method for solving tridiagonal matrix equations is used here. It’s basic idea is to select in the matrix at a time all odd or even rows as pivot rows from the rows in which pivot elements were not selected, then, eliminate in parallel the elements which are not in the main-diagonal in the other rows until the coefficient matrix of the equations becomes a single diagonal. For example, for an (9×8) tridiagonal matrix, the schematic explanation of the history of multi-pivot elements parallel elimination are as follows:

$$\begin{align*}
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & x & x & x & x & x & x & x \\
2 & x & x & x & x & x & x & x \\
3 & x & x & x & x & x & x & x \\
4 & x & x & x & x & x & x & x \\
5 & x & x & x & x & x & x & x \\
6 & x & x & x & x & x & x & x \\
7 & x & x & x & x & x & x & x \\
8 & x & x & x & x & x & x & x \\
\end{array}
& \Rightarrow &
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\end{align*}$$

In above diagrams, the blank (or "0") and "x" represent zero and nonzero elements respectively, S represent the set of order number of the rows in which pivot elements have not been selected yet and M represent the set of order number of the rows in which pivot elements will be selected respectively. In this example, only 4 steps are needed for solution, and all calculations can be made in parallel for the each step.

Step 4 is to solve in parallel at a time all tridiagonal matrix equations corresponding to Eq. (26). Here, the method of solving each system of equations is the same as that of serial algorithm. This algorithm for step 4 can reduce the time of parallel operation with no increase in the total amount of computation and is about 23% faster than the algorithm used in step 2.b.

V. Computed Results

The computations are made for an NACA0012 airfoil. The freestream Mach numbers considered are 0.8, 0.85 and 0.9. The angles of attack are 0°, 1°, 2° and 4°. The solutions are obtained on a variable spaced grid with $39 \times 31 \times y$ points and 22 points along the chord. The x-mesh and y-mesh extends about ten times the chord ahead and behind, above and below the chord respectively. The iterations are started from uniform flow ($\Phi=0$).
Fig. 2. Surface pressure coefficient on NACA0012 airfoil at $M_a=0.85$, $\alpha=0^\circ$.

The converged solutions for $M_a=0.85$, $\alpha=0^\circ$, in terms of surface pressure coefficients, are compared with known wind tunnel test results [5] as shown in Fig. 4. The computed results agree well with the test results. The comparisons of the computational efficiency of the parallel and serial operations for AP-2 scheme are given in Table 1. The results indicate that the parallel operation is about sixteen times faster than serial operation.

VI. Concluding Remarks

The present study indicates that the computational efficiency can be greatly increased by using parallel algorithm presented in this paper. The solutions with satisfactory precision for transonic plane steady flow can be quickly obtained by solving Eq. (1), using the AP-2 scheme of difference computation and the parallel algorithm.

Present investigations is only for two-dimensional cases. We believe that the present method is sufficient motivation for fast solving three-dimensional problems.

References

<table>
<thead>
<tr>
<th>M_a</th>
<th>α°</th>
<th>Parameters</th>
<th>n</th>
<th>CPU TIME (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>0</td>
<td>$\Delta=1$ K=5</td>
<td>87</td>
<td>.032</td>
</tr>
<tr>
<td>0.80</td>
<td>1</td>
<td>$\Delta=0.8$ K=8</td>
<td>66</td>
<td>.9836</td>
</tr>
<tr>
<td>0.80</td>
<td>2</td>
<td>$\Delta=0.8$ K=8</td>
<td>74</td>
<td>.9652</td>
</tr>
<tr>
<td>0.85</td>
<td>4</td>
<td>$\Delta=1$ K=8</td>
<td>89</td>
<td>.6180</td>
</tr>
<tr>
<td>0.85</td>
<td>0</td>
<td>$\Delta=1$ K=8</td>
<td>90</td>
<td>.9328</td>
</tr>
<tr>
<td>0.85</td>
<td>1</td>
<td>$\Delta=0.8$ K=8</td>
<td>74</td>
<td>.6180</td>
</tr>
<tr>
<td>0.85</td>
<td>4</td>
<td>$\Delta=0.7$ K=8</td>
<td>90</td>
<td>.9328</td>
</tr>
<tr>
<td>0.90</td>
<td>0</td>
<td>$\Delta=0.8$ K=8</td>
<td>101</td>
<td>.9328</td>
</tr>
<tr>
<td>0.90</td>
<td>1</td>
<td>$\Delta=0.7$ K=8</td>
<td>131</td>
<td>.9473</td>
</tr>
<tr>
<td>0.90</td>
<td>2</td>
<td>$\Delta=0.7$ K=8</td>
<td>145</td>
<td>.6938</td>
</tr>
<tr>
<td>0.90</td>
<td>4</td>
<td>$\Delta=0.7$ K=8</td>
<td>122</td>
<td>.9625</td>
</tr>
</tbody>
</table>

Table 1. The comparisons of the computational efficiency of serial and parallel operations for AP-2 scheme.