RECHERCHES SUR L'ATTENUATION DU BRUIT DE JETS

by

G. Richter
Chef de Departement
S. N. E. C. M. A.
(Societe Nationale d'Etude et de Construction de Moteurs d'Aviation)
Moissy, France

The Seventh Congress
of the
International Council of the
Aeronautical Sciences

CONSIGLIO NAZIONALE DELLE RICERCHE, ROMA, ITALY / SEPTEMBER 14-18, 1970

Price: 400 Lire
Résumé

Les silencieux de jet de moteurs modifient le niveau global, la répartition spectrale et la directivité du bruit émis par le jet. Ces modifications varient avec les conditions génératrices du jet de façon différente pour différents principes de silencieux. Pour des jets supersoniques sous-débutés, ces effets acoustiques sont comparés avec les effets observés des silencieux sur la structure aérodynamique des jets et leur répartition avec l'air ambiant. De cette comparaison, on tire des conclusions sur la nature et la répartition des sources de bruit dans le jet, et leur modification par les silencieux.

I. Introduction

Avec l'augmentation de la puissance de moteurs d'avions, des phénomènes parasites qui aux faibles puissances ne faisaient pas, ont atteint les limites du supportable, par exemple la pollution de l'air et surtout le bruit. Il y a quelque temps, on croiyait le problème du bruit résolu par l'introduction de moteurs à double flux. L'avantage de ce type de moteur, outre son intérêt du point de vue économique pour les avions subsoniques de transport, est qu'il permet une réduction du bruit par une répartition de la poussée entre le flux primaire et le flux secondaire. Or les lois imposant une limitation sévère du bruit autour des aéroports, lois en vigueur ou en préparation dans différents pays, obligent à réduire le bruit émis par les éléments tournants et par le jet primaire des moteurs prévus pour la nouvelle génération d'avions de transport supersoniques. Dans le cas des avions supersoniques, qui n'admettent pas l'encorement des moteurs à double flux, les poussées élevées sont réalisées par des jets à fortes vitesses d'éjection. La puissance acoustique des jets varie à peu près avec la puissance huit de la vitesse du jet, ce qui signifie que pour ces moteurs une atténuation substantielle du bruit du jet est indispensable.

L'atténuation du bruit de compresseurs et turbines est facilitée par le fait que les ondes acoustiques créées par les interactions entre l'écoulement du débit du réacteur et les aubes passant par la marche d'entrée d'air ou par le conduit d'éjection aval avant de se propager à l'extérieur, ce qui permet de réduire leur énergie en mises-soins ces conduits de revêtement, on peut envisager de modifier sensiblement les performances aérodynamiques du moteur. Le bruit de jet par contre à son origine dans l'interaction entre le jet et l'air ambiant, et les sources prépondérantes d'émission acoustique sont réparties sur une longueur plus ou moins grande suivant le taux de détente du jet, en aval de la tuyère. Une atténuation de ce bruit ne peut, par conséquent, se faire que par une intervention dans sa génération même. De telles interventions abaissent généralement les performances - poussée et consommation - du moteur et conduisent par là à une augmentation de la quantité de carburant emportée, donc de la masse de l'avion. Cette augmentation de la masse doit être compensée par une augmentation de la puissance des moteurs, avec augmentation correspondante de l'énergie acoustique, si l'on n'accepte pas une longueur de décollage plus grande et une altitude plus basse de survol des environ immédiats des aéroports. Dans les deux cas, l'atténuation effective du bruit observé au sol par les riverains de l'aéroport risque d'être fortement réduite.

Une approche de solution de ce problème est présentée par un silencieux rétractable qui n'intervient dans le jet que pendant les phases de vol proche du sol et qui est retiré du jet en vol de croisière. Ceci complique évidemment la technologie du silencieux et limite les configurations applicables. La difficulté est augmentée lorsque la tuyère du moteur a non pas une génératrice circulaire, mais rectiligne en vue d'une meilleure adaptation aux conditions variables de fonctionnement du moteur. Lorsque le taux de détente du moteur devient supercritique, c'est-à-dire lorsque la vitesse du jet devient supersonique, de nouveaux phénomènes acoustiques se font apparaître. Toutes ces conséquences du développement des moteurs ont rendu nécessaire une étude approfondie des origines du bruit de jets, dans le but de trouver les méthodes et moyens les plus appropriés à sa réduction.

II. Jets sous-débutés: sources de bruit

La figure 1 montre la forme et la structure d'un jet supercritique, tandis qu'à l'intérieur d'un jet subcritique la pression statique est peu différente de la pression ambiante, une pression existe dans un jet supercritique, dans la section de sortie de la tuyère. Cette suppression produit une expansion du jet telle que la pression statique à la limite du jet devient égale à la pression ambiante. Les lignes de détente partant des lèvres de la tuyère traversent le jet et sont réfléchies à la limite du jet sous forme de lignes de compression qui généralement convergent de telle façon qu'elles forment des ondes de
choc dans les zones extérieures du jet. L’écoulement turbulent de mélange du jet avec le milieu ambiant traverse ces ondes de choc; cette interaction entre l’écoulement turbulent et l’onde de choc est la source d’ondes acoustiques qui se superposent aux ondes provenant de l’écoulement turbulent lui-même.

L’étude de ce phénomène a fait l’objet de nombreux travaux sans qu’une description n’en ait pu être fournie jusqu’ici. La mesure de la répartition du bruit en fonction de l’angle montre que l’énergie acoustique émise vers l’aval du jet est une fonction de la vitesse et de la densité du jet tandis que le bruit émis vers l’amon est déterminé par le taux de détente, pour des jets supercritiques sous-détendus. Or l’intensité des ondes de choc qui existent dans de tels jets est une fonction presque unique du taux de détente (la température n’intervenant que par le rapport des caractéristiques du gaz), et on peut en conclure que l’interaction entre l’écoulement turbulent et les ondes de choc est la source prédominante du bruit émis vers l’amon. En effet, la propagation de ce bruit est assez directive; avec un maximum d’intensité vers l’amon et un second maximum, plus faible, dirigé vers 90°, par rapport à l’axe du jet. Un troisième maximum existe vers l’aval du jet, mais normalement il est noyé dans le bruit de turbulence qui a son maximum d’intensité dans la même direction.

Un cas particulier de génération de ce bruit d’interaction est le suivant : les ondes acoustiques produites par l’interaction turbulence - ondes de choc créent des perturbations dans la couche limite du jet. À la sortie de la tuyère, perturbations qui, convectées par l’écoulement à travers les ondes de choc, sont à l’origine de nouvelles ondes acoustiques. Lorsque la boucle entre perturbations périodiques de la couche limite et génération d’ondes acoustiques est fermée, ces ondes sont amplifiées de telle façon que l’amplitude des fréquences discrètes correspondantes, et de leurs harmoniques, peut dépasser largement le niveau du bruit blanc, même vers l’aval du jet (phénomène du "screach"). L’analyse de bande-lance des spectres du bruit émis vers l’amon et vers l’aval, en présence du "screach" montre que la fréquence discrète émise vers l’aval, a au moins la même am-

Sur la figure 2 on a représenté des champs acoustiques d’un jet d’une tuyère convergente, mesurés à des taux de détente critique et supercritique. Pour $P_1/P_2 = 3.7$, les conditions du "screach" semblent être remplies, on voit l’augmentation du bruit vers 90° et 140° à 150°. Sans screach, la courbe serait à peu près horizontale au-delà de $\theta \approx 90°$, à un niveau déterminé par le bruit d’interaction turbulence - ondes de choc, c’est-à-dire par le taux de détente du jet.

Regardons maintenant la variation du bruit maximal propagé vers l’aval du moteur. D’après la théorie bien connue de Lighthill, l’énergie acoustique créée par les fluctuations de vitesse et de pression, dans un écoulement turbulent, est proportionnelle à la puissance ω de la densité et à la puissance ω de la vitesse du jet. 90% de cette énergie sont propagés dans une gamme d’angles de quelques dizaines de degrés vers l’aval du jet, l’angle d’émission maximale passant de 25 à 30°, pour des jets lents, jusqu’à l’ordre de 50° pour des jets dont la vitesse est largement supérieure à la vitesse de son atmosphérique.

La figure 2b montre la variation du niveau de bruit maximal, en fonction de la vitesse, pour un diamètre et une densité de jet donnés. Les niveaux de bruit maximaux de la figure 2a ne se placent sur la courbe figure 2b, on peut donc supposer que le bruit prédominant autour de ω_{max} provient des fluctuations turbulentes dans le mélange du jet avec le milieu ambiant.

L’abscisse du graphique 2b est la vitesse relative du jet par rapport à la vitesse du milieu ambiant, c’est-à-dire la différence entre la vitesse du jet et la vitesse de vol; au point fixe, elle est égale à la vitesse absolue du jet. Cette vitesse est une fonction du taux de détente et de la température du jet. L’angle $\theta_{\text{max}} \approx 25°$ des courbes de la figure 2a indique que la température du jet était basse et la vitesse n’était en effet que de 460 m/s. La vitesse de jets de moteurs avec postcombustion peut facilement atteindre l’ordre de 800 m/s, pour le même taux de détente. À densité égale, l’augmentation du bruit serait alors
de l'ordre de 15 dB. En réalité, la densité diminue avec l'augmentation de la température, ce qui réduit le niveau de bruit. Il reste néanmoins un relèvement sensible du niveau du bruit de turbulence sur tout le champ acoustique. Le bruit d'interaction - ondes de choc par contre - diminue légèrement avec l'augmentation de la température, par suite de la diminution de la densité de l'écoulement traversant les ondes de choc. Aux températures élevées, le bruit d'interaction peut par conséquent être négligé complètement dans le bruit de turbulence. En effet, on n'observe pas en général de bruit dû aux ondes de choc, sur des moteurs fonctionnant à température élevée et tonds de détente modérément supercritique, au point fixe. En vol par contre, la vitesse de vol réduit la vitesse relative du jet et, par là, le bruit de turbulence, de telle façon que le bruit d'interaction réapparaît, provoquant un relèvement du niveau acoustique vers l'amont de l'avion, par rapport au bruit maximal.

III. Effets de silencieux sur le bruit

Dès le début de nos études d'atténuation du bruit à la SNECMA, nous avons pu constater que l'action d'un silencieux, même d'un type très peu efficace à l'égard du bruit maximal, élimine pratiquement l'effet du bruit d'interaction. Ceci est illustré par la courbe "avec silencieux" (figure 5a) qui représente l'effet d'un de nos tout premiers modèles de silencieux sur le champ acoustique. Ce silencieux était d'un type classique pour avions subsoniques, mal adapté aux pressions régnant dans la sortie de la tuyère aux tonds de détente largement supercritiques. L'atténuation du bruit maximal est très faible, par contre l’allure du champ acoustique se rapproche de celui d'un jet critique ou subcritique. Nous avons retrouvé ce même effet sur la forme du champ acoustique pour tous les modèles de silencieux que nous avons expérimentés, sur maquettes de tuyère et sur moteur en vol. Nous reviendrons plus loin sur une explication possible de ce phénomène.

Les figures suivantes donnent quelques exemples des effets de différents modèles de silencieux sur les caractéristiques acoustiques de jets.

Figure 3 : Une tuyère à corps central se prête à priori bien à l'installation d'un silencieux qui fractionne le jet entièrement. Les mesures accusaient, en effet, une bonne atténuation du bruit maximal, cette atténuation augmentait avec le taux de détente, dans la limite de nos mesures. Les graphiques en bas de la figure 3 représentent des spectres d'intensité du bruit, mesurés à l'angle θ_{max} avec et sans silencieux, pour des tonds de détente subcritiques et supercritiques. La fréquence est rendue sans dimension, par multiplication par le rapport du diamètre D de la tuyère à la vitesse V du jet détenu (nombre de Strouhal). L’ordonnée est, à l’échelle logarithmique, le niveau d’intensité acoustique par bande de 1 Hz, rapporté à l’intensité globale du bruit sans silencieux. (Dans cette forme de présentation généralisée, le spectre du bruit d’un jet de section circulaire est indépendant de la température et du taux de détente, en absence du "screech" évidemment).

L’effet du silencieux sur les basses fréquences qui sont émises surtout par la partie du jet détournée de la tuyère est négligeable; par contre les fréquences plus élevées qui sont caractéristiques pour la partie plus proche du jet sont réduites d’une façon à peu près uniforme, jusqu’à un nombre de Strouhal de l’ordre de 1. Pour les fréquences supérieures, la présence du silencieux augmente le niveau au-delà du niveau sans silencieux. Cette amplification des hautes fréquences se retrouve pour d’autres modèles de silencieux, par exemple celui représenté sur la figure 4.

![Figure 4: Silencieux par injection d'air](image)

Ici les obstacles fixes sont remplacés par des petits jets injectés radialement dans le jet principal. L’énergie acoustique développée par ces petits jets était trop faible pour influencer le spectre du jet principal.

Les spectres de la figure 4 sont constitués par l’énergie acoustique par bande de tiers d’octave, ce qui fait mieux ressortir la contribution des différentes parties du spectre au bruit global. Le niveau maximal des hautes fréquences, pour $q/q' = 2,5$, reste encore inférieur de 9 dB au niveau maximal des fréquences moyennes du spectre au bruit global exprimé en dB est donc négligeable. Or lorsqu’on passe du
bruit physique, mesuré par un micro-phonome, au bruit subjectif, en PhdB, tel qu'il est ressenti par un observateur, les différentes fréquences sont pondérées suivant la sensibilité de l'oreille humaine. Cette sensibilité est la plus forte pour les fréquences entre 3,000 et 5,000 Hz. Pour un jet d'une vitesse \(V \approx 700 \text{ m/s} \) et un diamètre de tuyère \(d \approx 0.7 \text{ m} \), la fréquence \(f \approx 3,000 \text{ Hz} \) correspond à un nombre de Strouhal \(S = \frac{f V}{d} \approx 3 \) vers lequel se situe le maximum d'intensité hautes fréquences, pour un silencieux suivant figure 4. Le maximum d'intensité aux fréquences moyennes se trouve, pour le même jet, dans le tiers d'octave autour de 160 Hz. La différence des facteurs de pondération pour 100 et 3,000 Hz ramène la différence entre les niveaux maximaux des moyennes et basses fréquences à l'ordre de 2 à 3 dB. La contribution du relèvement des hautes fréquences au bruit global subjectif n'est donc pas négligeable et conduit à une diminution plus ou moins grande du pouvoir d'atténuation du bruit subjectif du silencieux.

La figure 5 montre les spectres d'intensité acoustique de 4 variantes d'un autre principe de silencieux, pour une tuyère convergente sans corps central. Ces modèles sont constitués par des tubes répartis symétriquement autour de la tuyère, leur sortie se trouvant à l'intérieur de la première cellule du jet supercritique où la pression statique est inférieure à la pression ambiante, ce qui assure une aspiration efficace d'air de dilution dans le jet. L'atténuation par les modèles a et b est presque double de celle des modèles c et d dont ils se distinguent par leur pénétration radiale plus profonde. Une partie de cette augmentation de l'atténuation est probablement due à la perte de charge plus forte de ces sensibilité et la vitesse efficace du jet et par là son niveau acoustique. L'augmentation du niveau des hautes fréquences est d'autant plus frappante que l'atténuation - et la perte de charge - sont grandes. L'examen des figures 3, 4 et 5 conduit à l'hypothèse que le relèvement du niveau des hautes fréquences doit être imputé à des turbulences de petite échelle et fréquences élevées produites par les obstacles - rigides ou fluides - dans le jet et par le mélange de l'air de dilution avec le jet. Cette hypothèse semble être confirmée par le fait que les hautes fréquences ne sont pas renforcées, aux régimes supercritiques, dans le cas d'un silencieux dont la sortie est brûlée par une perte de charge résultant essentiellement d'une augmentation d'entropie dans des ondes de choc, au lieu d'une dégradation de l'énergie cinétique du jet par transformation en énergie de turbulence. Ce type de silencieux que nous avons appelé "silencieux à pelles" (figure 6), a été conçu par la SNECMA il y a trois à quatre ans. Depuis ce temps, il a fait l'objet de recherches étendues aussi bien en vue d'une optimisation de ses performances que d'une explication approfondie de son fonctionnement. Le silencieux est composé de paliers rectangulaires, répartis sur la circonférence du jet et fixées sur un éjecteur entourant la tuyère primaire. Ces paliers préviennent des masses gazeuses du jet et les dévient dans l'espace annulaire entre le jet primaire et la tuyère secondaire où ces jets partiels augmentent l'entraînement de l'air secondaire provenant de la manche à air ou des portes d'admission d'air supplémentaire. Les trois graphiques superposés montrent l'effet des pelles sur le champ acoustique, à des taux de détente sub- et supercritiques. On voit la suppression de l'effet du bruit d'interaction turbulence - onde de choc sur le bruit vers l'amont du moteur, pour \(P_{\text{f}}/P_{\text{a}} = 2.6 \) et 3.3. Contrairement aux silencieux que nous avons vus sur les figures précédentes, l'atténuation du bruit maximal diminue entre ces deux taux de détente supercritiques; l'atténuation physique maximale, en dB, se situe entre \(P_{\text{f}}/P_{\text{a}} = 1.8 \) et 2.6 pour le modèle présenté sur la figure 6. Les pelles de ce modèle sont complètement submergées dans deux taux de détente de 3. En effet, on peut, dans une certaine mesure, adapter le silencieux à pelles au taux de détente pour lequel on cherche l'atténuation maximale, plus profondément les pelles renvoient dans le jet.
plus faible est ce taux de détente. Dans le cas le silencieux est adapté à un taux légèrement superrcritique auquel l’expansion du jet est plus faible qu’à $P_j/P_0 = 3$.

A $P_j/P_0 = 1.8$, on observe une augmentation du niveau acoustique aux angles θ entre 60° et 150°. Ce phénomène apparaît avec tous les types de silencieux à obstacles fixes, au fur et à mesure que le taux de détente (subcritique) diminue. On peut supposer qu’il est produit par l’action de l’écoulement turbulent sur les surfaces des obstacles. Les fluctuations de pressions sur ces surfaces constituent des sources acoustiques du type dipolaire dont l’émission acoustique est dirigée principalement dans une direction normale à la surface sur laquelle ces pressions s’exercent. La présence d’un dipôle acoustique varie comme V^2; aux vitesses de jet V^2 élevées, ce bruit est enrayé dans le bruit de turbulence du jet qui varie avec V^3.

Ce relevé du niveau de bruit aux angles autour de 90° peut diminuer l’atténuation effective du silencieux. Les champs acoustiques représentés sur les figures 2, 3 et 6 sont des champs polaires, mesurés sur des demi-cercles autour de l’intersection de l’axe du jet avec le plan de sortie de la tuyère. Le bruit observé pendant le survol d’un avion est le bruit mesuré sur une ligne sensiblement parallèle à l’axe du jet, c’est-à-dire dans un champ linéaire. La distance entre l’observateur et l’avion est la plus courte lorsque l’avion se trouve au-dessus de l’observateur, ce qui signifie que l’émission acoustique observée sous les angles autour de 90° est amplifiée, de telle façon qu’elle peut constituer le bruit maximal.

Au bas de la figure 6 sont indiqués les spectres du bruit aux angles 60°, 90° et 100° des champs acoustiques polaires. Le spectre pour $P_j/P_0 = 1.8$ accuse une légère amplification des hautes fréquences qui est pratiquement disparu aux régimes supercritiques. Il en résulte aux taux de détente supercritiques une atténuation subjective, en PMDB, en général même légèrement plus forte que l’atténuation physique mesurée en dB.

IV. Effets de silencieux sur la structure des jets

Dans le but de rechercher les causes de ces caractéristiques acoustiques du silencieux à pêles, différentes de celles des autres silencieux que nous avons examinés, nous avons étudié les effets des pêles sur la structure du jet supercritique, par stroboscopie et par des mesures de répartitions de pressions et de température dans le jet. La figure 7 montre des photos stroboscopiques de l’écoulement dans une maquette de tuyère avec éjecteur. La tuyère est circulaire tandis que l’éjecteur a, pour les besoins de la stroboscopie, une section rectangulaire, avec les deux faces verticales transparentes. Le nombre des pêles était limité à trois en haut et trois en bas. Le recouvrement des observateurs sur cette maquette par les mesures de pression dans le jet et les relevés d’éjecteur de résolution et silencieux confirme la représentativité de la maquette.

La comparaison des photos de l’écoulement à $P_j/P_0 = 2.5$ sans silencieux, avec un silencieux à pêles "renversées" et le silencieux à pêles normal ne permet pas de déceler une influence des pêles renversées sur la structure interne du jet, tandis que les pêles en position normale semblent modifier sensiblement la recompression à la fin de la première cellule. Devant les pêles se forment des ondes de choc qui sont suivies, sur les faces intérieures des pêles, d’une détente du type Prandtl-Meyer, puis d’une autre onde de choc partant du bord aval des pêles où l’écoulement reprend sa direction normale. Ces lignes de compression et de détente traversent le jet et se croisent sur l’axe. Les faisceaux de détente, en aval des premières ondes de choc, se superposent autour de l’axe, créant ainsi une détente là où dans le cas du jet sans pêle et avec pêles renversées, commence la recompression. Ce n’est qu’en aval des ondes de choc provenant du bord aval des pêles que la recompression a lieu.

Les photos de la figure 7 montrent les gradients de densité suivant l’axe du jet. Lorsqu’on examine, par stroboscopie, les variations de densité en direction normale à l’axe, on observe des lignes tourbillonnaires qui partent des points d’intersection entre une onde de choc amont et l’onde de choc aval, provenant du côté opposé, et suivent la direction de l’écoulement. Ces lignes tourbillonnaires signalent l’existence d’une dissonance aux vitesses à travers elles. Une explication peut être la suivante : L’examen de la photo montre que l’onde de choc amont se dégrade après l’intersection avec l’onde de choc aval. Les filets de courant qui traversent le système d’ondes de choc à l’extérieur de ces points d’intersection subissent par conséquent une perte de charge moindre que les filets passant entre les points d’intersection et l’axe. À égalité de pressions sur les deux
côtés de la ligne tourbillionnaire, les vitesses doivent être différentes.

La modification par les pelles de la structure de la zone de recompression est plus nette à \(P / P_0 = 3.5 \). Entre les deux points d'intersection des ondes de choc amorçant avec les ondes de choc aval, la recompression se fait par une onde de choc sensiblement droite. Un début de cet aplatissement de la pointe du cône de recompression existe avec les pelles renversées. Il s'explique par le fait que les ondes de choc produites par la déviation de l'écoulement par les pelles renforcent la convergence des filets de courant qui les traversent, de sorte que la loi de conservation de la masse ne peut être satisfaite que par une onde de choc droite, à proximité de l'axe. Il est connu que les mêmes conditions autour de l'axe existent dans les jets non perturbés, aux taux de déteint supérieur à environ 3,7 (onde de Riemann).

Les observations strioscopiques étaient en partie vérifiées et complétées par des mesures de pressions totales et statiques et de températures dans des jets de différentes températures et de températures et de différents taux de déteint. Les mesures de la pression statistique, particulièrement délimitées dans un écoulement supersonique, étaient effectuées à l'aide d'un disque portant la prise de pression dans son centre et dont l'orientation parfaitement parallèle à l'écoulement local était contrôlée par observation strioscopique.

La figure 8 montre l'évolution du nombre de Mach sur un axe transversal du jet dans différentes sections de la deuxième cellule du jet avec silencieux à pelles \(P / P_0 = 3.4 \). L'axe choisi Y passe entre deux pelles, le long de l'axe Z montrent clairement les petits jets éjectés par les pelles vers l'extérieur du jet.

Les courbes mettent en évidence la forte diminution du nombre de Mach, à proximité de l'axe, par l'onde de choc droite. Au début de la cellule \(x / D = 1.16 \) et \(1.28 \), la variation de la vitesse est presque discontinuée, ce qui prouve la présence d'une ligne tourbillionnaire; à la fin de la cellule, dans la zone d'une nouvelle recompression \(x / D = 1.84 \), la transition est progressive, probablement par suite du mélange entre les deux parties de l'écoulement.

La variation du nombre de Mach sur l'axe du jet est représentée sur la figure 9, pour un taux de déteint de 4. Le graphique en haut de la figure met en évidence une augmentation de la longueur des cellules par l'augmentation de la température du jet. Cet effet est prévu par la théorie, comme conséquence de la diminution du rapport des chaleurs spécifiques avec l'augmentation de la température. L'augmentation mesurée de la longueur des cellules paraît toutefois plus importante que celle obtenue par le calcul.

A \(x / D > 5 \), le jet froid semblait se dégrader tandis que le jet chaud restait stable et structuré jusqu'à la limite de la longueur explorée. Ceci peut être relié au fait que l'apparition du "screen" qui est lié à une instabilité du jet, est plus souvent observé avec des jets froids qu'avec des jets chauds.

Le variation du nombre de Mach sur l'axe du jet avec le silencieux à pelles présentée au bas de la figure 9, illustre l'effet des pertes de charge dues au silencieux, sur la longueur des cellules qui est une fonction du rapport de pressions effectif. L'influence de la répartition radiale des pertes de charge, c'est-à-dire de l'onde de choc droite au milieu du jet s'exprime par l'abaissement du niveau moyen du nombre de Mach sur l'axe. Des mesures analogues avec des silencieux d'autres principes avaient également accusé un raccourcissement des cellules, avec des pressions sur l'axe semblablement identiques à celles du jet sans silencieux, aux cellules correspondantes.

Les minima de la courbe du bas de la figure 9 augmentent progressivement en fonction de \(x / D \). L'explication en est la réduction du gradient radial de vitesse, au niveau de la ligne tourbillionnaire, avec l'augmentation de \(x / D \) (voir figure 8). La largeur de la zone annulaire de vitesse maximale, située entre le silaggio au centre du jet et la zone de mélange à l'extérieur, est progressivement réduite par mélange. Des mesures analogues à celles représentées sur la figure 8 montrent qu'à des distances entre 2 et 3 diamètres, les large de mélange interne et externe se rejoignent, et que
plus en aval, la vitesse maximale du jet diminue progressivement. Ceci devrait renforcer l'atténuation du bruit réalisée par l'élargissement de la zone de mélange externe à l'aide des petits jets éjectés par les pelles.

V. Mesures d'émission d'énergie électro-magnétique (infrarouge)

Les observations anisocèpques et les mesures aérodynamiques ne peuvent donner que l'aspect macroscopique de l'influence d'un silencieux sur la structure d'un jet, renseignement indispensable mais insuffisant pour l'analyse de la génération du bruit et de son atténuation. D'après la théorie de Lighthill, les ondes acoustiques sont produites par les fluctuations turbulentes de vitesse - ou de pressions - dans le jet, fluctuations qui sont les plus intenses dans la zone de mélange du jet avec le milieu ambiant. L'énergie des ondes acoustiques est, suivant cette théorie, une fonction de l'intensité et de la fréquence des fluctuations turbulentes, ainsi que de l'échelle de turbulence, c'est-à-dire du volume des tourbillons rayonnants.

La mesure de ces grandeurs, par anémmètre à fûl ou film chaud, dans un écoulement supersonique à température élevée, est pratiquement exclue à cause des difficultés techniques et d'interprétation. C'est pourquoi nous avons fait appel à un principe différent, la mesure de l'émission d'énergie électromagnétique, dans la bande de fréquences de rayonnement infrarouge. Le développement de cette méthode a été commencé, il y a quelques années, en Allemagne dans un institut de la DVL. Les premiers résultats étaient encourageants, la SNECMA procédait alors, avec l'aide de la DVL, à l'installation d'un dispositif de mesure et à une première expérimentation, qui a été poursuivie ensuite en collaboration avec l'ONERA. La description et la théorie de cette méthode de mesure seront présentées dans la communication de M. Taimlet, de l'ONERA ; nous nous contenterons ici de dire qu'elle permet de mesurer aussi bien l'émission totale d'un jet - ce qui rend possible la comparaison avec les mesures acoustiques par microphonne - que l'émission de sources ponctuelles dans l'écoulement, par focalisation des rayons captés et corrélation des signaux provenant de deux faisceaux croisés.

L'intensité du rayonnement infrarouge est une fonction de la température et de la concentration des molécules rayonnantes (H₂O dans le cas de nos mesures) dans le jet. Les fluctuations de la concentration dans un volume donné correspondent aux fluctuations de la densité. Or la condition pour la propagation acoustique, dans le champ lointain, des fluctuations de pression et de vitesse ne se réalisent que si les présuppositions et les vitesses de déplacement des molécules soient en phase, ce qui veut dire que le rayonnement acoustique dans le champ lointain est une fonction des fluctuations de la densité des tourbillons dans le jet. Il semble donc légitime de supposer que le mécanisme qui détermine l'émission infrarouge est le même, ou de même nature, que celui qui est à la base de l'émission acoustique, sous la condition que l'influence des fluctuations de la densité sur l'émission infrarouge ne soit pas négligeable par rapport à l'effet des fluctuations de la température, ou que les fluctuations de la température et de la densité suivent des lois semblables.

Afin de vérifier l'analogie entre l'émission acoustique et l'émission infrarouge, nous avons mesuré les équivalents, en émission infrarouge, de quelques grandeurs significatives de l'émission acoustique de jets subsoniques. La figure 10 montre la variation de l'intensité locale de fluctuations de l'émission infrarouge, le long du jet, pour différents taux de détente et températures. L'intensité de fluctuations est définie de la même façon que l'intensité de la turbulence, c'est-à-dire par le rapport du niveau efficace (rms) des fluctuations à l'émission infrarouge moyenne. L'intensité croît avec la distance x/D jusqu'à un maximum qui se situe dans la zone de transition entre la zone proche du jet, dominée par le cône potentiel, et la partie aval, à turbulence isotrope, règle par les lois de similitude. La distance x/D du maximum d'intensité croît avec le taux de détente, ce qui correspond aux résultats de mesures de la variation de la longueur du cône potentiel en fonction du taux de détente. La diminution du maximum d'intensité avec l'augmentation de P₀/P₀ semble confirmer la thèse de Lighthill suivant laquelle l'intensité de turbulence diminue avec l'augmentation du nombre de Mach.

Les courbes de la figure 10 sont valables pour l'émission infrarouge globale. La variation d'intensité par bandes de fréquences de tiers d'octave, autour de quelques fréquences centrales, est représentée sur la figure 11, pour un taux de détente de 1,8. Le résultat important de ces mesures est le fait que le maximum d'intensité se trouve approximativement à la même position x/D, pour toutes les fréquences. La fréquence dominante dans chaque section du jet diminue avec l'augmentation de x/D.
La concordance est satisfaisante, ce qui justifie l'hypothèse que les fréquences et les variations d'intensité, en fonction de la fréquence et de x/D, des émissions infrarouges sont comparables aux fréquences et variations qualitatives d'intensité du bruit de turbulence. Il semble peu probable, par contre, que les intensités du rayonnement infrarouge et du rayonnement acoustique varient dans le même rapport. La différence entre les niveaux d'intensité d'émission infrarouge globale à $x/D = 0$ et $x/D = 8$, d'après la figure 11 par exemple, est beaucoup plus forte que les différences des niveaux acoustiques correspondants mesurés par exemple chez Boeing. Les mesures de Boeing confirment, d'un autre côté, que le maximum d'intensité d'émission acoustique d'un jet, même subsonique, se trouve dans la zone de transition, en aval du cône potentiel.

La variation de l'intensité d'émission infrarouge en fonction de la distance, d'un jet supercritique, est représentée sur la figure 13. Des variations périodiques d'intensité superposées à la courbe de base que l'on obtiendrait en joignant les minima, comparable à la courbe "global" de la figure 11. Par comparaison avec la figure 9, on peut identifier les élévations périodiques de l'intensité comme l'équivalent de l'amplification du bruit de turbulence par les ondes de choc. Le niveau minimal entre deux élévations correspondrait, par conséquent, au bruit de turbulence; la courbe reliant ces points a son maximum vers $x/D \approx 10$ à 11.

Sur la figure 14 sont comparées les variations d'intensité, en échelle linéaire, d'un jet supercritique, sans silencieux et avec silencieux à pelles. Le silencieux ne modifie pas le nombre des cellules du jet et n'élimine pas le bruit d'interaction, ce qui résultait déjà de l'observation striscopique (figure 7) qui montrait la persistance d'ondes de choc, dans les parties extérieures du jet, malgré la présence des pelles. La comparaison des cellules du jet sans et avec silencieux accuse une réduction du bruit d'interaction par les silencieux tandis que le bruit de turbulence semble peu changé. L'intensité maximale des fluctuations d'émission infrarouge du jet avec silencieux reste superieure au maximum de l'émission correspondant au bruit de turbulence du jet sans silencieux, ce qui est en contradiction avec le résultat de mesures acoustiques qui accusent l'élimination de l'effet du bruit d'interaction sur le champ acoustique par les silencieux. Cette contradiction peut être levée lorsqu'on admet l'hypothèse que l'intensité d'émission infrarouge est différente lorsque 'elle est produite par des fluctuations turbulentes ou lorsqu'elle provient de fluctuations d'intensité ou de position d'ondes de choc. En effet, le phénomène de l'onde de choc est lié à une forte augmentation très locale de température.
dans l’épaisseur de l’onde de choc. Une fluctuation de cette mince couche de gaz doit produire une forte fluctuation d’émission infrarouge qui ne signifie pas nécessairement une très forte émission acoustique.

Cette hypothèse d’un niveau acoustique peu important des interactions entre l’écoulement turbulent et les ondes de choc, en présence de silencieux, peut expliquer l’absence signalée, aux grands angles Θ, du niveau moyen et des hautes fréquences, qui sont essentiellement produites par l’interaction turbulence-onde de choc. Or des spectres mesurés à Θ = 150° sans et avec silencieux montraient une réduction du bruit pour toutes les fréquences tandis que l’effet du bruit d’interaction turbulence - onde de choc est limité aux moyennes et hautes fréquences. Les basses fréquences se propagent de préférence vers l’amont du jet, une atténuation du bruit de ces fréquences se fait sentir par conséquent principalement aux grands angles Θ. On admet généralement que les basses fréquences sont produites surtout par des tourbillons soumis à des forces tensions de cisaillement ("shear noise") provenant du gradient radial de vitesse moyen dans la zone de mélange. Par un élargissement de la zone de mélange, le silencieux réduit le gradient moyen de vitesse et, par là, le bruit basses fréquences. Ceci peut aussi expliquer la réduction du niveau acoustique aux grands angles, par un silencieux, pour des jets subcritiques (voir figure 3).

VI. Conclusions

Les sources prédominantes d’émissions acoustiques des jets supercritiques sous-développés sont les fluctuations turbulentes dans le jet, surtout dans la zone de mélange entre le milieu ambiant et l’interaction entre l’écoulement turbulent et les ondes de choc présentes dans les zones extérieures des jets. Le bruit maximal, émis sous des angles entre 25° et 50° par rapport à l’axe du jet, est une fonction de la vitesse relative du jet et de sa densité pour un diamètre de tuyère donné. Le niveau du bruit d’interaction qui détermine en général le niveau d’émission acoustique vers l’amont du moteur, dépend du taux de détente du jet. L’influence du bruit d’interaction sur le champ acoustique du moteur augmente avec la vitesse de vol, à régime moteur constant, par suite de la diminution de la vitesse relative du jet, donc du bruit de turbulence.

Les silencieux de jet agissent en général sur le bruit de turbulence par une accélération du mélange des masses gazeuses du jet avec l’air ambiant; cette accélération peut être réalisée par un fractionnement du jet ou par une rotation d’air extérieur dans le jet. Le relâvement du niveau des hautes fréquences que l’on observe en général dans les spectres de bruit de jets soumis à un tel silencieux doit être imputé à des tourbillons de petite échelle et de fréquences élevées, tourbillons produits par les éléments du silencieux dans le jet et par le mélange de l’air de dilution avec les masses gazeuses. Ce relâvement des hautes fréquences qui conduit en général à une atténuation subjective (en PNDB) plus faible que l’atténuation physique des pressions acoustiques (en dB), n’a pas été observé dans le cas d’un silencieux ("silencieux à pelles") qui produit un élargissement de la zone de mélange par éjection de petits jets partiels - prélevés sur la masse gazeuse - à l’extérieur du jet, et dont la trainée aux régimes supercritiques est essentiellement une trainée d’ondes de choc. Ces ondes de choc modifient la zone de recompression terminant la première cellule du jet, de telle façon qu’un tube de courant à vitesse réduite est formé autour de l’axe du jet. L’existence de cette zone de faible énergie au milieu du jet provoque une réduction progressive de la vitesse maximale du jet, au bout d’une distance de 2 à 3 diamètres, ce qui contribue à l’efficacité acoustique du silencieux.

Le silencieux ne réduit pas le nombre de cellules du jet mais leur largeur, et également l’intensité du bruit d’interaction qui pourtant ne disparaît pas complètement. À cette réduction s’ajoute apparemment une atténuation du bruit de cisaillement ("shear noise") qui est propulsé surtout vers l’amont du jet. La combinaison de ces deux effets peut expliquer l’abaissement du niveau de bruit émis vers l’amont du moteur, abaissement qui a été observé avec tous les types de silencieux expérimentés.

Dans le but de construire un modèle physique du mécanisme de l’atténuation du bruit par les silencieux, les mesures acoustiques ont été complétées par des observations par stroboscopie et par des mesures aérodynamiques dans les jets. Ces moyens d’investigation ne peuvent fournir que des renseignements sur la structure macroscopique du jet. Pour l’étude de la structure microscopique, un procédé développé récemment a été utilisé qui est basé sur la mesure d’émissions d’énergie électromagnétique, dans la bande de fréquence du rayonnement infrarouge. Ce procédé évite les inconvenients des méthodes habituelles d’étude des sources acoustiques dans les jets, en revanche il souffre, à l’heure actuelle, d’une absence de lois bien définies de relations entre les niveaux d’intensité d’émission infrarouge et d’intensité acoustique. Des mesures sur des jets subsoniques ont montré un bon recoupement entre les signaux d’émission infrarouge et des caractéristiques connus de jets subsoniques, telles que la position des sources d’émission maximale de bruit, la répartition des fréquences prédominantes le long du jet, l’échelle de turbulence et la vitesse de convection des sources acoustiques. Ces résultats montrent que cette méthode pourra constituer un moyen puissant de recherche sur la génération de bruit et son atténuation.
Références:

(1) LIGHTHILL, M.J. - Jet noise - AIAA Journal Vol.1 No.7 (Juillet 1963)

(2) DYER, I. - Distribution of sound sources in a jet stream - The Journal of the Aeronautical Society of America Vol.31 No.7 (Juillet 1959)