ON THE OPTIMIZATION OF FLUTTER CHARACTERISTICS OF LAMINATED ANISOTROPIC CYLINDRICAL SHELLS

G. V. Vasilen
Institute of Aviation - INCRAST
Jucharest, Romania

Abstract

The axisymmetrical supersonic flutter of a simply supported circular cylindrical laminated shell with orthotropic or isotropic layers is investigated. A comparative analysis to demonstrate the influence of geometrical and mechanical characteristics of the shell on its critical flutter speed is performed.

The purpose of this investigation is to perform the optimization of the flutter characteristics of cylindrical multilayered shells, - important components of aeronautical and space structures, - by varying their geometrical, elastic and mechanical parameters.

The solution of the problem is obtained on the base of the methodology developed in the papers of Movchan [2], Krumhaar [1] and Stepanov [3], extended on the multilayered and orthotropic cylindrical shells. This methodology concerns with the development of the Timoshenko equations and linear bistorm theory, which lead to a non-selfadjoint eigenvalue problem, solved without further approximations.

Complete results of this investigation may be found in papers [7], [9].

1. Geometrical and mechanical relationships

A circular cylindrical shell of finite length L, simply-supported on its frontal edges, made up from an odd number (2l-1); l=1,2... of orthotropic or isotropic layers, situated symmetric in respect with the middle surface of the radius R, is taken into account (Fig.1.1).

![Fig.1.1 Geometry of the shell and coordinate system](image)

An element cut from the shell is shown in Fig.1.2. On the middle surface of the shell is considered the system of curvilinear coordinates α, β, corresponding to its main curvature lines. The principal stress directions of every layer correspond with the directions of coordinate lines α and β.

The elastic characteristics of the j-th layer of the shell are:

$$E_{x}(j), E_{y}(j), \mu_{xy}(j), \mu_{xy}^{(j)}$$
and its mass density is $\rho_{m}^{(j)}$.

The index (j) of the above symbols and of the following ones show the current number of the layer. At the internal layer cut by the middle surface $j=1$, and at the external layers $j=2$.

Following non-dimensional elastic, mechanical and geometrical parameters are used in the computing process:

$$\bar{q} = \frac{E_{x}(j)}{E_{y}(j)}, \bar{\alpha}(j) = \frac{\mu_{xy}(j)}{\mu_{xy}^{(j)}}, \bar{\rho} = \frac{\rho_{m}^{(j)}}{\rho_{m}^{(2)}}$$

$$\bar{E}_{x}(j), \bar{E}_{y}(j), \bar{\mu}_{xy}(j), \bar{\mu}_{xy}^{(j)}$$

$$\bar{\xi}_{y} = \frac{L}{R}, \bar{\xi}_{y}^{*} = \frac{h^{*}}{R}$$

The thickness of the j-th layer Δh_{j} is expressed in terms of the non-dimensional parameters $\bar{\xi}_{y}$ and $\bar{\xi}_{y}^{*}$ by the formula:

$$\Delta h_{j} = \frac{h^{*}}{R}.$$
\[\Delta \mathbf{h} = \frac{\varepsilon}{2} \mathbf{y} \cdot \mathbf{h} \]
(1.2)

The specific weight on the unit length of the shell has the following expression:
\[p = \frac{k}{2} g R^2 \rho n \sum_{m=0}^{\infty} \frac{n!}{2^n} (\xi_j - \xi_j^*) \]
(1.3)

In order to characterize the relationship between the specific weight of the shell to the critical Mach number \(\frac{nG}{c_{ov}^2} \), necessary to show the influence of different parameters to obtain the best quality after the criterion weight/critical flutter velocity, the following parameters (with dimension \([\text{lb}/\text{in}^2]\)) will be adopted:
\[\bar{p} \quad \bar{\rho} = \frac{p}{R^2} \quad \psi = \frac{p}{nGc_{ov}} \]
(1.4)

2. Formulation of the Problem. Basic Equations

The axisymmetric vibrations with exponential time factor of the considered shell submitted externally to a supersonic uniform stream with the velocity \(U \), and internally to a constant pressure, are investigated.

The governing equation of the aeroelastic dynamic equilibrium of the shell is obtained on the basis of the Donnell-Vlasov's engineering theory, from the system of general equations for laminated anisotropic shells. This equation, with corresponding boundary conditions on the edges of the shell, forms the following basic boundary-value problem for the radial deflections \(w \) of the shell:
\[-D_1 \frac{d^4 w}{dr^4} + \frac{E}{r^2} \frac{d^2 w}{dr^2} - \frac{1}{r^2} \frac{d}{dr} \frac{d}{dr} w - \Delta p(\rho, t) - m_o \frac{d^2 w}{dt^2} + \frac{d}{dt} \frac{d}{dt} w = 0 \]
(2.1)

The aerodynamic pressure of the surface of the shell \(\Delta p \) which enters in the equation (2.1) is appreciated from the piston theory:
\[\Delta p(\rho, t) = -\rho_H \left(\frac{U \omega}{C_T} + \frac{2 \omega w}{C_T} \right) \]
(2.3)

where \(\rho_H \) and \(C_T \) are the velocity of sound and the mass density of the undisturbed airstream at the altitude \(H \);

\[t - \text{is the time} \]

Another notations used in the relationships (2.1) are presented in Appendix 1 (see also [1], [9]).

By introducing new parameters:
\[A = \frac{\rho_H^2 \rho_H}{\frac{nG}{c_{ov}^2}} \]
(2.4)
called 'generalized velocity',
\[B = \frac{U}{R^2} \]
(2.5)
\[\lambda^* = \frac{U^2}{nG} \left(m_o \omega^2 - \frac{1}{2} \omega^2 \left(\lambda_H^2 \rho_H^2 + B^2 \right) \right) \]
(2.6)
\[\lambda = \lambda^* - B \]
(2.7)

where \(\rho_H = \frac{\rho_H}{A_H} \)
(2.8)
is the Mach number, and adopting the nondimensional variable
\[\eta = \frac{\lambda}{\lambda_H} \]
(2.9)

we search for the solution of the basic problem (2.1) in the form:
\[\omega(\eta, t) = \omega(\eta) e^{i\omega t} \]
(2.10)

which is the product of a real function of \(\eta(\omega(\eta)) \) and of a factor variable with the time, where \(\omega \) is the complex frequency of the variable movement (App A2).

The function \(\omega(\eta, t) \) is the solution of the initial problem only when \(\omega(\eta) \) is the eigenfunction of the following boundary-value problem:
\[\frac{d^4 \omega}{d\eta^4} + A \frac{d \omega}{d\eta} = \lambda \omega \]
(2.11)
\[\omega(\eta) = 0, \frac{d \omega}{d\eta\eta}|_{\eta=0}= \left(\frac{d^2 \omega}{d\eta^2} \right)|_{\eta=0}=0 \]

-derived from the initial one; the parameter \(\lambda \) (or \(\lambda^* \)) is the eigenvalue of the same problem.

For fixed \(A \) and \(\lambda \) parameters the solution of the equation (2.11) is:
\[\omega(\eta) = \sum_{k=1}^{n} \frac{C_k \omega(A_k, \lambda, \eta)}{\omega(\eta)} \]
(2.12)

where \(C_k \) are integration constants.

Substituting in the equation (2.11): \(\lambda \)
\[\frac{\omega}{e^{-2\eta}} \]
(2.13)

we obtain the characteristic equation
\[\rho(z, A, \lambda) = z^4 - A z - \lambda = 0 \]
(2.14)

whose roots \(z_1, z_2, z_3, z_4 \) satisfy the equation:
\[F(z_1, ..., z_4) = 0 \]
(2.15)
(see Appendix A2)

only when \(\lambda \) is the eigenvalue of the boundary problem (2.11).

By adopting new parameters:
\[\alpha = \frac{1}{2} (z_1 + z_2); \quad \beta = \frac{1}{2} (z_1 - z_2) \]
(2.16)
(2.17) being expressed in terms of \(z_1\) and \(z_2\), we obtain the characteristic system

\[
F(\bar{\alpha}, \bar{\beta}) = 0
\]

\[
A = 4\bar{\alpha}(\bar{\alpha}^2 - \bar{\beta}^2)
\]

which possesses the property that, for fixed parameters \(A\) and variable \(\bar{\alpha}\) and \(\bar{\beta}\), to every solution corresponds an eigenvalue \(\lambda\) and to every \(\lambda\) at a certain \(A\) corresponds at least one solution \((\bar{\alpha}, \bar{\beta})\) of the system.

By eliminating the parameter \(\bar{\beta}\) the equation reduces to the equation:

\[
F(A, \lambda) = 0
\]

Complete expressions of equations (2.15), (2.17) and (2.18) are presented in Appendix A2.

The eigenvalues \(\lambda\) may be expressed in terms of parameters \(A\) and \(\bar{\alpha}\) by the equation:

\[
\lambda = \frac{A^2}{16\bar{\alpha}^2} - 4\bar{\alpha}^2.
\]

3. The method to determine the characteristics of the flutter vibration

The characteristics of the self vibrational movement of the shell - i.e. the critical flutter velocity and frequency may be determined by the examination of the eigenvalues of the boundary-value problem (2.11) which are situated in the external or internal part of the parabola of stability (Fig.3.1), represented in the complex plane \(\text{Re}(\lambda) - \text{Im}(\lambda)\) by the equation:

\[
\text{Re}(\lambda) + B = C[\text{Im}(\lambda)]^2;
\]

where

\[
C = \frac{m_0 D_{EH}}{(a^2 h + \beta)^2 L^4}.
\]

\[
\text{Im}(\lambda) = \text{Re}(\lambda) + B = C[\text{Im}(\lambda)]^2
\]

Fig.3.1 The parabola of stability

In the internal part of the parabola there are situated all eigenvalues \(\lambda_n\) corresponding to the frequencies \(\omega_n\), which produce the stable vibrational movement, whereas in its external part - the unstable vibrational movement, growing with the time.

The dependence of \(\lambda_n(A)\) with the parameter \(A\) is investigated, in order to determine the critical generalized velocity \(A_c\) for which the eigenvalues \(\lambda(A)\) are situated on the stability parabola.

All real \(\lambda_n(A)\) are positive and are situated in the internal part of the parabola; only the complex \(\lambda_n(A)\) may be on its external part.

The equations of the characteristic system (2.17) are represented in the real plane \(\bar{\alpha}, \bar{\beta}\) as a network of curves. The intersections of these curves correspond to real \(\lambda_n\). the smaller value of the critical speed \(\text{Re}(\lambda)\) corresponds to the first complex eigenvalue \(\lambda_1(A)\) and only this value presents importance for our investigation (see Fig. A1-1 from Appendix A1).

4. Determination of the critical flutter velocity

The critical flutter velocity may be determined by solving the equation (4.13) for different fixed values of the parameter \(A\). we determine the complex values of \(\bar{\alpha}\) and from them - the complex eigenvalues. It is necessary to determine the intersection points of the curve \(\lambda_1(A)\) drawn in the complex plane \(\text{Re}(\lambda) - \text{Im}(\lambda)\) with the stability parabola (Fig.3.2).

\[
y = \text{Im}[\lambda(A)] = \sqrt{\frac{B + \text{Re}(\lambda)}{C}} = \sqrt{\frac{B}{C}}
\]

Fig.3.2 The intersection of \(\lambda_1(A)\) curve with stability parabola.

The ordinates of the intersection points are determined from the equation:

\[
y = \text{Im}[\lambda(A)] = \sqrt{\frac{B + \text{Re}(\lambda)}{C}} = \sqrt{\frac{B}{C}}
\]

After substituting the parameters (1.1) and (1.2) in equations (2.4), (2.5) and (3.2) we obtain following working relationships:

\[
A = 12\frac{a_h s_m E_D}{E_0} \left(\frac{L}{K}\right)^3 \left(\frac{L^4}{K^4}\right)
\]

\[
B = 12\frac{L^4}{K^4} \left(\frac{L}{K}\right)^4
\]

\[
C = \frac{E_D s_m}{12(a_h s_m + \beta)^2} \left(\frac{L^4}{K^4}\right)
\]

where \(E_D, m_D, h_D\) and \(E_c, m_c, h_c\) are structural parameters (see Appendix A3) containing all the characteristics of the multilayered shell in non-dimensional
The sequence of computational operations

The computational process is lead to the following succession:

1. The intersection point of the curve \(\lambda_4(A) \) with the stability parabola is determined graphically.

2. The value of the critical generalized velocity \(A_{cr} \) of the intersection point, is established.

3. The critical Mach number \(M_{cr} \) is determined from its dependence relationship with \(A_{cr} \) (3.1).

In Appendix A2 are presented in a non-dimensional form the expressions of the coefficients of the stability parabola (\(Z_{fr} \)), which contain all characteristics of the multilayered shell.

5. Numerical computation

Numerical computations were performed in order to establish the influence of the nonuniformity (heterogeneity), orthotropy and geometrical parameters of a multilayered cylindrical shell on the values of its critical Mach.

Simply (one-layered) orthotropic and three layered cylindrical shells with orthotropic and/or isotropic layers, were taken into account. Three layered shells were taken with the parameter \(\eta = 0.1 \) (representing the ratio between the mass densities of internal and external layers) and variable coefficient \(\xi (0 < \xi < 1) \) - (representing the relative thickness of the layers). (See Fig.5.1)

Fig.5.1 The three-layered shell

The influence of all parameters (1.1) - (1.4) was investigated.

Complete results of this investigation are described and presented in Fig.6.1 - 6.10 of ref. [7] and in Fig. 7.1 - 7.2; 8.1 - 8.5 and 9.1 - 9.2 of ref. [9].

6. The discussion of results

6.1. The influence of the parameter \(h^* \)

In every conditions the parameter \(h^* \) has the greatest influence on the critical flutter velocity.

This influence is evidenced in Fig.6.1, where it is shown the dependence \(M_{cr} = f(h^*) \) for three-layered isotropic shell with variable parameter \(\xi (0 < \xi < 1) \).

\(M_{cr} \) is fast growing with \(h^* \), especially for shells with thick external 'strong' layers.

6.2. The influence of orthotropy of the layers

The ratio between the elasstical moduli: \(E_u \) and \(E_b \) of the layers is characterized by the factors \(\xi \).

The influence of this parameter is not so clearly evidenced in the case of axisymmetrical flutter vibrations because \(E_b \) doesn't enter in the governing equation; its influence appears in the terms containing the expression \(1 - k/k_e \).

Though, the influence of this factor is significant as it can be seen in the Fig.6.2, where it is shown the dependence \(M_{cr} = f(k) \) for a one-layered orthotropic shell.

6.3. The influence of the relative thickness of the layers of the shell

Three layered (sandwich) shells with orthotropic or isotropic layers, characterised by the variable thickness of the layers (0 < \(\xi < 1 \)) and the parameter \(\eta = 0.1 \), were investigated.
The curves $\mathcal{M}_{cr} = f(\xi)$ show (see Fig.6.3) that (when other parameters are fixed) \mathcal{M}_{cr} has a minimal value for $\xi = 1$ (the shell consists only of one internal 'weak' core), and has a fast growing at $\xi = 0.9 - 0.7$ (with the appearance of thin external 'strong' layers); when these layers become thick enough ($\xi < 0.7$) the growth of \mathcal{M}_{cr} is much slower and practically stops at $\xi \approx 0.5$.

This particularity shows that from the point of view of the specific weight the most advantageous are the shells with external 'strong' very thin layers.

![Fig.6.3 The dependence $\mathcal{M}_{cr} = f(\xi)$ for a three-layered isotropic shell](image)

6.4. The influence of the parameter L^* in connection with the parameters h^*, k, and ξ on \mathcal{M}_{cr}.

The curves in graphs Fig.6.4 represent the dependence $\mathcal{M}_{cr} = f(L^*)$ for a one-layered orthotropic shell at different values of parameters h^* and k, and in Fig.6.5 for a three-layered shell (with isotropic layers) at different h^* and ξ.

![Fig.6.4 The dependence $\mathcal{M}_{cr} = f(L^*, h^*, k)$ for a one-layered orthotropic shell](image)

![Fig.6.5 The dependence $\mathcal{M}_{cr} = f(L^*, h^*, \xi)$ for three-layered isotropic shell](image)

The variation of \mathcal{M}_{cr} is extremely fast at certain values of L^* and h^*. An important growth of \mathcal{M}_{cr} may be obtained by the variation of L^* towards its diminution (at $L^* < 2$). For $L^* \gg 3$ this variation quite vanishes.

6.5. The reciprocal influence of the parameters L^*, h^*, and ξ on the parameter ψ.

The parameter ψ was adopted in order to illustrate the influence of different parameters to obtain the shell of optimal quality i.e. having the lightest structure in connection with \mathcal{M}_{cr} as great as possible.

In order to satisfy this criterion ψ must be as small as possible.

Further the influence of the parameter L^*, h^*, and ξ on this parameter is analysed.

In Fig.6.6a a family of curves $\psi = f(L^*)$ for a three-layered shell characterized by different values of h^* ($h^* = 10^{-2}$; 5×10^{-3}; 10^{-2}) and ξ ($\xi = 1; 0.75; 0.3; 0.25; 0$), are represented.

![Fig.6.6a Dependences $\psi = f(L^*, h^*, \xi)$ for a three-layered shell](image)

Analysing these dependences we arrive to the following conclusions, regarding the influence of different parameters on the parameter ψ:
a) Shells with the parameter ξ appropriate to 1 (with very thin external layers and with internal light core predominant in the overall thickness) are optimal.

b) Studying the reciprocal influence of h^* and L^* on Ψ (for a certain value of ξ) we conclude that at small values of the parameter L^* ($L^* = 0.5 - 1$) the minimal values of Ψ result for greater h^* ($h^* = 10^{-2}$), whereas at $L^* \gg 2$ this situation inversed: the optimal Ψ results for smaller h^*.

7. Conclusions

The analysis of previous results allows us to draw some conclusions about the behaviour of the investigated class of shells, subjected to the action of a supersonic aerostrream, from the point of view of the appearance of flutter vibrations. The final purpose of the study is to determine the criteria for obtaining the lightest structure with the critical flutter limit as great as possible.

The separate and reciprocal influence of different geometrical and mechanical parameters of the shell on its flutter vibration characteristics was outstanding.

This analysis allowed us to determine the optimal shape of the geometrical and structural characteristics of cylindrical multilayered orthotropic shells used in aeronautical and aerospace constructions.

So, the most advantageous three- (or multilayered) shells result when the external 'strong' layers are very thin in comparison with the overall thickness of the shell. With the growing of the thicknesses of these layers the critical Mach and the specific weight of the shell, but the growing of the last is faster, so the overall quality of the shell becomes worst.

The parameter h^* is the most important factor to obtain the growth of the $\Delta_{G\alpha}$. It influences directly the aerelastic characteristics and always when it is necessary to obtain the increase of the flutter velocity we must act this parameter firstly.

The parameter L^* is an important shape-characteristic of the shell which besides h^*, has a great influence on the $\Delta_{G\alpha}$.

In designing the aerospace cylindrical structures it is necessary to choose this parameter so, that the aerelastic quality of the structure should be best.

The critical Mach is strongly affected by the parameter L^*, being advantageous that the shell should be relative as short as possible.

The parameter Ψ allows us to appreciate in which way the shell must be designed in order to obtain the optimum flutter quality (the lightest structure with the flutter limit as great as possible). To meet these conditions the shell must be characterised by the parameters ξ, ξ^* appropriate to value of 1.0, h^* as great and L^* as small as possible. If, from constructive considerations, L^* must be big enough ($L^* = 2 - 3$) the role of the parameter h^* becomes opposite: it must be as small as possible. This interaction of the parameter L^* and h^* is of the greatest importance to obtain the optimal values of the flutter quality of the shell.

So, the optimal geometrical and elasto-mechanical characteristics of the cylindrical shells, entering as component parts of aeronautical and space structures may be determined by design of these structures.

Appendix A1

Notations used in the basic boundary-value problem (Ch.2)

\[D_{ij} = \frac{A}{12} \sum_{t=1}^{T} B_{ij} \alpha (\xi_{ij})^{\lambda} (\xi_{ij})^{\lambda} \]

\[A_{22} = (C_{ij} - C_{ij}^2) / \Omega \]

\[\Omega = (C_{ij}^2 - C_{ij}^2) C_{ij}^2 + 2C_{ij} C_{ij} C_{ij} \]

\[C_{ik} = \sum_{j=1}^{T} B_{ik} h (\xi_{ij})^{\lambda} (\xi_{ij})^{\lambda} \]

The quantities B_{ij} are 'engineering constants' [4], which for orthotropic layers keep expressions (2.9) presented in [7].

\[m_{ij} = \sum_{t=1}^{T} \alpha (\xi_{ij})^{\lambda} (\xi_{ij})^{\lambda} \]

\[T_{ij} = 0 \]

is the axial normal stress of the shell (considered equal to zero in the case of axi-symmetrical mode)

\[\xi \]

is the damping factor of the material.
―Engineering constants‖ of a multilayered orthotropic shell

\[
B_{11}^{(i)} = \frac{E_\alpha q_{ij}}{1 - \mu_\alpha \mu_\beta} = \frac{E_\alpha q_{ij}}{1 - k_{ij} \sigma_3^2 \mu_\alpha}
\]

\[
B_{22}^{(i)} = \frac{E_\beta q_{ij}}{1 - \mu_\alpha \mu_\beta} = \frac{E_\alpha k_{ij} q_{ij}}{1 - k_{ij} \sigma_3^2 \mu_\alpha}
\]

\[
B_{12}^{(i)} = \frac{E_\alpha \mu_\beta q_{ij}}{1 - \mu_\alpha \mu_\beta} = \frac{E_\alpha \sigma \mu_\beta q_{ij}}{1 - k_{ij} \sigma_3^2 \mu_\alpha}
\]

\[
B_{66}^{(i)} = G = \frac{\chi^{(i)} E_\alpha E_\beta}{2(1 + \sqrt{\nu_\beta})} = \frac{\chi^{(i)} E_\alpha E_\beta}{2(1 + \sqrt{\nu_\beta})} = \frac{\chi^{(i)} \sqrt{k_{ij} q_{ij}} \sigma_3^2 \mu_\alpha}{2(1 + \sqrt{\nu_\beta})}
\]

\[
B_{16} = B_{26} = 0. \quad (A1-6)
\]

\[
\chi^{(i)} \approx 1.
\]

\[
\frac{A}{A_{22}} = C_{22} - \frac{C_{12}^2}{C_{11}} = E_\alpha h \left(\sum_{j=1}^{l} \frac{k_{ij} q_{ij}}{1 - k_{ij} \sigma_3^2 \mu_\alpha} (\xi_{ij} - \xi_{(j-1)}) - \left(\sum_{j=1}^{l} \frac{k_{ij} q_{ij} \sigma_3^2 \mu_\alpha}{1 - k_{ij} \sigma_3^2 \mu_\alpha} (\xi_{ij} - \xi_{(j-1)}) \right)^2 \right)
\]

\[
+ \left(\sum_{j=1}^{l} \frac{k_{ij} q_{ij} \sigma_3^2 \mu_\alpha}{1 - k_{ij} \sigma_3^2 \mu_\alpha} (\xi_{ij} - \xi_{(j-1)}) \right)^2
\]

\[
\frac{q_{ij} \sigma_3^2 \mu_\alpha}{1 - k_{ij} \sigma_3^2 \mu_\alpha} (\xi_{ij} - \xi_{(j-1)})
\]

\[
(A1-7)
\]
Appendix A2

Main expressions used in the derived Boundary-Value Problem (2.11)

A2.1 The complex frequency of the vibrational movement

\[
\omega_{n_{d}} = \frac{i}{2m_{o}} \left[\left(1 - 4m_{a}^{\alpha} \right) \left[\frac{D_{m}}{\alpha(n_{d} + 1)^{2}} \right] \right]^{1/2}
\] (A2-1)

A2.2 The equation (2.15)

\[
F(z_{1}, z_{2}) = \frac{1}{q} \begin{vmatrix}
1 & 1 & 1 & 1 \\
\epsilon^{21} & \epsilon^{22} & \epsilon^{23} & \epsilon^{24} \\
\zeta_{1}^{2} & \zeta_{2}^{2} & \zeta_{3}^{2} & \zeta_{4}^{2} \\
\zeta_{1}^{2} & \zeta_{2}^{2} & \zeta_{3}^{2} & \zeta_{4}^{2}
\end{vmatrix}
\] (A2-2)

where:

\[
q(z_{1}, z_{2}) = (z_{1} - z_{2})(z_{1} - z_{3})(z_{1} - z_{4}) \times
\]

\[
(z_{2} - z_{3})(z_{2} - z_{4})(z_{3} - z_{4})
\] (A2-3)

A2.3 The equation (2.17)

\[
F(\alpha_{1}, \beta) = \frac{(3\alpha_{2}^{2} - 2\alpha_{1}^{2})}{(3\alpha_{2}^{2} - 2\alpha_{1}^{2})} \frac{\sin(\beta)}{\beta} + \frac{2\alpha_{1}^{2} \cos \beta}{(3\alpha_{2}^{2} - 2\alpha_{1}^{2})^{2} + 4\alpha_{2}^{2} \beta^{2}} + \frac{2\alpha_{2}^{2} \sin \beta}{(3\alpha_{2}^{2} - 2\alpha_{1}^{2})^{2} + 4\alpha_{2}^{2} \beta^{2}} = 0
\] (A2-4)

A2.4 The equation (2.18)

\[
F(\alpha_{1}, \beta) = \frac{2\alpha_{1}^{2} \sin(\sqrt{\alpha_{2}^{2} - \frac{A}{4\beta}}) \sin(\sqrt{\alpha_{2}^{2} + \frac{A}{4\beta}})}{\sqrt{3\alpha_{2}^{2} - 2\alpha_{1}^{2}}} + \frac{2\alpha_{2}^{2} \cos(\sqrt{\alpha_{2}^{2} - \frac{A}{4\beta}}) \cos(\sqrt{\alpha_{2}^{2} + \frac{A}{4\beta}})}{\sqrt{3\alpha_{2}^{2} - 2\alpha_{1}^{2}}} + \frac{2\alpha_{2}^{2} \sin(2\alpha)}{\sqrt{3\alpha_{2}^{2} - 2\alpha_{1}^{2}}} = 0
\] (A2-5)

Appendix A3

Expressions of structural parameters of the (21-1) layered, orthotropic shell

\[
\alpha_{(21)} = \sum_{j=1}^{L} \bar{a}_{(j)} (\xi_{j}^{2} - \xi_{j-1}^{2}) \times
\]

\[
\sum_{j=1}^{L} \bar{a}_{(j)} (\xi_{j}^{2} - \xi_{j-1}^{2}) \times
\]

\[
\sum_{j=1}^{L} \bar{a}_{(j)} (\xi_{j}^{2} - \xi_{j-1}^{2})
\] (A3-1)

where:

\[
\bar{a}_{(j)} = \frac{q_{(j)}}{1 - k_{(j)}a_{(j)}^{2} \mu^{(j)}_{(j)}^{2}}
\] (A3-4)

Structural parameters of the three layered (1 = 2) orthotropic shell

\[
The\bar{a}_{(j)} = \frac{q_{(j)}}{1 - k_{(j)}a_{(j)}^{2} \mu^{(j)}_{(j)}^{2}}
\] (A3-5)

\[
The\bar{a}_{(2)} = \frac{1}{1 - k_{(2)} \mu^{(2)}_{(2)}^{2}}
\] (A3-6)

\[
\xi_{2} - \xi_{1} = \xi_{1} = \xi_{4}
\] (A3-7)
\[\tilde{E}_B = \frac{(a_1 \bar{E}_1 + a_2 \bar{E}_2)(k_1 a_1 \xi_1 + k_2 a_2 \xi_1) - \mu_2^2 (k_1 a_1 \bar{E}_1 + k_2 a_2 \bar{E}_1)^2}{(a_1 \xi_1^3 + a_2 <1 - \xi_1^3>)(a_1 \xi_1^3 + a_2 \xi_1)} \]
(A3-8)

\[\tilde{E}_e = [a_1 \xi_1^3 - a_2 (1-\xi_1)][1-\xi_1(l-\bar{q}_1)] \]
(A3-9)

\[\tilde{E}_{mc} = a_1 \xi_1^3 + a_2 (1-\xi_1) \]
(A3-10)

Structural parameters of the one-layered isotropic shell

\[k = 1 ; \quad \mu_a = \mu \]

\[\tilde{E}_B = l - \mu^2 \]
(A3-17)

\[\tilde{E}_e = \tilde{E}_{mc} = \frac{1}{1 - \mu^2} \]
(A3-10)

The parameter \(\xi \)

\[\xi = \sqrt{\tilde{E}_B / \tilde{E}_e} \]
(A3-19)

The parameter \(\xi \) of the three-layered orthotropic shell

\[\xi = \frac{1}{\tilde{E}_{mc}} \sqrt{\frac{\bar{E}_1 q_1 + \bar{E}_1}{1 - \xi_1 (1-\bar{q}_1)}} \]
(A3-20)

if \(q_1 = \bar{q}_1 \)

\[\xi = \frac{1}{\tilde{E}_{mc}} \]
(A3-21)

The parameter \(\xi \) of the one-layered orthotropic shell

\[\xi = \sqrt{k (l - k \mu_a^2)} \]
(A3-24)

The parameter \(\xi \) of the one-layered isotropic shell

\[\xi = \tilde{E}_B = l - \mu^2 \]
(A3-23)

\[k = k_1 = k_2 = 1 ; \quad \bar{q}_1 = q_1 \bar{a}_1 ; \quad \bar{q}_1 = 1 \]

\[\tilde{E}_B = (1 - \mu^2) \frac{\xi_1 q_1 + \bar{E}_1}{1 - \xi_1^3 (1 - \bar{q}_1)} \]
(A3-11)

\[\tilde{E}_c = \bar{a}_2 [(1 - \xi_1^3 (1 - \bar{q}_1)][1 - \xi_1 (1 - \bar{q}_1))] \]
(A3-12)

\[\tilde{E}_{mc} = \bar{a}_2 [1 - \xi_1^3 (1 - \bar{q}_1)] \]
(A3-13)

Structural parameters of the one-layered (1 = 1) orthotropic shell

\[q_1 = \bar{q}_1 = 1 ; \quad \xi_1 = 0 ; \quad \bar{E}_1 = 1 ; \quad k_{ij} = k \]

\[\bar{a}_1 = \bar{a}_2 = \frac{1}{1 - k \mu_a^2} = \bar{a} \]
(A3-14)

\[\tilde{E}_B = k (1 - k \mu_a^2) \]
(A3-15)

\[\tilde{E}_e = \tilde{E}_{mc} = \bar{a} = \frac{1}{1 - k \mu_a^2} \]
(A3-16)
Bibliography

1. Hans Krumhaar - Supersonic Flutter of a Cylindrical Shell of Finite
Length in an Axisymmetric Mode. AFOSR 1374, Guggenheim
Aeronautical Laboratory-California, Institute of
Technology, Pasadena, California, 1961

2. A.A. Movchan - On vibrations of the shell moving in the gas. (O
kozova-
niah plastinki dvizhushchaya v yaze) - (Russian)
Prikl. Mat. Mekh. 1956, 20, 2

3. R.D. Stepanov - On the flutter of cylindrical shells and plates moving
in the gas stream (O flattere tziinuriscoen oblocek
i panelei dvizhushchihsa v yoteke yaze) (Russian)

4. L. Librescu - Statics and dynamics of elastic anisotropic and
heterogeneous structures. (Statica si dinamica
structurilor elastice anizotrope si heterogene) (Roum)
Ed. Acad. RSR Bucuresti, 1969

5. V.Z. Vlasov - The general theory of shells and its applications
in engineering (Obscia teoria oblocek i ee priilo-

6. L.H. Donnell - A New Theory for the Buckling of Thin Cylinders
und Axial Compression and Bending. Trans. Amer.

7. G.V. Vasiliev - The supersonic flutter of cylindrical laminated shells.
(Sverhzhvukovoi flatter tziinuriceskin sloistin

8. Ashley H., G. Zartarian - Piston Theory a New Aerodynamic Tool for the
Aeroelastician, JAS, Dec. 1956

9. G.V. Vasiliev - The study on the supersonic flutter of cylindrical
orthotropic and heterogeneous shells. (studii
flutterului supersonic al inveligurilor cilindrice
ortotrope si heterogene) (Roum). Studii si cercetari