IMPERFECTION SENSITIVITY OF LAMINATED CYLINDRICAL SHELLS IN TORSION AND AXIAL COMPRESSION

G. J. Simitses* and D. Shaw**
Georgia Institute of Technology
Atlanta, Georgia 30332

I. Sheinman*
Technion-Israel Institute of Technology
Haifa, Israel

Abstract

The imperfection sensitivity of thin cylindrical shells, made out of fiber reinforced composite material and subjected to either uniform axial compression or torsion, and the effects upon it of certain parameters are investigated. The sensitivity is established through plots of critical loads (limit point loads) versus imperfection amplitude. The larger the drop in critical load value with increasing amplitude, the greater the sensitivity. Results are presented for four- and six-ply laminates with simply supported boundaries and various stacking sequences. These sequences lead to symmetric, antisymmetric and asymmetric configurations with respect to the laminate mid-surface. The material for all configurations is Boron/Epox. The parametric studies include primarily the effect of lamina stacking and length to radius ratio on the critical loads. Among the important findings one may list that (a) laminated cylindrical shells are more imperfection sensitive under axial compression than under torsion, (b) the imperfection sensitivity decreases as the length to radius ratio increases and (c) lamina stacking has a pronounced effect on the imperfection-sensitivity of the laminated shell.

1. Introduction

The circular cylindrical shell has been used extensively as a structural configuration especially in the aircraft and spacecraft industry. The constant demand for lightweight efficient structures has led the structural engineer to the use of various constructions (metallic with and without stiffeners, sandwich, laminated etc.), to more refined theoretical analyses, and to the field of structural optimization. Regardless of the construction, this configuration is not free of initial geometric imperfections. Moreover, in their service and function, cylindrical shells are often and usually subjected to destabilizing loads. Therefore, the aircraft structures engineer is interested in the stability analysis of these systems, in the presence of small initial geometric imperfections, especially for uniform axial compression and torsion.

Stability of thin circular cylindrical shells has received deserving attention from structural engineers, during the past seventy or so years. The multitude of theoretical and experimental studies, during this period, has tremendously enhanced our understanding of the buckling phenomenon and it has established that metallic thin cylindrical shells are extremely sensitive to initial geometric imperfections, especially when loaded axially. This is also true, to a lesser extent, for stiffened metallic cylindrical shells under axial compression. A fairly complete historical accounting of studies on the stability of axially loaded cylindrical shells with metallic construction (with and without stiffeners) is given in Ref. 1, and the cited references, therein. From this group, the attention of the interested reader is particularly directed towards the review articles of Hoff(2) and Hutchinson and Koiter(3). For this same construction (metallic), the studies of stability and imperfection sensitivity of cylindrical shells is smaller in number, when dealing with the load cases of torsion and pressure.

For the case of torsion a few references are cited, herein. These references deal primarily with the question of imperfection sensitivity, but if one adds to them their cited references, he has a fairly complete bibliography on the subject. Loo(4) and Nash(5) are among the first to report on the effect of small initial imperfections on the torsional critical load for simply supported(4) and clamped(5) isotropic cylindrical shell. Budiansky(6) treated the same problem by employing Koiter's(7) initial postbuckling theory. Sheinman and Simitses(8) by employing a nonlinear analysis predicted critical loads (limit point loads) for stiffened configurations under torsion and/or combined loading that includes torsion. In addition, one must cite the reported investigations of Hayashi(9), Becker(10), and Baruch, Singer and Weiler(11).

Finally, there exist several references dealing with the case of external pressure, and a few for the case of combined loading. Although the paper deals with the cases of axial compression and torsion, some of the references related to pressure loading are cited herein, for the sake of completeness. Among these one must list the classic paper on closely stiffened (smear technique) cylindrical shells by Baruch and Singer(12), the experimental results of Yamaki and Otomo(13) the analyses of Budiansky and Amazigo(14) and of Simitses et al(15).

With the advent of composite laminated shells, several investigations started appearing in the open literature which dealt with the subject of stability. In 1975, Tennyson(16) made a review of previous studies on the buckling of

* Professor of Engineering Science and Mechanics, Associate Fellow of AIAA
** Research Engineer
* Senior Lecturer in Civil Engineering, Member of AIAA

Copyright © 1984 by ICAS and AIAA. All rights reserved.
laminated cylinders. According to Tennyson's review, perhaps one of the earliest stability analyses of homogeneous orthotropic cylindrical shells was published by March et al.(17) in 1945. After that time, several theoretical analyses of shell theory, which are orthotropic cylinders have been performed by Schenell and Bruhl(18), Thelemann et al.(19), and Hess(21). These studies, simply supported or clamped, were primarily devoted to the general linear. Theoretical solutions to anisotropic solutions were presented by Cheng and Ho(21,22), Jones and Morgan(23), and Hennemann(24) and Hirono(25). Several papers were involved in the comparison of the efficiency and accuracy between Flugge's shell theory and that of Jones and Ho(21,22), and other shell theories (such as work done by Taei(26), Martin and Drew(27) whose theory was based on Donnell's equations, and the work of Chaos(28), whose analysis was based on Timoshenko's buckling equations). Stiffened composite cylindrical shells were analyzed by Jones(29), Terebushko(30) and Cheng and Card(31). Theoretical analyses of the effect of initial geometric imperfections on anisotropic shell theory have been published for the loading cases of pure torsion(32) and combined loads(34,35). Moreover, several computer codes(36-49) based on finite element and/or differential equations that deal with the analysis of stiffened shell and composite shells have been modified in order to account for the behavior of the material. These codes do serve their purpose, and that is that they are very good analytical tools. The purpose of the present paper is to assess the imperfection sensitivity of imperfect, laminated thin cylinders, subjected to uniform axial compression and torsion (individually applied). Moreover, parametric studies have been performed in order to establish the effect of section stacking, and of the length to radius ratio on the critical conditions. As is well known, the imperfection sensitivity of systems (in this case thin cylindrical shells) has been established (a) through strict postbuckling analyses, (b) by employing Koiter's(47), and (c) through nonlinear analyses of imperfect configurations(1,8,15) of known imperfection shape and amplitude. The methodology used in the present study is based on the last approach and is fully described in Ref. 48. All details concerning mathematical formulation, solution procedure, and computer implementation can be found in Ref. 48. Only a brief description is included next, herein, for the sake of continuity and clarity.

II. Governing Equations

The geometry and reference frame, including sign conventions, are shown on Fig. 1. The governing equations are derived from an orthogonally stiffened laminate, subjected to eccentric in-plane loads and uniform external pressure. The nonlinear governing equations (equilibrium) and related boundary conditions are derived from the principle of the stationary value of the total potential and they are based on Donnell-type nonlinear kinematic relations and linearly elastic material behavior. Moreover, the smeared technique(12) is used for the orthogonal stiffeners. Introduction of an Arbitrary stress (resultant) function, \(F \), defined below, leads to the identical satisfaction of the two in-plane equilibrium equations

\[
\begin{align*}
N_{xx} &= N_{yy} + F_{x}\gamma \gamma N_{yy} - F_{xx} N_{xy} - N_{xx} - F_{xy} (1)
\end{align*}
\]

where \(N_{xx} \) and \(N_{xy} \) are the applied in-plane loads. With this, the field equations are the third (transverse) equilibrium equation and the (in-plane) compatibility equation. Both of these, as well as the related boundary conditions, are expressed solely in terms of \(w \) and \(F \), and their space-dependent derivatives. These are:

(i) Equilibrium

\[
\begin{align*}
b_{11}F_{xxx} + b_{21}F_{xxxy} - b_{31}F_{xyy} + d_{11}F_{xxx} + d_{12}F_{xxxy} + 2d_{13}F_{xyy} + \\
b_{23}F_{xxxy} + 2b_{23}F_{xyy} - 2b_{33}F_{xyy} + d_{21}F_{xxx} + \\
b_{21}F_{xxxy} + d_{22}F_{xxxy} - b_{32}F_{yy} + d_{23}F_{xxxy} + \\
F_{xxx} + F_{xxxy} + q = 0
\end{align*}
\]

(ii) Compatibility

\[
\begin{align*}
a_{11}F_{yy} + a_{12}F_{xyy} + a_{13}F_{xyy} + b_{11}F_{xxx} + b_{12}F_{xxxy} + 2b_{13}F_{xyy} + a_{21}F_{xxx} + \\
b_{22}F_{xxxy} + 2b_{23}F_{xyy} + a_{23}F_{xxxy} + 2a_{23}F_{xyy} + a_{23}F_{xxxy} + \\
a_{31}F_{xxx} + a_{32}F_{xxxy} + a_{33}F_{xxxy} + 2b_{33}F_{xyy} - b_{31}F_{xxx} - \\
b_{32}F_{xxxy} - 2b_{33}F_{xyy} - w_{xx} + 2w_{xy} (w_{xy} + \\
2w_{xy}) - w_{xx} + 2w_{xy} + 2w_{xy} - 2w_{xy} = w_{xx} + 2w_{xy} + w_{xy} + \\
2w_{xy} = w_{xx} + 2w_{xy} + w_{xy} - (3)
\end{align*}
\]

where the \(a_{ij}, \ b_{ij} \) and \(d_{ij} \) are the elements of the matrix that relate the surface strains (\(\epsilon_{ij} \)) and moment resultants \(M_{ij} \) to the stress resultants, \(N_{ij} \), and the reference surface changes in curvature and torsion, \(\kappa_{ij} \) (for details see Ref. 48). In matrix form these relations are:

\[
\begin{align*}
[a_{ij}] = [a_{ij}]^T \left[N_{ij} \right] + [b_{ij}] \left[\kappa_{ij} \right] (4) \\
[M_{ij}] = [b_{ij}]^T \left[N_{ij} \right] + [d_{ij}] \left[\kappa_{ij} \right] (5)
\end{align*}
\]

where

\[
\begin{align*}
[a_{ij}] = [A_{ij}]^{-1}; [b_{ij}] = [A_{ij}]^{-1}[B_{ij}] (6)
\end{align*}
\]

and

\[
\begin{align*}
[d_{ij}] = [B_{ij}] [b_{ij}] - [\bar{B}_{ij}] (7)
\end{align*}
\]
III. Solution Methodology

The solution methodology is presented, with detail, in Ref. 48. Only a brief description of it is presented below, for the sake of completeness.

The separated form, shown herein, for the dependent variables w and F is used to reduce the partial differential equations, Eqs (2) and (3), to ordinary differential equations.

\[
\begin{align*}
\frac{\partial w(x, y)}{\partial x} &= A_0(x) + \sum_{i=1}^{k} \left(A_i(x) \cos \frac{\pi y}{R} + B_i(x) \sin \frac{\pi y}{R} \right) \\
\frac{\partial F(x, y)}{\partial y} &= C_0(x) + \sum_{i=1}^{2k} \left(C(x) \frac{\gamma R}{R} + D_i(x) \sin \frac{\gamma R}{R} \right)
\end{align*}
\]

(10)

The initial geometric imperfection \(w^0(x, y) \) can also be presented in a similar form.

The above, is accomplished by first substituting the expressions for \(w, F \), and \(w^0 \) into the compatibility equation. Through trigonometric identities involving products, the compatibility equation reduces to a complete Fourier series from \(i = 0 \) to \(i = 2k \) [this justifies the need for using \(2k \) in the expression for \(F \), as opposed to \(k \), see Eqs. (10)]. Use of orthogonality reduces the compatibility equation into \((4k + 1)\) ordinary, nonlinear, differential equations.

Next, the Galerkin procedure is employed in connection with the equilibrium equation (in the circumferential direction only). This leads to the vanishing of \((2k + 1)\) Galerkin integrals, which yields \((2k + 1)\) additional nonlinear, ordinary, differential equations. Note from Eqs. (10) that the number of unknowns is \((6k + 2)\), which equals the number of equations. Moreover, the boundary conditions, and the expressions for the total potential and average end shortening are also expressed in terms of the unknown functions of position \(x \), shown in Eqs. (10).

Next, a generalization of Newton's method(50), applicable to differential equations, is used to reduce the nonlinear field equations to a sequence of linearized systems. The linearized (in the small increments) iteration equations are derived on the basis that a solution can be achieved by a small correction to an approximate solution.

Finally, the linearized set of differential equations is cast into a set of finite difference equations. These equations are solved by an algorithm(51), which is a modification of the one described in Ref. 52. A computer program has been written for generating numerical solutions.

IV. Geometries Used in the Study

The studies reported herein, include assessment of imperfection sensitivity and of the effect of lamina stacking on the critical conditions of four- and six-ply laminated cylinders under axial compression and torsion.
Moreover, the effect of L/R-ratios on critical loads is assessed for all geometries. In all of these studies, the load eccentricity is taken to be zero and the boundary conditions are classical simply supported (SS-3).

The configurations used in the studies represent variations of two symmetric (with respect to the midsurface) geometries for which experimental results are reported in Ref. 53. They consist of four-ply laminates, I-1 and of six-ply laminates, II-1, both using different stacking sequences. For both groups five stacking sequences (i = 1, 2, ..., 5) are employed.

First, the common properties of the orthotropic laminae (Boron/Epoxy; AVCO 5505) are:

\[
\begin{align*}
E_{11} &= 2.0690 \times 10^8 \text{ kN/m}^2 (30 \times 10^6 \text{ psi}) \\
E_{22} &= 0.1862 \times 10^8 \text{ kN/m}^2 (2.7 \times 10^6 \text{ psi}) \\
G_{12} &= 0.0448 \times 10^8 \text{ kN/m}^2 (0.65 \times 10^6 \text{ psi}) \\
\nu_{12} &= 0.21
\end{align*}
\]

Furthermore,

\[R = 19.05 \text{ cm (7.5 in.)}\]
\[(12a)\]

and the length, L, is varied so that

\[L/R = 1.3, 5\]
\[(12b)\]

The ply thicknesses (\(h_k - h_{k-1}\)) and the total laminate thickness for each group are:

I-1: \(h_k - h_{k-1} = 0.013462 \text{ cm (0.0053 in.)}\)
\[(13a)\]

\[h = 4(h_k - h_{k-1}) = 0.05385 \text{ cm (0.0212 in.)}\]
\[(13b)\]

II-1: \(h_k - h_{k-1} = 0.008975 \text{ cm (0.00353 in.)}\)
\[(13c)\]

\[h = 6(h_k - h_{k-1}) = 0.05385 \text{ cm (0.0212 in.)}\]
\[(13d)\]

Note that for both groups (I-1 and II-1), the radius to thickness ratio is 353.77.

For each group, the five stacking combinations are denoted by I-1 or II-1, i = 1, 2, 3, 5 and they correspond to:

I-1: 45°/−45°/45°/−45°; I-2: 45°/−45°/45°/−45°;
I-3: [−21]; I-4: 90°/60°/30°/0°;
I-5: 90°/60°/30°/0°
\[(14a)\]

II-1: 0°/45°/−45°/45°/0°
II-2: −45°/45°/−45°/45°/0°
II-3: [−12]; II-4: 90°/72°/54°/36°/18°/0°
II-5: 0°/18°/36°/54°/72°/90°
\[(14b)\]

Where the first number denotes the orientation of the fibers (strong orthotropic direction) of the outermost ply with respect to the x-axis, and the last of the innermost.

Geometries I-1 and II-1 are symmetric with respect to the midsurface and identical to those employed in Ref. 53. Geometries I-2,3 and II-2,3 denote antisymmetric, regular (\(h_k - h_{k-1}\) constant) angle-ply laminates. Finally, geometries, I-4,5 and II-4,5 are completely asymmetric with respect to the midsurface.

For each load case, different imperfection shapes are employed, which are:

(a) for uniform axial compression

\[w_i^{O}(x,y) = \frac{\pi h}{R} \sin \frac{\pi x}{L} \cos \frac{ny}{R}\]
\[(15)\]

for geometries II-i (i = 1, 2, ..., 5)

\[w_i^{O}(x,y) = \frac{\pi h}{R} (-\cos \frac{2\pi x}{L} + 0.1 \sin \frac{\pi x}{L} \cos \frac{ny}{R})\]
\[(16)\]

Note that the first one, Eq. (15), denotes a symmetric shape, while the second one, Eq. (16), an (almost) axisymmetric shape.

(b) for torsion

(a) for L/R = 1

I-1: \[w_i^{O}(x,y) = 0.6235 \frac{\pi h}{R} \left[-\left(\sin \frac{\pi x}{L} - \frac{1}{2} \sin \frac{4\pi x}{L} \right) \cos \frac{ny}{R} \right] \]
\[(17a)\]

II-1: \[w_i^{O}(x,y) = 0.5479 \left[-0.5831 \left(\sin \frac{3\pi x}{L} - 1 \sin \frac{4\pi x}{L} \right) \cos \frac{ny}{R} \right] + 0.6710 \left[-0.3586 \left(\sin \frac{3\pi x}{L} - 1 \sin \frac{4\pi x}{L} \right) \sin \frac{ny}{R} \right] \]
\[(17b)\]

(b) for L/R = 2 and both groups

I-1: \[w_i^{O}(x,y) = 0.694 \left[-0.1742 \left(\sin \frac{\pi x}{L} - \frac{1}{3} \sin \frac{3\pi x}{L} \right) \cos \frac{ny}{R} \right] + 0.833 \left[-0.1742 \left(\sin \frac{\pi x}{L} - \frac{1}{3} \sin \frac{3\pi x}{L} \right) \sin \frac{ny}{R} \right] \]
\[(18)\]

(c) for L/R = 5 and both groups

I-1: \[w_i^{O}(x,y) = 0.833 \left[-0.1742 \left(\sin \frac{\pi x}{L} - \frac{1}{3} \sin \frac{3\pi x}{L} \right) \cos \frac{ny}{R} \right] + 0.833 \left[-0.1742 \left(\sin \frac{\pi x}{L} - \frac{1}{3} \sin \frac{3\pi x}{L} \right) \sin \frac{ny}{R} \right] \]
\[(19)\]

For this load case (torsion), the imperfection shape is taken to be similar to the linear theory buckling mode (54). These shapes, Eqs. (17)-(19), represent some average of the modes of the various configurations (the modes are very similar for all configurations).
V. Results and Discussion

The results for all configurations are presented both graphically and in tabular form. Each group, though, is discussed separately.

Table 1 presents critical loads (limit point loads-uniform axial compression) for geometries I-1 and three values of L/R (1.2 and 5). The imperfection shape for this group is symmetric, Eq. (15), and the amplitude parameter is varied from a small number up to two (w_{max}/h = ξ). These results are shown on Figs. 2-4. It is seen from these figures that for L/R = 1 and small values for ξ ($\xi < 0.75$), the weakest configuration corresponds to I-2,3 (regular antisymmetric angle-ply laminate), while the strongest configuration is the antisymmetric I-5 (except for a very small range of extremely small ξ - values). But as L/R increases, I-2,3 yield the weakest configurations for virtually all ξ-values. Moreover, for L/R > 2 the order of going from the weakest to the strongest configuration is I-2,3, I-5, I-4 and I-5. Note that asymmetric stacking may be compared to eccentric positioning of the orthogonal stiffeners in metallic shells.

TABLE 1. CRITICAL LOADS; UNIFORM AXIAL COMPRESSION (I-I GEOMETRIES)

<table>
<thead>
<tr>
<th>Geometry</th>
<th>ξ</th>
<th>L/R = 1</th>
<th>L/R = 2</th>
<th>L/R = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>0.05</td>
<td>-</td>
<td>145.6 (6)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>130.7 (9)</td>
<td>-</td>
<td>153.7 (4)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>118.9 (9)</td>
<td>136.0 (6)</td>
<td>147.7 (4)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>104.5 (9)</td>
<td>123.0 (6)</td>
<td>135.9 (4)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>67.1 (9)</td>
<td>98.3 (6)</td>
<td>121.0 (4)</td>
</tr>
<tr>
<td>I-2,3</td>
<td>0.05</td>
<td>-</td>
<td>138.8 (6)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>126.7 (9)</td>
<td>-</td>
<td>145.3 (4)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>115.1 (9)</td>
<td>130.0 (6)</td>
<td>140.2 (4)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>98.6 (9)</td>
<td>118.7 (6)</td>
<td>129.0 (4)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>61.3 (9)</td>
<td>92.2 (6)</td>
<td>111.4 (4)</td>
</tr>
<tr>
<td>I-4</td>
<td>0.01</td>
<td>-</td>
<td>243.1 (8)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>-</td>
<td>232.0 (8)</td>
<td>254.4 (5)</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>189.9 (12)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>130.7 (11)</td>
<td>178.0 (8)</td>
<td>211.5 (5)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>86.8 (11)</td>
<td>137.2 (8)</td>
<td>187.7 (5)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>46.1 (10)</td>
<td>90.0 (8)</td>
<td>153.4 (5)</td>
</tr>
<tr>
<td>I-5</td>
<td>0.05</td>
<td>-</td>
<td>233.3 (8)</td>
<td>292.9 (5)</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>183.2 (11)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>146.3 (11)</td>
<td>191.0 (8)</td>
<td>268.3 (5)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>97.5 (12)</td>
<td>150.0 (8)</td>
<td>239.0 (5)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>48.0 (11)</td>
<td>109.5 (8)</td>
<td>194.0 (5)</td>
</tr>
</tbody>
</table>

Symmetric Imperfection, Eq. (15).
resisting axial compression. In this case also, it is observed that the imperfection sensitivity decreases with increasing (L/R)-values. Furthermore, in all cases, the weak configurations do not seem to be as sensitive as the stronger ones. The drop in value for the critical loads is very pronounced for geometries II-1, II-4, and II-5 (see Fig. 7) as \(\xi \) increases, while the drop is much more moderate for geometries II-2 & 3.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>(\xi)</th>
<th>(N_{xx}) in lbs/in. (wave No. at Limit Pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L/R = 1</td>
<td>L/R = 2</td>
</tr>
<tr>
<td>II-1</td>
<td>0.10</td>
<td>231.7 (12)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>120.9 (11)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>63.4 (10)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td>II-2, 3</td>
<td>0.10</td>
<td>133.5 (9)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>120.7 (9)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>87.2 (9)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>44.7 (8)</td>
</tr>
<tr>
<td>II-4</td>
<td>0.10</td>
<td>177.1 (10)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>101.7 (10)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>57.9 (10)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td>II-5</td>
<td>0.10</td>
<td>173.5 (11)</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>124.0 (10)</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>66.7 (10)</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>70.4 (7)</td>
</tr>
</tbody>
</table>

Axisymmetric Imperfection, Eq. (16).

Fig. 4 Critical Conditions for I-i Geometries; Uniform Axial Compression; L/R = 5

Fig. 5 Critical Conditions for II-i Geometries; Uniform Axial Compression; L/R = 1

Figs. 5-7 and 2-4. The reason for this is that the II-1 geometry has 0° plies on the outside and inside of the laminate, which increases its stiffness in the axial direction.

The results, for this group, are also presented graphically on Figs. 5-7. Fig. 5 contains results for L/R = 1. No results are reported (limit points could not be found) for \(\xi > 1.0 \). This implies, that for this L/R value and \(\xi > 1 \) the load-deflection curve does not exhibit limit point instability, but only stable response. For L/R \(\geq 2 \), the picture changed and limit points are found. Note from the three figures, Figs. 5-7, that as L/R increases the imperfection sensitivity of all configurations decreases (the curves do not fall as sharply as they do for L/R = 1).

It is worth noticing that for L/R \(\leq 2 \), there are many crossings of the curves and it is not easy to identify the strongest or the weakest configuration (which is \(\xi \)-dependent). On the other hand, at L/R = 5, the strongest configuration is II-5 and the order of going from the strongest to the weakest is, II-5, II-1, II-4, II-2, 3. As expected, the \(+45° \) antisymmetric laminate is not the best layup for
shape for this load case is similar to the linear theory eigenmode (see Ref. 54) and is L/R-dependent. Regardless of the shape, the imperfection parameter, ξ, is equal to $\frac{v_{max}}{h}$. For all L/R values, the I-1 geometry seems to be the weakest one. On the other hand, geometry I-5 yields the strongest configuration. For $L/R = 1$ the I-2,3 configurations seem strong, but as L/R increases they become weaker by comparison to the asymmetric configurations. If torsion were to be reversed, the strength of the I-2,3 configurations would remain unchanged (the role of I-2 and I-3 would be interchanged), while the asymmetric configurations could change for the worse. The reason for this expectation is that for positive torsion, tension is expected along a direction making a positive angle with x-axis (for isotropic construction it would have been 45°). The fibers are placed from 0° to 90° from 90° to 0° in the various layers of I-5 and I-4. Thus, the tensile unidirectional strength of the fibers is utilized. If the torsion is reversed, these same fibers would tend to be in compression and this would imply that I-4 and I-5 are weaker for negative torsion than for positive torsion. Of course no mention is made of the effect of the (negative torsion) imperfection shape. This could be a totally separate study. Along these lines, note that the I-1 geometry (see Ref. 54) is stronger when loaded in the negative direction than in the positive direction, provided that the imperfection shape is similar to the positive torsion buckling mode.

![Graph](image)

Fig. 6 Critical Conditions for II-1 Geometries; Uniform Axial Compression; $L/R = 2$.

![Graph](image)

Fig. 7 Critical Conditions for II-1 Geometries; Uniform Axial Compression; $L/R = 5$

| Geometries | N_{xy} (lbs/in) | $L/R = 1$ | $L/R = 2$ | $L/R = 5$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>ξ</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59.34 (15)</td>
<td>35.32 (11)</td>
<td>21.00 (7)</td>
</tr>
<tr>
<td>I-2</td>
<td>ξ</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78.90 (13)</td>
<td>73.16 (13)</td>
<td>66.36 (13)</td>
</tr>
<tr>
<td>I-3</td>
<td>ξ</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.34 (13)</td>
<td>73.41 (13)</td>
<td>66.50 (13)</td>
</tr>
<tr>
<td>I-5</td>
<td>ξ</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56.69 (16)</td>
<td>45.91 (15)</td>
<td>39.51 (14)</td>
</tr>
</tbody>
</table>

Table 3 presents critical loads for geometries I-1 subjected to torsion. The results are also presented graphically on Figs. 8-10. The reader is reminded that the imperfection shape...
Table 9 presents critical torques for geometries II-1. The results are also presented graphically on Figs. 11-13. The conclusions are very similar to those for geometries I-1. There is one important observation, though, derived from the comparison of the two groups. Since both groups have the same total thickness (0.0212 in.) and radius (7.5 in.) use of more layers (from four to six) increases the load carrying capacity for the antisymmetric configurations (II-2,3 versus I-2,3), but it decreases it for the symmetric configuration II-5 (it can even be said for II-4). The comparison between II-1 and I-1 is not valid, since II-1 contains two 0°-plies (outer and inner), while I-1 has no such plies.

When the curves (see Fig. 8 and 11) terminate at \(\xi = 0.5 \), it means that no limit point could be found for higher \(\xi \)-values.

Moreover, it is seen from the generated data that (a) both groups are not as sensitive to initial geometric imperfection, when loaded in torsion, as they are for the case of axial compression, and (b) the imperfection sensitivity decreases (for this load case also) as the (L/R)-value increases.

Finally, experimental results are reported in Ref. 53, for geometry I-1, L/R = 2, and simply supported boundaries. The comparison between theoretical and experimental values can only be qualitative, for both load cases. Ref. 53 does not provide information concerning the imperfection shape and amplitude. The experimental results are:
The theoretical predictions can be found, graphically, in Figs. 3 and 9.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>N_{xy} in lbs/in (wave No. at Limit Pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$L/R = 1$</td>
</tr>
<tr>
<td>II-1</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>53.54 (18)</td>
</tr>
<tr>
<td>0.5</td>
<td>43.49 (17)</td>
</tr>
<tr>
<td>1.0</td>
<td>40.15 (17)</td>
</tr>
<tr>
<td>II-2</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>82.46 (14)</td>
</tr>
<tr>
<td>0.3</td>
<td>73.19 (13)</td>
</tr>
<tr>
<td>0.4</td>
<td>69.76 (12)</td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>II-3</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>82.12 (13)</td>
</tr>
<tr>
<td>0.3</td>
<td>73.07 (13)</td>
</tr>
<tr>
<td>0.4</td>
<td>69.69 (13)</td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>II-4</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>57.13 (16)</td>
</tr>
<tr>
<td>0.5</td>
<td>44.23 (15)</td>
</tr>
<tr>
<td>1.0</td>
<td>37.46 (15)</td>
</tr>
<tr>
<td>II-5</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>81.19 (16)</td>
</tr>
<tr>
<td>0.5</td>
<td>56.42 (16)</td>
</tr>
<tr>
<td>1.0</td>
<td>42.23 (14)</td>
</tr>
</tbody>
</table>

VI. Conclusions

A number of important conclusions can be drawn from the obtained results. Recognizing, though, that the employed configurations cannot possibly cover all values and variations for the geometric parameters (L/R, R/h ratios,
imperfection shapes, etc), the structural parameters (material properties, numerous lay-ups, number of plies etc) and boundary conditions, then these conclusions should be considered only as observations and not necessarily as universal, in applicability.

Among the the most important observation one may list the following:

(1) Under axial compression, some laminated geometries can be as sensitive to initial geometric imperfections as isotropic geometries are (very sensitive). On the other hand, some are not as sensitive.

(2) Under torsion, laminated geometries are less sensitive to geometric imperfections than under compression. This is also true for isotropic geometries.

(3) Regardless of the load case, the imperfection sensitivity of the cylindrical shell decreases with increasing (L/R)-values.

(4) Lamina stacking (symmetric, antisymmetric, asymmetric) does affect the critical loads. The stronger geometries are more sensitive to initial geometric imperfections than the weaker ones. This is true for both load cases.

References

